Why Does Phlebiopsis gigantea not Always Inhibit Root and Butt Rot in Conifers?
Abstract
:1. Introduction
2. Determinants of the Effectiveness of Protective Treatment
2.1. Competition as a Dynamic Process of Ecological Stability
2.2. Influence of Evolutionary History
2.3. Substrate Influence
2.4. Enzyme Activity
2.5. Wood Decay
2.6. Impact of Abiotic Conditions
2.7. Impact of Biotic Interactions
2.8. Timing P. gigantea Treatment
3. Perspectives
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rishbeth, J. Butt rot by Fomes annosus Fr. in East Anglian conifer plantations and its relation to tree killing. For. Int. J. For. Res. 1951, 24, 114–120. [Google Scholar] [CrossRef]
- Yde-Andersen, A. Fomes annosus in conifer stands of first and second rotation. In Proceedings of the 3rd International Conference Root and Butt Rot, Aarhus, Denmark, 29 July–3 August 1968; Hodges, C.S., Rishbeth, J., Yde-Andersen, Eds.; Forest Service United States Department of Agriculture: Washington, DC, USA, 1970; pp. 137–148. [Google Scholar]
- Thor, M. Heterobasidion Root Rot in Norway Spruce: Modelling Incidence, Control Efficacy and Economic Consequences in Swedish Forestry. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Switzerland, 2005. [Google Scholar]
- Asiegbu, F.O.; Adomas, A.; Stenlid, J. Conifer Root and Butt Rot Caused by Heterobasidion annosum (Fr.) Bref. sl. Mol. Plant Pathol. 2005, 50, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Sierota, Z. Heterobasidion root rot in forests on former agricultural lands in Poland: Scale of threat and prevention. Acad. J. 2013, 8, 2298–2305. [Google Scholar] [CrossRef]
- Garbelotto, M.; Gonthier, P. Biology, Epidemiology, and Control of Heterobasidion Species Worldwide. Annu. Rev. Phytopathol. 2013, 51, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Hodges, C.S.; Koenigs, J.W.; Kuhlmab, E.G.; Ross, E.W. Fomes Annosus: A Bibliography with Subject Index 1960–1970; USDA FS Research Paper; SFES: Asheville, NC, USA, 1971; SE-84. [Google Scholar]
- Woodward, S.; Stenlid, J.; Karjalainen, R.; Hüttermann, A. (Eds.) Heterobasidion Annosum: Biology, Ecology, Impact and Control; CABI Int.: Wallingford, UK; New York, NY, USA, 1998; p. 589. [Google Scholar]
- Nicolotti, G.; Gonthier, P.; Varese, G.C. Effectiveness of some biocontrol and chemical treatments against Heterobasidion annosum on Norway spruce stumps. Eur. J. For. Pathol. 1999, 29, 339. [Google Scholar] [CrossRef]
- Pettersson, M.; Rönnberg, J. Effect of thinning and Phlebiopsis gigantea stump treatment on the growth of Heterobasidion parviporum inoculated in Picea abies. Scand. J. For. Res. 2003, 18, 362–367. [Google Scholar] [CrossRef]
- Nicolotti, G.; Gonthier, P. Stumps treatment against Heterobasidion with Phlebiopsis gigantea and some chemicals in Picea abies stands in the Western Alps. For. Pathol. 2005, 35, 356–374. [Google Scholar] [CrossRef]
- Stenlid, J.; Oliva, J.; Boberg, J.B.; Hopkins, A.J.M. Emerging Diseases in European Forest Ecosystems and Responses in Society. Forests 2011, 2, 486–504. [Google Scholar] [CrossRef]
- Vainio, E.J.; Lipponen, K.; Hantula, J. Persistence of a biocontrol strain of Phlebiopsis gigantea in conifer stumps and its effects on within-species genetic diversity. For. Pathol. 2001, 31, 285–295. [Google Scholar] [CrossRef]
