
Article

Multi-Sensor Prediction of Stand Volume by a Hybrid
Model of Support Vector Machine for
Regression Kriging

Lin Chen 1,2 , Chunying Ren 1,*, Bai Zhang 1 and Zongming Wang 1,3

1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Changchun 130102, China; chenlin@iga.ac.cn (L.C.);
zhangbai@iga.ac.cn (B.Z.); zongmingwang@iga.ac.cn (Z.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 National Earth System Science Data Center, Beijing 100101, China
* Correspondence: renchy@iga.ac.cn; Tel.: +86-431-8554-2297

Received: 23 January 2020; Accepted: 5 March 2020; Published: 6 March 2020
����������
�������

Abstract: Quantifying stand volume through open-access satellite remote sensing data supports
proper management of forest stand. Because of limitations on single sensor and support vector
machine for regression (SVR) as well as benefits from hybrid models, this study innovatively builds a
hybrid model as support vector machine for regression kriging (SVRK) to map stand volume of the
Changbai Mountains mixed forests covering 171,450 ha area based on a small training dataset (n = 928).
This SVRK model integrated SVR and its residuals interpolated by ordinary kriging. To determine
the importance of multi-sensor predictors from ALOS and Sentinel series, the increase in root mean
square error (RMSE) of SVR was calculated by removing the variable after the standardization. The
SVRK model achieved accuracy with mean error, RMSE and correlation coefficient in –2.67%, 25.30%
and 0.76, respectively, based on an independent dataset (n = 464). The SVRK improved the accuracy
of 9% than SVR based on RMSE values. Topographic indices from L band InSAR, backscatters of L
band SAR, and texture features of VV channel from C band SAR, as well as vegetation indices of the
optical sensor were contributive to explain spatial variations of stand volume. This study concluded
that SVRK was a promising approach for mapping stand volume in the heterogeneous temperate
forests with limited samples.

Keywords: ALOS-2 L band SAR; Sentinel-1 C band SAR; Sentinel-2 MSI; ALOS DSM; stand volume;
support vector machine for regression; ordinary kriging

1. Introduction

Forest stand volume, as an ecosystem service, forms the basis for decision-making at diverse
levels [1]. Spatial explicit information on forest stand volume is critical for indirect estimation
of aboveground biomass for quantifying carbon sequestration and carbon dioxide exchange [2].
Field-based inventories of forest stand volume, the conventional approach, is costly and spatially
limited [3]. Progress has been made in mapping forest volume by remote sensing modeling based on
multisource satellite and inventory data for spatially continuous and temporally uniform predictions [4,5].
Those remote sensing algorithms were divided into two categories, i.e., physical and empirical models,
and the latter included statistical regressions, machine learning techniques, and hybrid approaches [6–8].
Physically based models depend on numerous geometry and biochemistry factors, which may not be
readily available [9,10]. Statistical regressions model stand volume by estimating equation parameters
related to remote sensing variables [11,12]. These regressions have advantages on modeling explicit
relationships and applications at large scales [13,14]. Machine learning algorithms have no assumption
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on input variable distribution, type and number, which achieve robust and accurate predictions
on complex relationships [15,16]. Among the various machine learning techniques, support vector
machine is acclaimed for its capacity of dealing with small training datasets in remote sensing-based
classification [17,18]. After the re-design to predict quantitative outputs and solve regression problems,
this algorithm came to be the support vector machine for regression (SVR) and acquired wide successes
in stand volume modeling [19,20]. Hybrid approaches involve either the statistical regression or
machine learning model between the target variable and remote sensing predictors, interpolating
residuals of predictions by kriging, and combining them [21–23]. Those two-step approaches both
consider the spatial heterogeneity conveyed by remote sensing predictors and autocorrelation of
neighboring observed data [24,25]. Those approaches, especially machine learning combined ordinary
kriging of residuals such as artificial neural network kriging (ANNK) and random forest kriging (RFK),
have yielded accurately spatial predictions [26,27]. However, support vector machine for regression
kriging (SVRK) modeling for mapping forest volume has rarely been tested and reported.

Stand volume modeling with open-access satellite data has been comparable, repeatable, and
has long-term monitoring [28–30]. With the global coverage, Sentinel-1 C band synthetic aperture
radar (SAR) and Sentinel-2 multispectral instrument (MSI) images provide capabilities for stand
volume modeling using both active and passive remote sensing techniques [31,32]. The Advanced
Land Observing Satellite (ALOS/ALOS-2) Phased Array type L band SAR (PALSAR/PALSAR-2) from
L band SAR have penetrability, which contain comprehensive information on the orientation and
structure of tree canopy and stems within the pixel [33,34]. It makes the ALOS/ALOS-2 images with
global observations particularly useful for stand volume mapping [35,36]. The ALOS digital surface
model (DSM) from L band interferometric SAR (InSAR) with accurate values of elevation and can
provide useful topographic indices to estimate stand volume [37–39]. Reported studies have explored
the potential of multi-sensor data using the SVR in volume mapping [31,40,41]. However, how
volume predictions would be affected by using SAR and MSI predictors based on the SVR deserves
further exploration.

