Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection
2.2. 15N-Tracing Experiment
2.3. Analyses
2.4. Data and Statistical Analyses
3. Results
3.1. Soil Properties
3.2. N Cycling Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.H.; Qi, X.K.; Wang, K.L.; Zhang, M.Y.; Yue, Y.M. The application of geospatial techniques in monitoring karst vegetation recovery in southwest China: A review. Prog. Phys. Geog. 2017, 41, 450–477. [Google Scholar] [CrossRef]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Horion, S.; Wang, K.L.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.M.; Luo, Y.Q.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, C.H.; Chen, H.S.; Yue, Y.M.; Zhang, W.; Zhang, M.Y.; Qi, X.K.; Fu, Z.Y. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.H.; Liu, H.Y.; Wang, H.Y.; Peng, J.; Meersmans, J.; Green, S.M.; Quine, T.A.; Wu, X.C.; Song, Z.L. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat. Commun. 2020, 11, 2392. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Weiler, J.L.M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Guillaume, T.; Holtkamp, A.M.; Muhammad, D.; Brümmer, B.; Kuzyakov, Y. Soil degradation in oil palm and rubber plantations under land resource scarcity. Agr. Ecosyst. Environ. 2016, 232, 110–118. [Google Scholar] [CrossRef]
- Kurniawan, S.; Corre, M.D.; Matson, A.L.; Schulte-Bisping, H.; Utami, S.R.; van Straaten, O.; Veldkamp, E. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 2018, 15, 5131–5154. [Google Scholar] [CrossRef] [Green Version]
- Garousi, F.; Zhijie Shan, Z.J.; Ni, K.; Yang, H.; Shan, J.; Cao, J.H.; Jiang, Z.C.; Yang, J.L.; Zhu, T.B.; Müller, C. Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber plantation in the tropical karst region. Geoderma 2021, 381, 114754. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Zhu, T.B.; Zhang, J.B.; Meng, T.Z.; Zhang, Y.C.; Yang, J.J.; Müller, C.; Cai, Z.C. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, L.; Zhu, T.B.; Yang, H.; Zhang, J.B.; Yang, J.L.; Cao, J.H.; Bai, B.; Jiang, Z.C.; Liang, Y.M.; et al. Rapid recovery of nitrogen retention capacity in a subtropical acidic soil following afforestation. Soil Biol. Biochem. 2018, 120, 171–180. [Google Scholar] [CrossRef]
- Rütting, T.; Clough, T.J.; Müller, C.; Lieffering, M.; Newton, P.C.D. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep–grazed pasture. Global Change Biol. 2010, 16, 2530–2542. [Google Scholar] [CrossRef]
- Zhu, T.B.; Meng, T.Z.; Zhang, J.B.; Yin, Y.F.; Cai, Z.C.; Yang, W.Y.; Zhong, W.H. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol. Fert. Soils 2013, 49, 323–331. [Google Scholar] [CrossRef]
- Allen, K.; Corre, M.D.; Tjoa, A.; Veldkamp, E. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE 2015, 10, e0133325. [Google Scholar] [CrossRef] [Green Version]
- Portier, E.; Silver, W.L.; Yang, W.H. Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology. Ecology 2019, 100, e02716. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.B.; Zeng, S.M.; Qin, H.L.; Zhou, K.X.; Lan, F.N.; Yang, H.; Huang, F.; Cao, J.H.; Müller, C. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil Biol. Biochem. 2016, 97, 99–101. [Google Scholar] [CrossRef]
