
Article

Aggregated Biomass Model Systems and Carbon
Concentration Variations for Tree Carbon
Quantification of Natural Mongolian Oak in
Northeast China

Faris Rafi Almay Widagdo 1, Fengri Li 1, Lianjun Zhang 2 and Lihu Dong 1,*
1 Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry,

Northeast Forestry University, Harbin 150040, Heilongjiang, China; faris.almai@gmail.com (F.R.A.W.);
fengrili@nefu.edu.cn (F.L.)

2 Department of Sustainable Resources Management, State University of New York, College of Environmental
Science and Forestry (SUNY-ESF), One Forestry Drive, Syracuse, NY 13210, USA; lizhang@esf.edu

* Correspondence: lihudong@nefu.edu.cn; Tel.: +86-451-8219-1751

Received: 27 February 2020; Accepted: 31 March 2020; Published: 2 April 2020
����������
�������

Abstract: Three systems of additive biomass models were developed and the effects of tree components,
tree sizes, and tree growing regions on the carbon concentration were analyzed for Mongolian oak
(Quercus mongolica Fisch. ex Ledeb.) in the natural forests of Northeastern China. The nonlinear seemingly
unrelated regression (NSUR) method was used to fit each of the three systems simultaneously; namely,
aggregated model systems with no parameter restriction (AMS0), aggregated model systems with one
parameter restriction (AMS1), and aggregated model systems with three parameter restrictions (AMS3).
A unique weighting function for each biomass model was applied to address the heteroscedasticity
issue. The systems assertively guarantee the additivity property, in which, the summation of the
respective predicted tree components (i.e., root, stem, branch, and foliage) will match the prediction
of subtotals (i.e., crown and aboveground) and total biomass. Using one-, two-, and three-predictor
combinations (i.e., D (diameter at breast height), D and H (total height), and D, H, and CL (crown
length)) as the general model underlying formats, three systems of additive biomass model were
developed. Our results indicate that (1) all of the aggregated model systems performed well and the
differences between the systems were relatively small; (2) the rank order of the three systems based on
an array of statistics are as follows: AMS0 > AMS1 > AMS3; (3) the carbon concentration significantly
varied depending on the types of tree tissues and growing regions; (4) the regional respective
component carbon concentration and regional weighted mean carbon concentration multiplied by
observed biomass value appeared to be the best approach to calculate carbon stock.

Keywords: biomass additivity; nonlinear seemingly unrelated regression (NSUR); aggregated model
system; heteroscedasticity; quantifying carbon stock

1. Introduction

On a global scale, forests are known as one of the most dominant terrestrial ecosystems, covering
13 billion hectares or approximately 30.6% of the Earth’s total land area [1]. Forests contribute in
the storage of a large amount of biomass and play an important role in maintaining atmospheric
carbon balance on Earth [2]. Researchers have been facing a challenge for decades to enhance the
accuracy of tree biomass and carbon estimations, which are crucial for understanding climate change,
nutrient cycling, forest productivity, forest health, etc. [3–5]. Measuring the actual weight of each
tree component is unquestionably known as the most precise approach for estimating tree biomass.
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However, it is time-consuming, costly, and destructive. Thus, developing allometric biomass equations
is acknowledged as a greater alternative means to estimate forest biomass [6–8]. To date, a large
number of allometric biomass models have been established for more than several hundreds of tree
species in different ecological and geographical regions worldwide [9–13].

When developing biomass equations to estimate components, subtotals, and total biomass of an
individual tree, there are two common traits as a result of applying the different approach in fitting
the biomass data, which are well-known as non-additive and additive. The former model separately
fit the component, subtotal, and total biomass data disregarding the intrinsic correlations between
components from the same individuals [6,14,15]. Contrarily, the latter models simultaneously fit
the component, subtotal, and total biomass data reflecting the intrinsic correlations between tree
components of the same individuals. As a result, the subtotal or total biomass predictions will be
equivalent to the summation of biomass component estimations [8,15,16]. Several parameter estimation
techniques have been proposed by researchers to address the compatibility property for a system
of biomass equations [6,17–20]. Among these methods, seemingly unrelated regression (SUR) and
nonlinear seemingly unrelated regression (NSUR) appear to be more popular than others since they
are more general and flexible in application [17,19,21–24].

To date, several model configurations have been developed in order to attain the additivity property
between the component and subtotal or total biomass equations. Affleck and Diéguez-Aranda [25]
introduced an aggregated model system (denoted as AMS0), in which a number of N tree component
nonlinear biomass equations are fitted jointly without using any parameter restriction (i.e., aboveground
or total biomass). This model structure appeared as an alternative to the previous approach proposed by
Parresol [17]. Parresol’s approach also specifies a nonlinear biomass model for N tree components, and
then aboveground or total biomass summation is defined as a parameter restriction in the aggregated
model system (denoted as AMS1). Dong et al. [19] implemented another model structure that was
mentioned and recommended by Parresol [17], in which the usage of parameter restriction is also
necessary to ensure the additivity property between tree components. However, instead of using one
parameter restriction, this aggregated model system (denoted as AMS3) employed three parameter
restrictions defining the crown, aboveground, and total biomass as the summation of tree components.
For the sake of comparison, here, these aggregated model systems are calculated by jointly fitting all N,
N+1, and N+3 equations using weighted NSUR for AMS0, AMS1, and AMS3, respectively.