The Changbai Mountains Mixed forests, as the richest eco-region in temperate forests of
northeastern China, play a key role in carbon cycles and ecosystem services both at regional and
global scales [42–45]. Hence, in this study, we innovatively developed a SVRK model based on limited
samples and open-access satellite predictors, and adopted it to map stand volume of the Changbai
Mountains Mixed forests, a vital eco-region of temperate ecosystems. The specific objectives were
to: (1) determine and compare the relationships of forest volume with multi-sensor variables from
ALOS-2, Sentinel-1, Sentinel-2 and ALOS DSM; (2) map stand volume by the SVRK modeling; and (3)
analysis spatial variations of stand volume and provide managerial suggestions for forest farms in the
study area.

2. Materials and Methods

2.1. Study Area and Field-Measured Stand Volume

The study area covers 171,450 ha and 12 forest farms belonging to Forestry Bureau of
Dunhua County (Figure 1). The site is located within the western mountainous area of Yanbian
Korean Autonomous Prefecture of Jilin Province, northeast China. The climate is four-season,
monsoon-influenced and humid continental, with an annual average temperature and precipitation of
3.28 ◦C and 632 mm, respectively [25]. Characterized by the dense cover of the Changbai Mountains
mixed forests, the major forest types include deciduous broadleaved forest and mixed broadleaf-conifer
forest with natural vegetation [43]. Dominant tree species include Tilia amurensis (Rupr.), Juglans
mandshurica (Maxim.), Fraxinus mandschurica (Rupr.), Mongolian oak (Quercus spp.) and Betula platyphylla
(Suk.). Typical soils are dark-brown earths, meadow, bog, chernozem, and peat soil.
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Figure 1. The outline of the study area, sampling sites, and employed open-access satellite remote 
sensing data derived from Advanced Land Observing Satellite (ALOS), ALOS-2, Sentinel-1, and 
Sentinel-2 series. Date include (a) Sentinel-2 Level-1C, (b) ALOS-2 yearly mosaic, (c) Sentinel-1 Level-
1 GRD, (d) Sentinel-2 Level-2A, and (e) ALOS Digital Surface Model products. 

The field campaign was carried out in September 2017. Stratified sampling design was used by 
masking non-forest areas and randomly generating the distribution of sampling plots in forest areas, 
while the plots that were impossible to access were replaced by the nearest sites. Following the 
national guidelines for forest resource survey [46], eight teams took part in collecting measured data 
under the same protocol. A total of 1392 squared 30 m by 30 m samples were established (Figure 1a). 
At each sample site, tree species, diameter at breast height (DBH, the diameter at 1.3 m from the 
ground), and tree height were measured and recorded. Age classes from young to over-mature were 
acquired from the forest manager’s archives at the local forestry bureau for further analysis (Figure 

Figure 1. The outline of the study area, sampling sites, and employed open-access satellite remote
sensing data derived from Advanced Land Observing Satellite (ALOS), ALOS-2, Sentinel-1, and
Sentinel-2 series. Date include (a) Sentinel-2 Level-1C, (b) ALOS-2 yearly mosaic, (c) Sentinel-1 Level-1
GRD, (d) Sentinel-2 Level-2A, and (e) ALOS Digital Surface Model products.

The field campaign was carried out in September 2017. Stratified sampling design was used by
masking non-forest areas and randomly generating the distribution of sampling plots in forest areas,
while the plots that were impossible to access were replaced by the nearest sites. Following the national
guidelines for forest resource survey [46], eight teams took part in collecting measured data under
the same protocol. A total of 1392 squared 30 m by 30 m samples were established (Figure 1a). At
each sample site, tree species, diameter at breast height (DBH, the diameter at 1.3 m from the ground),
and tree height were measured and recorded. Age classes from young to over-mature were acquired
from the forest manager’s archives at the local forestry bureau for further analysis (Figure 1a). Stand
volume was estimated by DBH and tree height according to the National Standard of China: Tree
volume tables (LY/T 1353–1999) [47]. The field-measured stand volume was from 1 to 499.8 m3/ha,
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and was divided into six levels with the same frequency, with the median and standard deviation
(SD) value of 146.3 and 56.2 m3/ha, respectively (Figure 2a). The values of measured volume were
mainly below 200 m3/ha with 85.57 % (Figure 2b). The 1,392 sampling sites were randomly divided
into training (n = 928) and validation (n = 464) sets (Figure 1a) for training and assessing the models.
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Figure 2. The values of measured stand volume. (a) Field sample profiles of volume in the study site
from Plot 1 to 1,392; (b) Components of volume.

2.2. Satellite Data Pre-Processing and Derived Variables

The adopted multi-sensor satellite data are listed in Table 1. The 25-m ALOS-2 L band SAR yearly
mosaic images of 2017 were downloaded from the ALOS Research and Application Project of EORC,
the Japan Aerospace Exploration Agency to acquire the normalized backscatter coefficients (gamma
naught values) (Table 2), which was sensitive to stand volume [36,48,49]. Images were converted
to gamma naught values in decibel unit (dB) from 16-bit digital number (DN) (Figure 1b) using the
following Equation (1) [50]:

γ0= 10 log10

(
DN2

)
− 83 (1)

where γ0 is gamma naught backscatter coefficient of horizontal transmit-horizontal channel (HH) or
horizontal transmit-vertical channel (HV); DN is the polarization data in HH or HV.