- Pratt, J.E.; Niemi, M.; Sierota, Z.H. Comparison of three products based on Phlebiopsis gigantea for the control of Heterobasidion annosum in Europe. Biocontrol Sci. Technol. 2000, 10, 467–477. [Google Scholar] [CrossRef]
- Westlund, A.; Nohrstedt, H.-Ö. Effects of stump-treatment substances for root-rot control on ground vegetation and soil properties in a Picea abies forest in Sweden. Scand. J. For. Res. 2000, 15, 550–560. [Google Scholar] [CrossRef]
- Pukkala, T.; Möykkynen, T.; Thor, M.; Rönnberg, J.; Stenlid, J. Modeling infection and spread of Heterobasidion annosum in even-aged Fennoscandian conifer stands. Can. J. For. Res. 2005, 35, 74–84. [Google Scholar] [CrossRef]
- Żółciak, A.; Małecka, M.; Sierota, Z.; Sikora, K. Evaluation of presence of Phlebiopsis gigantea in Scots pine stumps after treatment with EU commercial preparations. In Proceedings “Root and Butt Rot of Forest Trees”; Capretti, P., Comparini, C., Garbelotto, M., La Porta, N., Santini, A., Eds.; Firenze University Press: Firenze, Italy, 2013; p. 280. [Google Scholar]
- Sierota, Z.; Wrzosek, M.; Sikora, K.; Biedunkiewicz, A.; Pawłowska, J.; Tarnawski, G.; Małecka, M.; Żółciak, A. The impact of Phlebiopsis gigantea treatment on bacterial and fungal communities inhabiting Norway spruce stumps. Austrian J. For. Sci. 2016, 133, 203–222. [Google Scholar]
- Sierota, Z.; Wrzosek, M.; Małecka, M.; Żółciak, A. Decay indices for evaluating wood decomposition activity. Biocontrol Sci. Technol. 2016, 26, 163–173. [Google Scholar] [CrossRef]
- Ikediugwu, F.E.O. The interface in hyphal interference by Peniophora gigantea against Heterobasidion annosum. Trans. Br. Mycol. Soc. 1976, 66, 291–296. [Google Scholar] [CrossRef]
- Deacon, J.W. Fungal Biology, 4th ed.; John Wiley & Sons: Edinburgh, UK, 2013. [Google Scholar]
- Berglund, M.; Rönnberg, J. Effectiveness of treatment of Norway spruce stumps with Phlebiopsis gigantea at different rates of coverage for the control of Heterobasidion. For. Pathol. 2004, 34, 233–243. [Google Scholar] [CrossRef]
- Annesi, T.; Curcio, G.; D’Amico, L.; Motta, E. Biological control of Heterobasidion annosum on Pinus pinea by Phlebiopsis gigantea. For. Pathol. 2005, 35, 127–134. [Google Scholar] [CrossRef]
- Rönnberg, J.; Cleary, M.R. Presence of Heterobasidion infections in Norway spruce stumps 6 years after treatment with Phlebiopsis gigantea. For. Pathol. 2012, 42, 144–149. [Google Scholar] [CrossRef]
- Mgbeahuruike, A.C.; Karlsson, M.; Asiegbu, F.O. Differential expression of two hydrophobin genes (Pgh1 and Pgh2) from the biological control agent Phlebiopsis gigantea. Fungal Biol. 2012, 116, 620–629. [Google Scholar] [CrossRef]
- Żółciak, A.; Sierota, Z.; Małecka, M. Characterization of some Phlebiopsis gigantea isolates with respect to enzymatic activity and decay of Norway spruce. Biocontrol Sci. Technol. 2012, 22, 777–790. [Google Scholar] [CrossRef]
- Gonthier, P.; Garbelotto, M. Amplified fragment length polymorphism and sequence analyses reveal massive gene introgression from the European fungal pathogen Heterobasidion annosum into its introduced congener H. irregular. Mol. Ecol. 2011, 20, 2756–2770. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, P.; Lione, G.; Giordana, L.; Garbelotto, M. The American forest pathogen Heterobasidion irregulare colonizes unexpected habitats after its introduction in Italy. Ecol. Appl. 2012, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puentes Rodriguez, Y.; Zubizarreta Gerendiain, A.; Pappinen, A.; Peltola, H.; Pulkkinen, P. Differences in wood decay by Heterobasidion parviporum in cloned Norway spruce (Picea abies). Can. J. For. Res. 2009, 39, 26–35. [Google Scholar] [CrossRef]