- Song, M.; He, T.G.; Chen, H.; Wang, K.L.; Li, D.J. Dynamics of soil gross nitrogen transformations during post-agricultural succession in a subtropical karst region. Geoderma 2019, 341, 1–9. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Rousk, J.; Bååth, E. Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments. Soil Biol. Biochem. 2011, 43, 1023–1033. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.J.; Xiao, K.C.; Wang, K.L. Soil microbial processes and resource limitation in karst and non-karst forests. Funct. Ecol. 2018, 32, 1400–1409. [Google Scholar] [CrossRef]
- Booth, M.S.; Stark, J.M.; Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol. Monogr. 2005, 75, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.Q.; Luo, P.; Wen, L.; Li, D.J. Soil organic carbon accumulation during post-agricultural succession in a karst area, southwest China. Sci. Rep. 2016, 6, 37118. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilization of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.Y.; Fujii, T.; Morimoto, S.; Lin, X.G.; Yagi, K. Population size and specific nitrification potential of soil ammonia–oxidizing bacteria under long–term fertilizer management. Soil Biol. Biochem. 2008, 40, 1960–1963. [Google Scholar] [CrossRef]
- Norton, J.; Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 2019, 10, 1931. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.B.; dos Anjos, L.H.C.; Pereira, M.G.; Schiavo, J.A.; Cooper, M.; de Souza Cavassani, R. Soils in the karst landscape of Bodoquena plateau in cerrado region of Brazil. Catena 2017, 154, 107–117. [Google Scholar] [CrossRef]
- Ross, D.S.; Ketterings, Q. Recommended Methods for Determining Soil Cation Exchange Capacity. In Recommended Soil Testing Procedures for the Northeastern United States; College of Agriculture, University of Delaware: Newark, NJ, USA, 1995. [Google Scholar]
- Kirkham, D.; Bartholomew, W.V. Equations for following nutrient transformations in soil utilizing tracer data. Soil Sci. Soc. Am. Proc. 1954, 18, 33–34. [Google Scholar] [CrossRef]
- Corre, M.D.; Brumme, R.; Veldkamp, E.; Beese, F.O. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Global Change Biol. 2007, 13, 1509–1527. [Google Scholar] [CrossRef]
- Sotta, E.D.; Corre, M.D.; Veldkamp, E. Differing N status and n retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuan, Brazil. Soil Biol. Biochem. 2008, 40, 740–750. [Google Scholar] [CrossRef]
- Zhang, J.B.; Cai, Z.C.; Zhu, T.B.; Yang, W.Y.; Müller, C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci. Rep. 2013, 3, 2342. [Google Scholar] [CrossRef]
- Ueda, M.U.; Kachina, P.; Marod, D.; Nakashizuka, T.; Kurokawa, H. Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand. For. Ecol. Manag. 2017, 398, 130–139. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Wu, M.; Ye, Y.Y.; Wang, K.L.; Li, D.J. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degrad. Dev. 2019, 30, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.B.; Zhu, T.B.; Cai, Z.C.; Müller, C. Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant. Soil 2011, 342, 419–432. [Google Scholar] [CrossRef]
- Mariotte, P.; Mehrabi, Z.; Bezemer, T.M.; Deyn, G.B.D.; Kardol, P. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 2018, 33, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
Parameter i | Jianshui | Pingguo | Guilin | |||
---|---|---|---|---|---|---|
Forest | Citrus | Forest | Pitaya | Forest | ‘Shatangju’ | |
SOC (g C kg−1) | 56.8 ± 5.12a ii | 8.75 ± 1.34b | 142 ± 92.0a | 28.5 ± 2.56b | 89.4 ± 10.8a | 31.6 ± 8.82b |
TN (g C kg−1) | 4.76 ± 0.63a | 1.08 ± 0.08b | 12.5 ± 6.74a | 3.06 ± 0.26b | 7.28 ± 0.75a | 2.77 ± 0.64b |