Table 1. The adopted ALOS-2, Sentinel-1, Sentinel-2, and digital surface model (DSM) data.

Sensors Elements Time Spatial Resolution (m)

ALOS-2 N043E127/N043E128/
N044E127/N044E128 2017 25

Sentinel-1 D633_FCEE of
Sentinel-1B 20170927 10

Sentinel-2
T52TCP/T52TCN of

Sentinel-2A, 20170923
10

T52TDN of Sentinel-2B 20170925

ALOS N042E127/N042E128/
N043E127/N043E128

Derived from PALSAR
data during 2006 to 2011 30
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Table 2. Remote sensing indices from the ALOS and Sentinel series data for volume mapping.

Source Image Relevant Variables Description

ALOS-2
L band SAR

Polarization
HV Normalized backscatter coefficient of horizontal

transmit-vertical channel in dB

HH Normalized backscatter coefficient of horizontal
transmit-horizontal channel in dB

Sentinel-1
C band SAR

Polarization
VV Normalized backscatter coefficient of vertical

transmit-vertical channel in dB

VH Normalized backscatter coefficient of vertical
transmit-horizontal channel in dB

Texture

VV/VH_CON Contrast
VV/VH_DIS Dissimilarity

VV/VH_HOM Homogeneity
VV/VH_ASM Angular second moment
VV/VH_ENE Energy
VV/VH_MAX Maximum probability
VV/VH_ENT Entropy
VV/VH_MEA Gray-level co-occurrence matrix (GLCM) mean
VV/VH_VAR GLCM variance
VV/VH_COR GLCM correlation

Sentinel-2
MSI

Multispectral
bands

B2 Blue, 490 nm
B3 Green, 560 nm
B4 Red, 665 nm
B5 Red edge, 705 nm
B6 Red edge, 749 nm
B7 Red edge, 783 nm
B8 Near infrared, 842 nm
B8a Near infrared, 865 nm
B11 Short-wave infrared, 1610 nm
B12 Short-wave infrared, 2190 nm

Vegetation
indices

RVI Ratio vegetation index, B8/B4
DVI Difference vegetation index, B8–B4

PVI Perpendicular vegetation index,
sin(45◦)×B8–cos(45◦)×B4

NDVI Normalized difference vegetation index,
(B8 − B4)/(B8 + B4)

SAVI Soil adjusted vegetation index,
1.5 × (B8 − B4)/(B8 + B4 + 0.5)

NDVI5 Normalized difference vegetation index with bands 4
and 5, (B5 − B4)/(B5 + B4)

NLI5 Non-linear vegetation index with bands 4 and 5,
(B52

− B4)/(B52 + B4)

NDVI6 Normalized difference vegetation index with bands 4
and 6, (B6 − B4)/(B6 + B4)

NDVI7 Normalized difference vegetation index with bands 4
and 7, (B7 − B4)/(B7 + B4)

NDVI8a Normalized difference vegetation index with bands 4
and 8a, (B8a − B4)/(B8a + B4)

MSI Moisture stress index, B8/B11

EVI5 Enhanced vegetation index with bands 4, 5 and 2,
2.5 * (B5 − B4) / (B5 + 6 * B4 − 7.5 * B2 + 1)

S2REP Sentinel-2 red-edge position index,
705 + 35 × [(B4 + B7)/2 − B5] × (B6 − B5)

Transform indices
TCW Tasseled cap wetness, 0.1509 * B2 + 0.1973 * B3 + 0.3279

* B4 + 0.3406 * B8 + 0.7112 * B11 + 0.4572 * B12

TCB Tasseled cap brightness, 0.3037 * B2 + 0.2793 * B3 +
0.4743 * B4 + 0.5585 * B8 + 0.5082 * B11 + 0.1863 * B12

TCG Tasseled cap greenness, −0.2848 * B2 − 0.2435 * B3 −
0.5436 * B4 + 0.7243 * B8 + 0.0840 * B11 − 0.1800 * B12

ALOS
DSM

Topographic
indicators

H Elevation
S Slope
A Aspect
M Surface roughness

SPI Stream power index, Ln[Ac × tanβ × 100]

Sentinel series images were downloaded from the Copernicus Sentinel Scientific Data Hub. The
data included one Sentinel-1 C-band SAR and three Sentinel-2 MSI images. The SAR image was at
a high-resolution (HR) Level-1 ground range detected (GRD) processing level with a pixel size of
10 m [51]. Promising results demonstrated that the normalized backscatter coefficients and texture
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features from Sentinel-1 images could improve forest parameter estimation [32,52]. Sentinel-1 Toolbox
in SNAP software (version 6.0, European Space Agency, Paris, France) was used to acquire Sentinel-1
variables with a map projection (Figure 1c) by image calibration, speckle reduction using the Refined
Lee Filter, terrain correction by the Range-Doppler, and grey level co-occurrence matrix analysis
with 3 × 3-pixel window [52–54]. The Sentinel-2 Level 1C data were top-of-atmosphere reflectance,
which were processed by orthorectification and registration [55]. The MSI data had 13 spectral bands,
including four in 10 m (bands 2–4, 8), six in 20 m (band 5–7, 8a, 11–12), and three in 60 m (band
1, 9–10) spatial resolutions, respectively [55]. The 10-m Sentinel-2 Level 2A data (Figure 1d) were
atmospherically corrected from the Level 1C data by the radiative transfer model-based SEN2COR
atmospheric correction processor (version 2.5.5, European Space Agency, Paris, France), and were
resampled by Sentinel-2 Toolbox in SNAP. Spectral indices were strongly related to reflectance, and were
useful in volume mapping, especially some with red edge bands (band 5, 6, 7, and 8A) [56,57]. Totally,
26 variables from Sentinel-2 were selected and extracted based on previous findings (Table 2) [58,59].