- Żółciak, A.; Sierota, Z.; Małecka, M. Przebieg choroby w uprawie sosny zwyczajnej w następstwie sztucznej inokulacji pniaków grzybnią korzeniowca wieloletniego. Leśne Prace Badawcze 2006, 1, 37–55. [Google Scholar]
- Mäkinen, H.; Hallaksela, A.-M.; Isomäki, A. Increment and decay in Norway spruce and Scots pine after artificial logging damage. Can. J. For. Res. 2007, 37, 2130–2141. [Google Scholar] [CrossRef]
- Małecka, M.; Sierota, Z.; Żółciak, A. Comparison of efficacy of the biological preparation with some Phlebiopsis gigantea isolates used to protect Scots pine stumps against primary infection of Heterobasidion annosum on post agricultural lands. Sylwan 2012, 156, 526–532. [Google Scholar]
- Gunulf, A.; Mc Carthy, R.; Rönnberg, J. Control Efficacy of Stump Treatment and Influence of Stump Height on Natural Spore Infection by Heterobasidion spp. of Precommercial Thinning Stumps of Norway Spruce and Birch. Silva Fennica 2012, 46, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Kenigsvalde, K.; Brauners, I.; Korhonen, K.; Zaļuma, A.; Mihailova, A.; Gaitnieks, T. Evaluation of the biological control agent Rotstop in controlling the infection of spruce and pine stumps by Heterobasidion in Latvia. Scand. J. For. Res. 2016, 31, 254–261. [Google Scholar] [CrossRef]
- Gonthier, P.; Anselmi, N.; Capretti, P.; Bussotti, F.; Feducci, M.; Giordano, L.; Honorati, T.; Lione, G.; Luchi, N.; Michelozzi, M.; et al. An integrated approach to control the introduced forest pathogen Heterobasidion irregulare in Europe. Forestry. Int. J. For. Res. 2014, 87, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Sierota, Z.; Nowakowska, J.A.; Sikora, K.; Wrzosek, M.; Żółciak, A.; Małecka, M. Genetic variation among Phlebiopsis gigantea strains determined by Random Amplified Microsatelite Markers. Balt. For. 2015, 21, 178–183. [Google Scholar]
- Sierota, Z.; Nowakowska, J.A.; Sikora, K.; Wrzosek, M.; Żółciak, A.; Małecka, M. What is important in selecting Phlebiopsis gigantea strain for commercial use? J. Agric. Sci. Technol. B 2015, 5, 61–70. [Google Scholar]
- Gause, G.F. The Struggle for Existence, 1st ed.; Williams & Wilkins: Baltimore, MD, USA, 1934. [Google Scholar]
- Rishbeth, J. Stump protection against Fomes annosus. III. Inoculation with Peniophora gigantea. Ann. Appl. Biol. 1963, 52, 63–77. [Google Scholar] [CrossRef]
- French, K.; Robinson, S.A.; Smith, L.B.; Watts, E.M. Facilitation, competition and parasitic facilitation amongst invasive and native liana seedlings and a native tree seedling. Biota 2017, 36, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Keddy, P.A. Competition; Chapman and Hall: New York, NY, USA, 1989. [Google Scholar]
- Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 2000, 31, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Heilmann-Clausen, J.; Boddy, L. Inhibition and Stimulation Effects in Communities of Wood Decay Fungi: Exudates from Colonized Wood Influence Growth by Other Species. Microb. Ecol. 2005, 49, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L.; Hiscox, J.; Gilmartin, E.; Johnson, S.R.; Heilmann-Clausen, J. Wood decay Communities in Angiosperm Wood. In The Fungal Community. Its Organization and Role in the Ecosystem; Dighton, J., White, J.F., Eds.; CRC Press: New York, NY, USA, 2017; pp. 169–189. [Google Scholar]
- Maynard, D.S.; Bradford, M.A.; Lindner, D.L.; van Diepen, L.T.A.; Frey, S.D.; Glaeser, J.A.; Crowther, T.W. Diversity begets diversity in competition for space. Nat. Ecol. Evol. 2017, 1, 0156. [Google Scholar] [CrossRef] [Green Version]
- Maynard, D.S.; Covey, K.R.; Crowther, T.W.; Sokol, N.W.; Morrison, E.W.; Frey, S.D.; van Diepen, L.T.A.; Bradford, M.A. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities. Ecology 2018, 99, 801–811. [Google Scholar] [CrossRef]
- Terhonen, E.; Blumenstein, K.; Kovalchuk, A.; Asiegbu, F.O. Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. Forests 2019, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Duxbury, E.M.L.; Day, J.P.; Vespasiani, D.M.; Thüringer, Y.; Tolosana, I.; Smith, S.C.L.; Tagliaferri, L.; Kamacioglu, A.; Lindsley, I.; Love, L.; et al. Host-pathogen coevolution increases genetic variation in susceptibility to infection. eLife 2019, 8, e46440. [Google Scholar] [CrossRef]
- Dalman, K.; Olson, Å.; Stenlid, J. Evolutionary history of the conifer root rot fungus Heterobasidion annosum sensu lato. Mol. Ecol. 2010, 19, 4979–4993. [Google Scholar] [CrossRef]
- Stenlid, J.; Karlsson, J.-O.; Hӧgberg, N. Intraspecific genetic variation in Heterobasidion annosum revealed by amplification of minisatellite DNA. Mycol. Res. 1994, 98, 57–63. [Google Scholar] [CrossRef]
- Petta, M.; Capretti, P.; Tegli, S.; Maresi, G. Variations among Italian isolates of the Heterobasidion annosum P Group detected using the M13 minisatellite. Phytopathologia Mediterranea 2001, 40, 55–60. [Google Scholar]
- Zamponi, L.; Paffetti, D.; Tegli, S.; Łakomy, P.; Capretti, P. Genetic variation in Heterobasidion abietinum populations detected with the M13 minisatellite marker. For. Pathol. 2007, 37, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Luchi, N.; Paffetti, D.; Korhonen, K.; Hantula, J.; Capretti, P. Genetic variation of Heterobasidion abietinum in Southern Europe and the Mediterranean Basin. For. Pathol. 2011, 41, 270–280. [Google Scholar] [CrossRef]
- Schmidt-Vogt, H. Das natürliche Verbreitungsgebiet der Fichte (Picea abies [L.] Karst.) in Eurasien. Allgemeine Forst-und Jagdzeitung 1974, 145, 185–197. [Google Scholar]
- Tollefsrud, M.M.; Kissling, R.; Gugerli, F.; Johnsen, Ø.; Skrøppa, T.; Cheddadi, R.; Van der Knapp, W.O.; Latałowa, M.; Terhürne-Berson, R.; Litt, T.; et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 2008, 17, 4134–4150. [Google Scholar] [CrossRef]
- Bucci, G.; Vendramin, G.G. Delineation of genetic zones in the European Norway spruce natural range: Preliminary evidence. Mol. Ecol. 2000, 9, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Huntley, B.; Birks, H.J.B. An Atlas of Past and Present Pollen Maps of Europe, 0-13,000 Years Ago; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1983. [Google Scholar]
- Hafsten, U. Granskogens historie i Norge under opprullning. Blyttia 1991, 49, 171–181. [Google Scholar]