pH | 7.17 ± 0.43a | 4.50 ± 0.05b | 7.20 ± 0.40a | 6.00 ± 0.13b | 7.18 ± 0.25a | 5.91 ± 0.25b |
WHC | 1.11 ± 0.06a | 0.75 ± 0.03b | 1.43 ± 0.29a | 0.76 ± 0.04b | 1.25 ± 0.09a | 0.88 ± 0.04b |
CEC (cmol kg−1) | 35.9 ± 3.12a | 15.2 ± 0.36 | 50.4 ± 17.1a | 21.1 ± 0.67b | 41.5 ± 2.79a | 21.7 ± 2.79b |
CaO (%) | 2.03 ± 0.55a | 0.27 ± 0.05b | 4.01 ± 1.49a | 0.83 ± 0.04b | 2.15 ± 0.22a | 0.72 ± 0.17b |
P (g kg−1) | 1.47 ± 0.30a | 1.36 ± 0.14a | 1.10 ± 0.78b | 3.33 ± 0.08a | 0.93 ± 0.09a | 0.69 ± 0.14a |
Clay (<2 µm, %) | 27.5 ± 5.60b | 42.9 ± 1.21a | 34.5 ± 3.84a | 39.5 ± 3.74a | 32.3 ± 2.49b | 46.0 ± 1.90a |
Silt (2~50 µm, %) | 56.2 ± 3.51a | 49.3 ± 1.17a | 42.1 ± 5.30a | 37.5 ± 2.21a | 51.4 ± 2.72a | 44.0 ± 0.20b |
Sand (50~2000 µm, %) | 16.2 ± 3.67a | 7.73 ± 0.30b | 23.5 ± 6.49a | 23.0 ± 3.97a | 16.3 ± 0.30a | 9.99 ± 1.74b |
NH4+ (mg N kg−1) | 10.2 ± 1.11a | 9.31 ± 1.54a | 7.08 ± 0.96a | 4.99 ± 0.35a | 3.38 ± 1.01a | 6.47 ± 2.68a |
NO3− (mg N kg−1) | 13.1 ± 3.15b | 33.6 ± 10.1a | 13.5 ± 2.99b | 22.5 ± 2.56a | 21.9 ± 3.84a | 24.8 ± 10.7a |
NO3−/NH4+ | 1.28 ± 0.18b | 3.72 ± 1.55a | 1.89 ± 0.27b | 4.45 ± 0.59a | 6.47 ± 1.14a | 4.24 ± 2.26a |
ONH4 | MRT NH4+ | MRT NO3− | SOC | TN | pH | NH4+ | NO3− | WHC | Clay | Silt | Sand | CEC | P | CaO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MNorg | 0.94 ** | −0.66 ** | −0.54 * | 0.95 ** | 0.96 ** | 0.58 * | 0.03 | −0.44 | 0.91 ** | −0.54 * | 0.06 | 0.52 * | 0.92 ** | −0.04 | 0.95 ** |
ONH4 | 1 | −0.71 ** | −0.61 ** | 0.94 ** | 0.95 ** | 0.65 ** | −0.11 | −0.39 | 0.90 ** | −0.60 ** | 0.16 | 0.47 * | 0.94 ** | 0.00 | 0.93 ** |
MRT NH4+ | 1 | 0.71 ** | −0.64 ** | −0.65 ** | −0.80 ** | 0.41 | 0.54 * | −0.69 ** | 0.69 ** | 0.00 | −0.73 ** | −0.73 ** | −0.16 | −0.70 ** | |
MRT NO3− | 1 | −0.51 * | −0.53 * | −0.79 ** | 0.13 | 0.79 ** | −0.60 * | 0.67 ** | −0.07 | −0.64 * | −0.63 ** | −0.15 | −0.61 * | ||
SOC | 1 | 0.99 ** | 0.59 * | −0.13 | −0.38 | 0.94 ** | −0.49 * | 0.08 | 0.43 | 0.96 ** | −0.10 | 0.93 ** | |||
TN | 1 | 0.60* | −0.13 | -0.40 | 0.93 ** | −0.47 | 0.02 | 0.48 * | 0.95 ** | −0.08 | 0.95 ** | ||||
pH | 1 | −0.21 | −0.71 ** | 0.72 ** | −0.66 ** | 0.18 | 0.52 * | 0.76 ** | −0.17 | 0.73 ** | |||||
NH4+ | 1 | 0.04 | −0.08 | −0.04 | 0.35 | −0.31 | −0.09 | −0.07 | −0.03 | ||||||
NO3− | 1 | −0.50 * | 0.60 * | −0.07 | −0.56 * | −0.50 * | 0.05 | −0.52 * | |||||||
WHC | 1 | −0.60 * | 0.23 | 0.40 | 0.98 ** | −0.31 | 0.93 ** | ||||||||
Clay | 1 | −0.54 * | −0.51 * | −0.63 * | −0.02 | −0.53 * | |||||||||
Silt | 1 | -0.45 | 0.20 | −0.38 | 0.10 | ||||||||||
Sand | 1 | 0.46 | 0.40 | 0.46 | |||||||||||
CEC | 1 | −0.17 | 0.95 ** | ||||||||||||
P | 1 | −0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Z.; Yin, Z.; Yang, H.; Zuo, C.; Zhu, T. Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests 2020, 11, 1282. https://doi.org/10.3390/f11121282
Shan Z, Yin Z, Yang H, Zuo C, Zhu T. Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests. 2020; 11(12):1282. https://doi.org/10.3390/f11121282
Chicago/Turabian StyleShan, Zhijie, Zhe Yin, Hui Yang, Changqing Zuo, and Tongbin Zhu. 2020. "Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China" Forests 11, no. 12: 1282. https://doi.org/10.3390/f11121282
APA StyleShan, Z., Yin, Z., Yang, H., Zuo, C., & Zhu, T. (2020). Long-Term Cultivation of Fruit Plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests, 11(12), 1282. https://doi.org/10.3390/f11121282