The ALOS Global Digital Surface Model (AW3D30) used in this study was a global dataset
generated from L band SAR images collected using the ALOS from 2006 to 2011 (Figure 1e). The
data were download from the Japan Aerospace Exploration Agency to extract topographic indices
from previous researches by Spatial Analyst of ArcGIS software (version 10.0, ESRI, RedLands, CA,
USA) [60,61]. All remote sensing variables were re-projected into UTM Zone 52 WGS84, and then
resampled to the 30 m pixel size by ArcGIS.

2.3. Support Vector Machine for Regression Kriging (SVRK) and Modeling Evaluation

The pairwise Pearson’s product-moment correlation analysis was operated to determine predictor
variables from multi-sensor indices. It consisted of two steps: the selection of variables which were
significantly related to field-measured volume (p < 0.05) as candidates; the disposal of candidates that
were collinear (r ≥ 0.8), except the one that had the largest correlation coefficient with volume [62].
Those analyses were performed in SPSS software (version 21.0, IBM, Armonk, NY, USA).

The SVRK model built in this study is the extension of SVR, which integrated SVR prediction and
estimation of the residuals by ordinary kriging using Equation (2). SVRK considers spatial parametric
non-stationarity with the effects of multi-sensor predictors derived from the benefits of SVR. It also
added the spatial dependence of the residuals interpolated through ordinary kriging to the estimated
trend, as part of the spatial autocorrelation:

VSVRK= VSVR+ROK. (2)

where: VSVRK, VSVR are predication of stand volume based on SVRK and SVR, respectively; ROK is the
estimated residuals of volume from the SVR prediction.

The implementation of SVRK includes two steps, as shown in Figure 3. SVR is firstly used to model
the relationship between stand volume and multi-sensor predictors, as a non-linear machine learning
method. It uses kernel functions to project the training data onto a new hyperspace where complex
non-linear patterns can be simply illustrated (Figure 3a) [63,64]. The optimal hyperspace, constructed
by SVR, fits training data and predicts with minimal empirical risk [65]. The SMO (sequential minimal
optimization) algorithm is used to solve the quadratic programming optimization problem step-by-step.
It updates the SVR function, as shown in Equation 3, to reflect the new values until the Lagrange
multipliers converged [66]:

f (x) =
n∑

k = 1

(αk − α
∗

k)K
(
xk, x j

)
+ b (3)
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where x is a vector of the input predictors, f (x) . is an optimal function developed by SVR, b is a
constant threshold, K(xk, xj) is the radial basis function (RBF) kernel with the best bandwidth parameter
σ, and αk are α∗k the weights (Lagrange multipliers) with the constraints given in Equation 4.

∑n
k = 1

(
αk + α

∗

k

)
= 0

0 ≤ αk, α∗k ≤ C
(4)

where C is the regularization parameter for balancing between the training error and model complexity.
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deviation values, respectively.

In this study, SVR was conducted in WEKA software (version 3.8, The University of Waikato,
Hamilton, New Zealand). Parameters of SVR, C, and σ, were selected by the smallest root mean square
error (RMSE) based on field-measured volume in training dataset (Figure 1a). In order to determine
the importance of multi-sensor predictors on volume mapping, the training data was standardized
(Figure 3a), and then the increases in RMSEs were calculated as the predictors were excluded one by
one from the SVR model.

At the second step, the residuals resulting from SVR are estimated using the ordinary kriging
approach (ROK) (Figure 3b). Ordinary kriging, a widely used geostatistical technique, generates an
optimal unbiased estimation by the semivariogram [67]. The semivariogram can be modeled by
spherical, exponential, and Gaussian functions with three parameters—nugget, range and sill [68].
The nugget is an observation error, and sill is the magnitude of spatial autocorrelation [69]. Thus,
the stronger spatial autocorrelation is denoted by the larger value of sill relative to nugget [69]. The
range parameter shows on which distance the spatial autocorrelation does not influence any more [69].
The Kolmogorov-Smirnov test (K-S) was used to examine the distribution of residuals based on the
stationarity assumption of ordinary kriging. The interpolation of residuals by ordinary kriging was
conducted in ArcGIS with the smallest RMSE. Finally, volume prediction by SVRK (VSVRK) were
acquired as the sum of VSVR and ROK.