- Vainio, E.J.; Korhonen, K.; Hantula, J. Genetic variation in Phlebiopsis gigantea as detected with random amplified microsatellite (RAMS) markers. Mycol. Res. 1998, 102, 187–192. [Google Scholar] [CrossRef]
- Oliva, J.; Camarero, J.J.; Stenlid, J. Understanding the role of sapwood loss and reaction zone formation on radial growth of Norway spruce (Picea abies) trees decayed by Heterobasidion annosum s.l. For. Ecol. Manag. 2012, 274, 201–209. [Google Scholar] [CrossRef]
- Oliva, J.; Bernat, M.; Stenlid, J. Heartwood stump colonisation by Heterobasidion parviporum and H. annosum s.s. in Norway spruce (Picea abies) stands. For. Ecol. Manag. 2013, 295, 1–10. [Google Scholar] [CrossRef]
- Żółciak, A.; Sikora, K.; Nowakowska, J.A.; Małecka, M.; Borys, M.; Tereba, A.; Sierota, Z. Antrodia gossypium, Phlebiopsis gigantea and Heterobasidion parviporum: In vitro growth and Norway spruce wood block decay. Biocontrol Sci. Technol. 2016, 26, 1706–1718. [Google Scholar] [CrossRef]
- Tomczak, A.; Jelonek, T. Radial variation in the wood properties of Scots pine (Pinus sylvestris L.) grown on former agricultural soil. Leśne Prace Badawcze For. Res. Pap. 2013, 74, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Sierota, Z. Dry weight loss of wood after the inoculation of Scots pine stumps with Phlebiopsis gigantea. Eur. J. For. Pathol. 1997, 27, 179–185. [Google Scholar] [CrossRef]
- Adomas, A.; Eklund, M.; Johansson, M.; Asiegbu, F.O. Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol. Ecol. 2006, 57, 26–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, O. Wood and Tree Fungi. Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany, 2006; p. 334. [Google Scholar]
- Hori, C.; Ishida, T.; Igarashi, K.; Samejima, M.; Suzuki, H.; Master, E.; Ferreira, P.; Ruiz-Dueñas, F.J.; Held, B.; Canessa, P.; et al. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood. PLoS Genet. 2014, 10, e1004759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, K.T.; Tien, M.; Kersten, P.J.; Kalyanaraman, B.; Hammel, K.E.; Farrell, R.L. Lignin Peroxidase From Fungi: Phanerochaete chrysosporium. Methods Enzymol. 1990, 188, 159–171. [Google Scholar]
- Garcia, C.; Hernandez, T.; Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 1997, 28, 123–134. [Google Scholar] [CrossRef]
- Gilbert, G.A.; Knight, J.D.; Vance, C.P.; Allan, D.L. Acid Phosphatase Activity in Phosphorus-Deficient White Lupin Roots. Plant Cell Environ. 1999, 22, 801–810. [Google Scholar] [CrossRef]
- Maijala, P.; Raudaskoski, M.; Viikari, L. Hemicellulolytic enzymes in P- and S-strains of Heterobasidion annosum. Microbiology 1995, 141, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.; Denekamp, M.; Asiegbu, F.D. Production and isozyme pattern of extracellular laccase in the S and P intersterility groups of the root pathogen Heterobasidion annosum. Mycol. Res. 1999, 103, 365–371. [Google Scholar] [CrossRef]
- Maijala, P. Heterobasidion Annosum and Wood Decay: Enzymology of Cellulose, Hemicellulose, and Lignin Degradation. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2000. [Google Scholar]
- Schafer, A.; Bieg, S.; Huwig, A.; Kohring, G.-W.; Giffhorn, F. Purification by Immunoaffinity Chromatography, Characterization, and Structural Analysis of a Thermostable Pyranose Oxidase from the White Rot Fungus Phlebiopsis gigantea. Appl. Environ. Microbiol. 1996, 2586–2592. [Google Scholar] [CrossRef] [Green Version]
- Asiegbu, F.O.; Daniel, G.; Johansson, M. Cellular interaction between the saprotroph Phlebiopsis gigantea and non-suberized roots of Picea abies. Mycol. Res. 1996, 100, 409–417. [Google Scholar] [CrossRef]
- Żółciak, A.; Korniłłowicz-Kowalska, T.; Sierota, Z.; Iglik, H. Enzymatic activity of Phlebiopsis gigantea isolates. Acta Mycol. 2008, 43, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Lei, P.; Zhai, R.; Wen, Z.; Jin, M. Recent advances in lignin valorization with bacterial cultures: Microorganisms, metabolic pathways, and bio-products. Biotechnol. Biofuels 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Varela, E.; Thien, M. Effect of pH and Oxalate on Hydroquinone-Derived Hydroxyl Radical Formation during Brown Rot Wood Degradation. Appl. Environ. Microbiol. 2003, 69, 6025–6031. [Google Scholar] [CrossRef] [Green Version]
- Kaarik, A. Identification of the mycelia of wood-decay fungi by the oxidation reactions with phenolic compounds. Studia Forestalia Suecica 1965, 31, 1–80. [Google Scholar]
- Sierota, Z.; Gayny, B.; Łuczko, A. Variability of some phenolic acids in phloem of 1-year-old shoots of Scots pine trees growing with Heterobasidion annosum (Fr.) Bref. Trees 1998, 12, 230–235. [Google Scholar] [CrossRef]
- Mukherjee, N.; Kundu, B. Antifungal activities of some phenolics and related compounds to three fungal plant pathogens. J. Phytopathol. 1973, 78, 89–92. [Google Scholar] [CrossRef]
- Haars, A.; Hüttermann, A. Laccase induction in the white-rot fungus Heterobasidion annosum (Fr.) Bref. (Fomes annosus Fr. Cooke). Archives Microbiol. 1983, 134, 309–313. [Google Scholar] [CrossRef]
- Eggert, C.; Temp, U.; Eriksson, K. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 1997, 407, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Hoegger, P.J.; Kilaru, S.; James, T.Y.; Thacker, J.R.; Kües, U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 2006, 273, 2308–2326. [Google Scholar] [CrossRef] [PubMed]
- Samils, N.; Olson, Å.; Stenlid, J. The capacity in Heterobasidion annosum s.l. to resist overgrowth by the biocontrol agent Phlebiopsis gigantea is a heritable trait. Biol. Control 2008, 45, 419–426. [Google Scholar] [CrossRef]
- Havličková, V.; Rypáček, V. Enzymy dřevokazných hub I. Zjištváni oxydačnich exoenzymů. Česká Mycologie 1957, 2, 96–102. [Google Scholar]
- Sierota, Z. Choroby Lasu/Forest Diseases; Wyd. Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2001; p. 126. [Google Scholar]
- Rayner, A.D.M.; Boddy, L. Fungal Decomposition of Wood. Its Biology and Ecology; J. Wiley & Sons: Chichester, UK, 1988. [Google Scholar]
- Mäkipää, R.; Rajala, T.; Schigel, D.; Rinne, K.T.; Pennanen, T.; Abrego, N.; Ovaskainen, O. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 2017, 11, 1964–1974. [Google Scholar] [CrossRef] [Green Version]
- Fackler, K.; Gradinger, C.; Hinterstoisser, B.; Messner, K.; Schwanninger, M. Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzym. Microb. Technol. 2006. [Google Scholar] [CrossRef]
- Mgbeahuruike, A.C.; Sun, H.; Fransson, P.; Kasanen, R.; Daniel, G.; Karlsson, M.; Asiegbu, F.O. Differential Screening of Phlebiopsis gigantea Isolates for Traits Associated with Biocontrol of the Conifer Pathogen Heterobasidion annosum. Biol. Control 2011, 57, 118–129. [Google Scholar] [CrossRef]