The validation set (Figure 1a) was used to test the performance of volume mapping by SVRK
based on the mean error (ME), RMSE, and correlation coefficient between the measured and predicted
parameters (r) [70]. In order to better estimate accuracy, the mean measured value of stand volume
(146.1 m3/ha in Figure 2a) was applied to divide the ME and RMSE. The relative improvement (RI)
based on RMSE of SVRK over SVR was used as another index for accuracy evaluation [25].
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3. Results

3.1. Relationship between Field-Measured Volume and Remote Sensing Variables

In total, 31 variables were significantly related to stand volume (p < 0.05) (Table 3), including
seven from SAR, 20 from MSI, and four from DSM. The backscatters from different wavelengths all had
strongly positive correlations with volume, while variables from ALOS-2 had the closer relationship
than that from Sentinel-1. The backscatter from HH was more sensitive to volume than that from
HH. Among 10 kinds of texture features from Sentinel-1, only the GLCM mean and variation were
actively related to volume. In other words, the increasing texture regularity and variety of VV and VH
backscatters indicated the growth of stand volume. It was shown that backscatter texture from VV was
more relevant to volume than that from VH.

Table 3. Related variables and predictors derived from multi-sensor satellite data for stand volume
mapping. * denotes significance with a p-value of the t-test being below 0.05; ** denotes strong
significance with a p-value below 0.01.

Source Image Related Variables r Collinear With Predictors

ALOS-2 HV 0.138 ** / Yes
HH 0.181 ** / Yes

Sentinel-1

VV 0.075 ** / Yes
VV_MEA 0.090 ** VV/VH_ VAR, VH_MEA Yes
VV_VAR 0.087 ** VV/VH_MEA, VH_VAR No
VH_MEA 0.057 * VV/VH_ VAR, VV_MEA No
VH_VAR 0.061 * VV/VH_MEA, VV_VAR No

Sentinel-2

B2 −0.192 ** / Yes
B3 −0.111 ** B5, TCW Yes
B4 −0.162 ** / Yes
B5 −0.079 ** B3, B11, TCW No
B11 −0.111 ** B5, B12, TCW No
B12 −0.145 ** B11 Yes
RVI 0.145 ** NDVI, NDVI5, NDVI6, NDVI7, NDVI8a No
DVI 0.087 ** PVI, SAVI, TCG No
PVI 0.087 ** DVI, SAVI, TCG No

NDVI 0.175 ** RVI, NDVI5, NDVI6, NDVI7, NDVI8a Yes
SAVI 0.110 ** DVI, PVI, TCG Yes

NDVI5 0.151 ** RVI, NDVI, NDVI6, NDVI7, NDVI8a No
NLI5 0.065 * / Yes

NDVI6 0.165 ** RVI, NDVI5, NDVI, NDVI7, NDVI8a No
NDVI7 0.166 ** RVI, NDVI5, NDVI, NDVI6, NDVI8a No
NDVI8a 0.167 ** RVI, NDVI5, NDVI, NDVI6, NDVI7 No

MSI 0.105 ** / Yes
S2REP 0.063 * / Yes
TCW −0.074 ** B3, B5, B11 No
TCG 0.087 ** DVI, PVI, SAVI No

ALOSDSM

H 0.252 ** / Yes
S 0.154 ** M Yes
A 0.091 ** / Yes
M 0.117 ** S No

As for Sentinel-2 variables, the reflectance of B2–B5, B11, and B12 as well as TCW were negatively
related to volume, while the other 13 variables represented the positive correlation. All Sentinel-2
volume-related variables displayed the strong correlation (p < 0.01), excluding NLI5 (p < 0.05).
The vegetation indices that were calculated by characteristic red-edge bands of Sentinel-2 closely
connected with volume. Variables from Sentinel-2 had similar performances with that from ALOS-2,
which showed the greater sensitivity to volume than Sentinel-1 indices.
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All four topographic indicators from ALOS DSM showed the strongly positive influence on the
increase of volume. It was indicated that variables from DSM was distinguished in the correlation
analysis with volume than that from MSI and SAR. Above all, elevation, ALOS-2 backscatters,
the texture features of VV channel of Sentinel-1, and the vegetation indices from Sentinel-2 were
comparatively vital for stand volume prediction.

3.2. Modeling Forest Volume by SVRK

3.2.1. Support Vector Machine for Regression (SVR) Modeling for Volume Mapping

To degrade the redundancy, 15 variables that had r values of the correlation analysis among
predictor candidates above 0.8 were disposed [62]. The predictors involved in modeling were the
following 16 list in Table 3. After standardization of training data, the optimal SVR model was built by
C and σ setting as 1000 and 0.01, respectively, with the minimum RMSE being 40.58 m3/ha. Based on
the magnitude of increase in RMSEs (Figure 4), the SVR model showed topographic indicators as the
most important predictor for explaining the spatial variations of stand volume, followed by ALOS-2
backscatters, Sentinel-2 indices and texture features of VV channel from Sentinel-1. The VV backscatter
from Sentinel-1 was marginal in volume prediction by SVR.
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Figure 4. Variable importance shown by increase in the root mean square errors (RMSEs) of SVR
models after excluding a predictor.

By the optimal SVR model, the predicted values of stand volume in the study area ranged from 5.37
to 523.84 m3/ha, with the mean and SD of 150.26 and 26.04 m3/ha, respectively (Figure 5a). Predicted
values were divided into six levels by intervals of field-measured volume values in Figure 2a. The
map depicted that the high-altitude region (Figure 1e) was the large forest volume area, with values
ranging from 195.51 to 523.94 m3/ha. Zones with small values of volume (5.37 to 94.40 m3/ha) were
located close to the non-forest area. Among six levels of stand volume, the smallest and largest occupy
the minority of the study area. It was revealed that the SVR model overestimated the small values,
and underestimated the large volume, compared to field-measured data.
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3.2.2. Integration of SVR Prediction and its Residuals by Ordinary Kriging

The residuals were calculated by the field-measured volume and SVR predicted values based on
training data. The result of K-S showed that volume residuals from the SVR model possessed a normal
distribution (p < 0.05), which could be used to calculate experimental semivariograms for ordinary
kriging interpolation (Figure 6). Nugget values of spherical, Gaussian, and exponential models were
1478.7, 1509.1, and 1500.5, respectively. Range values were 16.97, 11.44, and 3.16 km, respectively. Sill
values were 1689.04, 1673.94, and 1550.52, respectively. The strongest spatial autocorrelation is shown
in the spherical model with the largest values of sill relative to nugget. While, the exponential model
of ordinary kriging in Figure 6c was chosen to interpolate residuals from SVR with smallest RMSE
39.18 m3/ha. Based on Equation (2), the SVRK model was built.

By the optimal ordinary kriging model (Figure 6c), the distribution of volume residuals from
the SVR model were obtained (Figure 5b). The interpolated values of volume residuals ranged from
–29.29 to 45.85% (–42.79 to 66.99 m3/ha), with the mean and SD of 0.74 and 14.56 m3/ha, respectively.
It was demonstrated that the overestimation of small volume values was located in the western and
southern parts of the study area with residuals ranging from –29.29% to –20%. While the SVR model
underestimated large volume values in the northern part of the study area, and residuals were from
40.01% to 45.85%.
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3.3. Models Assessment and Volume Mapping

Table 4 presented the accuracy of the SVR and SVRK models for estimating volume of the
validation set (n = 464). The comparison of SVR and SVRK models demonstrated that additional
prediction of residuals by ordinary kriging as the spatial autocorrelation, was more accurate than only
considering influences of predictor variables from multi-sensor satellite data (Figure 7). It was indicated
by ME values that both two models overestimated stand volume. SVRK remarkably improved accuracy
of volume prediction over SVR by 9% (3.77 m3/ha) based on RMSE values.

Table 4. Accuracy assessment of stand volume modeling based on independent validation data.

Model ME RMSE r RI
m3/ha % m3/ha %

SVR −4.49 −3.07 40.73 27.88 0.70 /
SVRK −3.9 −2.67 36.96 25.30 0.76 0.09

Forests 2020, 11, x FOR PEER REVIEW 11 of 18 

 

By the optimal ordinary kriging model (Figure 6c), the distribution of volume residuals from the 
SVR model were obtained (Figure 5b). The interpolated values of volume residuals ranged from –
29.29 to 45.85% (–42.79 to 66.99 m3/ha), with the mean and SD of 0.74 and 14.56 m3/ha, respectively. 
It was demonstrated that the overestimation of small volume values was located in the western and 
southern parts of the study area with residuals ranging from –29.29% to –20%. While the SVR model 
underestimated large volume values in the northern part of the study area, and residuals were from 
40.01% to 45.85%. 

3.3. Models Assessment and Volume Mapping 

Table 4 presented the accuracy of the SVR and SVRK models for estimating volume of the 
validation set (n = 464). The comparison of SVR and SVRK models demonstrated that additional 
prediction of residuals by ordinary kriging as the spatial autocorrelation, was more accurate than 
only considering influences of predictor variables from multi-sensor satellite data (Figure 7). It was 
indicated by ME values that both two models overestimated stand volume. SVRK remarkably 
improved accuracy of volume prediction over SVR by 9% (3.77 m3/ha) based on RMSE values. 

Table 4. Accuracy assessment of stand volume modeling based on independent validation data. 

Model 
ME  RMSE  

r RI 
m3/ha % m3/ha % 

SVR  –4.49 –3.07 40.73 27.88 0.70 / 
SVRK –3.9 –2.67 36.96 25.30 0.76 0.09 

 
Figure 7. Scatter plots of predicted versus observed volume from validation data based on SVR (a) 
and SVRK (b) models. 

The distribution of forest volume based on the SVRK model was acquired by combing the Figure 
5a and 5b as the Figure 5c. By the optimal SVRK model, the predicted values of stand volume in the 
study area ranged from 0.18 to 532.83 m3/ha, with the mean and SD of 150.99 and 30.83 m3/ha, 
respectively (Figure 5c). Based on SVRK mapping, the northern part of the study area with high 
altitude had the largest volume values ranging from 195.51 to 532.83 m3/ha. In the south with low 
altitude and nearby the non-forest area, the smallest volume values ranged from 0.18 to 94.40 m3/ha. 
The map showed different distribution of stand volume with the SVR result, while values remained 
similar (Figure 5a and Figure 5c). The six levels of stand volume in the SVRK map covered relatively 
equal areas than that in the SVR result, especially the largest (≥ 195.91 m3/ha). It was illustrated that 
the error, which was caused by the SVR model with the overestimation of small values and 
underestimation of large volume, was reduced. Forest volume of the SVRK map showed the greater 

y = 0.46x + 82.46
R² = 0.49

0

110

220

330

440

550

0 110 220 330 440 550

Pr
ed

ic
te

d 
vo

lu
m

e 
(m

3 /h
a)