- Nagy, N.E.; Balance, S.; Kvaalen, H.; Fossdal, C.G.; Solheim, H.; Hietala, A.M. Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay. Planta 2012, 236, 1125–1133. [Google Scholar] [CrossRef]
- Seibt, G. Der Einfluss der Düngung auf das Holzgewicht von Kiefer, Japanlarche und Fichte. Aus der Walde. Mitt. a. d. Niedersachs. Landesforstverw 1963, 6, 51–82. [Google Scholar]
- Klem, G.S. Quality of wood from fertihzed forest. Tappi 1968, 5, 99–103. [Google Scholar]
- Korhonen, K.; Stenlid, J. Biology of Heterobasidion annosum. In Heterobasidion annosum. Biology, Ecology, Impact and Control; Woodward, S., Stenlid, J., Karjalainen, R., Hüttermann, A., Eds.; CABI Int.: Wallingford, UK; New York, NY, USA, 1998; pp. 43–70. [Google Scholar]
- Cooding, G.V.; Hodges, C.S.; Ross, E.W. Effect of temperature on growth and survival of Fomes annosus. For. Sci. 1966, 12, 325–333. [Google Scholar]
- Fedorov, N.I. Kornevyje Gnili Hvojnyh Porod; Lesnaja Promyslennost: Moskva, Russia, 1984. [Google Scholar]
- Mykhayliv, O.; Sierota, Z. Threat caused to forests by the root rot Heterobasidion annosum (Fr.) Bref. in relation to soil temperature and precipitation. Leśne Prace Badawcze For. Res. Pap. 2010, 71, 51–59. [Google Scholar] [CrossRef]
- Witzell, J.; Berglund, M.; Rönnberg, J. Does temperature regime govern the establishment of Heterobasidion annosum in Scandinavia? Int. J. Biometeorol. 2011, 55, 275. [Google Scholar] [CrossRef] [PubMed]
- Kern, L.; Linkies, A. Influence of O2 and CO2 on fungal development and hydrophobin expression during the interaction between Heterobasidion parviporum and Phlebiopsis gigantea. For. Pathol. 2019, 49, e12511. [Google Scholar] [CrossRef]
- Vasiliauskas, R.; Larsson, K.H.; Stenlid, J. Persistence and Long Term Impact of Rotstop Biological Control Agent on Mycodiversity in Picea abies Forest Stumps. Biol. Control 2005, 32, 295–304. [Google Scholar] [CrossRef]
- Małecka, M.; Żółciak, A.; Sikora, K.; Sierota, Z. Ocena występowania grzybni i owocników Phlebiopsis gigantea (Fr.) Jülich w pniakach sosnowych po wykonaniu zabiegu ochronnego przed hubą korzeni. Leśne Prace Badawcze 2012, 73, 127–136. (In Polish) [Google Scholar]
- Wrzosek, M.; Sierota, Z.; Sikora, K.; Małecka, M.; Pawłowska, J. Różnorodność grzybów zasiedlających drewno pniaków świerkowych po roku od sztucznego zakażenia Phlebiopsis gigantea. Studia i Materiały CEPL 2014, 16, 178–187. [Google Scholar]
- Kubiak, K.; Damszel, M.; Sikora, K.; Przemieniecki, S.; Małecka, M.; Sierota, Z. Colonization of fungi and bacteria in stumps and roots of Scots pine after thinning and treatment with Rotstop. J. Phytopathol. 2016. [Google Scholar] [CrossRef]
- Kubiak, K.; Wrzosek, M.; Przemieniecki, S.; Damszel, M.; Sierota, Z. Bacteria Inhabiting Wood of Roots and Stumps in Forest and Arable Soils. In Endophytes of Forest Trees; Pirttilä, A., Frank, A., Eds.; Forestry Sciences; Springer: Cham, Switzerland, 2018; Volume 86, pp. 319–342. [Google Scholar]
- Mercado, J.E. Mite and Fungal Associates on Mountain Pine Beetles Attacking Three Pine Species in Northern Colorado. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2015. [Google Scholar]
- Cardoza, Y.; Moser, J.C.; Klepzig, K.D.; Raffa, K.F. Multipartite Symbioses Among Fungi, Mites, Nematodes, and the Spruce Beetle, Dendroctonus rufipenni. Environ. Entomol. 2008, 37, 956–963. [Google Scholar] [CrossRef]