Field-measured volume (m3/ha)

(a) SVR
Fitted Line

------ 1:1 Line

y = 0.59x + 63.10
R² = 0.58

0

110

220

330

440

550

0 110 220 330 440 550

Pr
ed

ic
te

d 
vo

lu
m

e 
(m

3 /h
a)

Field-measured volume (m3/ha)

(b) SVRK
Fitted Line

------ 1:1 Line

Figure 7. Scatter plots of predicted versus observed volume from validation data based on SVR (a) and
SVRK (b) models.
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The distribution of forest volume based on the SVRK model was acquired by combing the
Figure 5a,b as the Figure 5c. By the optimal SVRK model, the predicted values of stand volume in
the study area ranged from 0.18 to 532.83 m3/ha, with the mean and SD of 150.99 and 30.83 m3/ha,
respectively (Figure 5c). Based on SVRK mapping, the northern part of the study area with high
altitude had the largest volume values ranging from 195.51 to 532.83 m3/ha. In the south with low
altitude and nearby the non-forest area, the smallest volume values ranged from 0.18 to 94.40 m3/ha.
The map showed different distribution of stand volume with the SVR result, while values remained
similar (Figure 5a,c). The six levels of stand volume in the SVRK map covered relatively equal areas
than that in the SVR result, especially the largest (≥ 195.91 m3/ha). It was illustrated that the error,
which was caused by the SVR model with the overestimation of small values and underestimation of
large volume, was reduced. Forest volume of the SVRK map showed the greater spatial variation than
that of the SVR. Namely, combining interpolation values of residuals, the spatial distribution of forest
volume was much closer to the measured data (SD = 56.2 m3/ha).

4. Discussion

4.1. Multi-Sensor Satellite Predictors of Forest Volume Mapping

The role of multi-sensor variables on volume mapping was revealed by correlation coefficients
(Table 3) and importance (Figure 4). SAR was able to penetrate forest canopy to a certain depth,
and related to roughness and water content of vegetation [71], so that its variables were valuable for
volume prediction. The elevation as a proxy of InSAR height, was dominant in volume prediction
of this study. It was support from previous findings that InSAR height and its slope parameter
were directly proportional to volume [72,73]. It was found that HV was more contributive to stand
volume prediction than HH and VV channel; yet, VH backscatter was not significantly related. It was
owing to the stronger sensitivity of HV backscatter to the forest growth stage than the HH and VV
polarizations [74,75]. All backscatters showed positive relationships with volume. This was likely due
to an increase in the volume of scattering with the growth of trees [76].

The penetrability was weaker with shorter wavelength. It resulted in the weaker capability of C
band SAR for volume prediction than that of L band SAR according to our findings. It also revealed
saturation problems of backscatters. The measured forest volume values in the study area were
partially above 200 Mg/ha (Figure 2a), which were larger than the common saturation value of C band
and smaller than that of L band SAR backscatters [48,77]. The results indicated that texture features of
SAR data were much more helpful than original backscatters to forest volume prediction, which was
consistent with existing researches [52,78]. However, textural indices from Sentinel-1 was marginal
in this study for volume mapping compared to the previous finding [79]. It was resulted from the
decrease in the heterogeneity by texture analysis and large variations of stand volume in the study area.

As optical sensor data, MSI variables, i.e., reflectance and spectral indices, were powerful for the
retrieval of horizontal forest structures such as vegetation types, canopy cover and DBH [80,81]. Results
revealed that the short-wave infrared (SWIR) band was the highly ranked variable for predicting
stand volume. It was explained by the closer relationship between SWIR spectral band and vegetation
properties, i.e., canopy biomass and water content, compared to other electromagnetic spectrum
regions [82]. In line with existing studies, reflectance of optical bands and spectral indices were quite
helpful in volume prediction [83,84], whereas, the role of red-edge bands and their vegetation indices
in this study was minor than that in previous researches [58,85]. This may be caused by the diversity
of tree species in the study area with different responses to various red-edge bands, the average
relationships of which were weaker. In a word, topographic indices from L band InSAR, backscatters
of L band SAR, texture features of VV channel from C band SAR and vegetation indices of MSI were
recommended for stand volume mapping based on open-access satellite data in the heterogeneous
temperate forests.
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4.2. SVR versus SVRK

It was a pioneering study that built the SVRK hybrid model and utilized it to map stand volume.
The optimal RBF-kernel SVR model trained in this study as the first step achieved higher accuracy than
multiple linear regressions and SVR models with various kernels based on similar multi-sensor satellite
data [31,32], while the SVR model in this study was less accurate than that built by ALOS optical and
SAR variables [20]. It was attributed to coarser spatial resolution of L band SAR data and the complex
composition of tree species in the study area. Moreover, the density of training dataset of this study
(928 samples/171450 ha) was quite smaller than that of the reported research (77 samples/83.71 ha).

Results demonstrated that SVRK improved the mapping accuracy by incorporating interpolation
values of residuals to SVR models (Figure 5 and Table 4). The value of the accuracy improvement of
SVRK was smaller than that of RFK and ANNK for soil carbon prediction as reported [86–88]. It was
resulted from the weaker autocorrelation of residuals from SVR compared with that of soil attributes,
as well as the smaller sampling density. It was denoted that stand volume was influenced more by
multi-sensor variables, and values of nearby sites affected less. The autocorrelation of volume residuals
from SVR was weaker than that of biomass errors from RF, while the accuracy improvement of SVRK
(RI = 0.09) for volume mapping was much more than that of RFK (RI = 0.07) for biomass prediction [25].
This is due to the higher spatial heterogeneity and the smaller training dataset of this study. The study
concluded that SVRK was a promising approach for mapping stand volume with a small training
dataset in heterogeneous temperate forests.

4.3. Spatial Variations of Stand Volume and Forest Management

The spatial distribution of forest volume derived by SVRK with more equal area of each level than
the result of the commonly used SVR model was much closer to the measured data (Figures 2 and 5a,c).
Whereas, the stand volume map (SD = 30.83 m3/ha) displayed smaller spatial variations than measured
data (SD = 56.2 m3/ha). The large variations of measured values of stand volume was resulted from the
positively skew distribution with the majority below 300 m3/ha (Figure 2b). The maximum measured
volume of 499.84 m3/ha belonged to a mature Pinus koraiensis (Sieb. et Zucc.) dominant natural forest
site in the northern part of the study area. The smaller variations of SVRK-derived volume mainly
resulted from the coarse mapping resolution as 30 m in this highly heterogeneous forest landscape.
The smallest and largest levels of stand volume (< 94.90 and > 195.51 m3/ha) still occupied smaller
areas than other four levels. It was illustrated that 30-m multi-sensor data from mosaic L band SAR
and InSAR, C band SAR and MSI displayed a saturation problem in detecting small and large values
of stand volume.

The volume values of different forest ages were summarized as Table 5 from the SVRK prediction
by multi-sensor satellite data. Based on spatial and age variations of stand volume, certain measures
can be taken for the sustainable forest management. In young forests, minimum, maximum and mean
were all the smallest among five classes, while the variation was largest. The larger values of stand
volume in young forests was mainly attributed to the high stand density. With tree growth, more space
and resource competition occur among individual trees. Thus, young forests with volume above
195.51 m3/ha should be the critical focus areas, which need thinning (Figure 5c). However, the young
forests with volume below 94.90 m3/ha should be enclosed for cultivation. The volume variation of
middle-age forests was second-largest. Middle-age forests with volume above 195.51 m3/ha also require
thinning, while the increment felling should be conducted in smaller volume areas. Near-mature
forests obtained the smallest maximum of stand volume. Management measures in these forests can
include the artificial promotion of natural regeneration and beforehand regeneration. Forest manager
can selectively cut weak, pest-infested, and diseased trees in mature and over-mature forests.
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Table 5. Stand volume of forests with different ages in the study area.

Age Minimum Maximum Mean Standard
Deviation

Coefficient of
Variation (%)

Yong 0.18 358.78 134.79 29.91 22.19
Middle-age 0.21 520.56 138.30 29.79 21.54

Near-mature 1.18 463.83 152.51 28.47 18.67
Mature 1.71 532.83 156.38 30.09 19.24

Over-mature 7.91 521.99 160.48 30.64 19.09

5. Conclusions

Machine learning modeling with remote sensing data combined sample plot data has become a
well adopted method to generate spatially explicit estimates of forest parameters. Among that, SVR
has achieved wide success in application and has been praised for its ability to deal with small training
datasets. A major shortcoming of machine learning is that it ignores the spatial autocorrelation of
neighboring observed data. The main objective of the study was to build a hybrid model, i.e., SVRK,
which integrated SVR and its residuals by ordinary kriging, based on a small training dataset. Then
SVRK was used to map stand volume, the most common forest parameter needed for sustainable forest
management at all scales. This study also determined the potential of open-access satellite predictors
from multi-frequency SAR data in predicting volume in the heterogeneous temperate forests. As the
first exploration of the SVRK modeling, this study provides an informative foundation for decision
makers and other researchers on stand volume mapping with limited samples in northeastern China.

Based on the results of this study, the following was concluded:

(1) SVRK can accurately predict stand volume of the heterogeneous Changbai Mountains Mixed
forests with RMSE of 25.3% based on the low sampling density of 928 samples/171,450 ha, which
improved accuracy of 9% than SVR.

(2) Topographic indices from ALOS DSM as L band InSAR, backscatters of ALOS-2 as L band
SAR, and texture features of VV channel from Sentinel-1 as C band SAR, as well as vegetation
indices of Sentinel-2 MSI as the optical sensor were vital for explaining the observed variability of
stand volume.

(3) The northern part of the study area with high altitude had the largest volume values ranging from
195.51 to 532.83 m3/ha. In the south with low altitude and near a non-forest area, the smallest
volume values ranged from 0.18 to 94.40 m3/ha.

(4) Yong forests should be paid attention to and certain measures can be taken for sustainable forest
management. Indeed, young forests with large volume need thinning, while that with small
values should be enclosed for cultivation.
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