- Moser, J.C.; Konrad, H.; Blomquist, S.R.; Kirisits, T. Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease? Naturwissenschaften 2010, 97, 219. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, R.W.; Moser, J.C.; Blomquist, S.R. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi. Biodivers. Ser. 2014, 12, 165–176. [Google Scholar]
- Prasad, R.; Shivay, Y.S. Oxalic acid/oxalates in plants: From self-defence to phytoremediation. Curr. Sci. 2017, 112, 25. [Google Scholar] [CrossRef]
- Binns, E.S. Field and laboratory observations on the substrates of the mushroom fungus gnat Lycoriella auripila (Diptera: Sciaridae). Ann. Appl. Biol. 1980, 96, 143–152. [Google Scholar] [CrossRef]
- White, P.F. The use of chemicals, antagonists, repellents and physical barriers for the control of Lycoriella auripila (Diptera: Sciaridae), a pest of the cultivated mushroom Agaricus bisporus. Ann. Appl. Biol. 1997, 131, 29–42. [Google Scholar] [CrossRef]
- Drenkhan, T.; Hanso, S.; Hanso, M. Effect of the Stump Treatment with Phlebiopsis gigantean against Heterobasidion Root Rot in Estonia. Balt. For. 2008, 14, 1625. [Google Scholar]
- Greig, B.J.W.; Pratt, J.E. Some observation on the longevity of Fomes annosus in conifer stumps. Eur. J. For. Pathol. 1976, 6, 250–253. [Google Scholar] [CrossRef]
- Manion, P.D. Evolution of concepts in forest pathology. Phytopathology 2003, 93, 1052–1055. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.B. Ecological stability of forests and sustainable silviculture. For. Ecol. Manag. 1995, 73, 85–96. [Google Scholar] [CrossRef]
- Manion, P.D. Tree Disease Concepts; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Goodman, R.N.; Novacky, A.J. The Hypersensitive Reaction in Plants to Pathogens: A Resistance Phenomenon; American Phytopathological Society: Saint Paul, MN, USA, 1994; p. 244. [Google Scholar]
- Rykowski, K. O leśnictwie Trwałym i Zrównoważonym; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2006. [Google Scholar]
Isolate Origin | Enzyme Activity | ||||
---|---|---|---|---|---|
Laccases U g−1 | Peroxidases U g−1 | Cellulases μg glucose g−1 | Phosphatases μg p-PNP g−1 | Dehydrogenases mg TPF g−1 24 h−1 | |
P.g.5 stump | 0 | 0.608 | 688.86 | 295.11 | 51.42 |
P.g.6 fruiting body | 0 | 8.802 | 3280.72 | 300.34 | 25.15 |
H.a. fruiting body | 1482.785 | 7.296 | 4269.08 | 351.88 | 58.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żółciak, A.; Sikora, K.; Wrzosek, M.; Damszel, M.; Sierota, Z. Why Does Phlebiopsis gigantea not Always Inhibit Root and Butt Rot in Conifers? Forests 2020, 11, 129. https://doi.org/10.3390/f11020129
Żółciak A, Sikora K, Wrzosek M, Damszel M, Sierota Z. Why Does Phlebiopsis gigantea not Always Inhibit Root and Butt Rot in Conifers? Forests. 2020; 11(2):129. https://doi.org/10.3390/f11020129
Chicago/Turabian StyleŻółciak, Anna, Katarzyna Sikora, Marta Wrzosek, Marta Damszel, and Zbigniew Sierota. 2020. "Why Does Phlebiopsis gigantea not Always Inhibit Root and Butt Rot in Conifers?" Forests 11, no. 2: 129. https://doi.org/10.3390/f11020129
APA StyleŻółciak, A., Sikora, K., Wrzosek, M., Damszel, M., & Sierota, Z. (2020). Why Does Phlebiopsis gigantea not Always Inhibit Root and Butt Rot in Conifers? Forests, 11(2), 129. https://doi.org/10.3390/f11020129