There are direct and indirect methods for determining the carbon stock of an individual tree. The
direct method requires the carbon concentration to be measured initially by using the carbon analyzer
to burn the tree samples [26,27]. Then, the obtained carbon concentration value can be utilized as the
conversion factor to be multiplied by the actual dry biomass. On the contrary, the indirect method
employs a generic carbon conversion factor multiplied by dry biomass value [28]. There are several
generic carbon conversion factor values that have been accepted globally: (1) the general carbon
concentration value of 0.50 and (2) 0.45 for both non-woody and woody components [29,30]. However,
recent studies revealed that the carbon concentration varies within a range of 0.44–0.56 depending
upon the biomass components and the tree species. Thus, approximately 10% bias would be generated
if one is relying on 0.50 as a generic carbon conversion factor to estimate carbon stock [31–33]. Clearly,
species-, component-, and even region-specific carbon concentration measurements are absolutely
needed in order to decrease the inaccuracy of carbon stock quantification [34].

Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) is a medium- to large-sized deciduous
broadleaf tree species that is native to forested areas in eastern Asia and easternmost Russia. In China,
it occupies the largest natural secondary forest regions, which is extensively distributed in the
mountainous regions of Daxing’an, Xiaoxing’an, Zhangguangcai, and the northernmost end of the
Changbai mountain area [35]. Wang [36] has developed the allometric equations of tree components,
aboveground, and total biomass, and Zhang et al. [37] have examined the variations of carbon
concentration in biomass tissues for Mongolian oak in northeast China. However, both of these studies
used a relatively small sample size, and particularly the biomass models developed by Wang [36] were
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not additive. Therefore, the aims of this research were: (1) to construct three aggregated biomass model
systems (i.e., AMS0, AMS2, and AMS3) with weighted NSUR based on different combinations of
independent variables for Mongolian oak in northeast China; (2) to verify the predictive performance
of the three systems using jackknifing techniques; (3) to evaluate six procedures of quantifying carbon
stock of an individual tree; and (4) to compare the aggregated model systems developed in this study
against the previously developed biomass equations.

2. Data and Methods

2.1. Data Collection

This research was undertaken in natural secondary forests located in Heilongjiang Province
(from 121◦11′ E to 135◦05′ E and from 43◦25′ N to 53◦33′ N) and Jilin Province (from 121◦38′ E to
131◦19′ E and from 40◦50′ N to 46◦19′ N), the two largest provinces in Northeast China (Figure 1). This
area encompasses five regions investigated in this study; namely, the Northern slope of Xiaoxing’an
Mountain (XXMN), the Southern slope of Xiaoxing’an Mountain (XXMS), the Eastern slope of
Zhangguangcai Mountain (ZGCME), the Western slope of Zhangguangcai Mountain (ZGCMW),
and the Changbai Mountain regions (CBM). These regions are characterized as having a continental
monsoon climate within the Dwa, Dwb, and Dwc categories of the Köppen-Geiger climate classification
system, having dry winters along with hot, warm, and cold summers, respectively [38]. The soils
are mostly either Eutroboralfs or Haplumbrepts across the five regions. The elevation, mean annual
precipitation, and mean annual temperature varies from 300 to 1500 m above sea level, between 500
and 800 mm, and from −4 to +6 ◦C, respectively.

A total of 72 trees from natural secondary forests were destructively sampled to measure the
following parameters: (1) tree basic variables such as four directional crown width (CW), diameter at
breast height (D), the length of the live crown (CL) and the total tree height (H); (2) the actual fresh
weight of the roots, stems, branches, and foliage; and (3) the moisture content and carbon concentration
of the sampled roots, stems, branches, and foliage. Note that this study did not separately measure
tree bark; thus, all of the stem weights and measurements were of trees not debarked. A detailed
explanation of the determination of biomass and carbon concentration, including field and laboratory
measurements, can be found in Dong et al. [7,39]. The summary statistics of all sampled trees are listed
in Table 1.
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Table 1. Descriptive statistics of tree variables.

Statistics N Mean Min Max SD

D (cm) 72 16.7 2.8 37.1 8.2
H (m) 72 12.3 2.5 21.1 4.5

CW (m) 72 2.4 0.9 7.1 1.2
CL (m) 72 8.1 0.6 16.4 3.7

Total biomass (kg) 72 202.14 1.74 969.13 222.94
Root biomass (kg) 72 40.67 0.48 196.50 44.06
Stem biomass (kg) 72 117.21 0.87 487.70 123.23

Branch biomass (kg) 72 38.41 0.13 249.64 52.01
Foliage biomass (kg) 72 5.84 0.09 35.29 6.73

2.2. Additive Biomass Models

2.2.1. Base Model

The allometry relationship between tree biomass components and several available predictors
were primarily screened through visual inspection to ascertain whether or not each component biomass
model could appropriately be developed as multivariate allometric equations (Figure 2).
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In addition, the regional effect on biomass data for each tree component was tested by using a
dummy variable method, and the difference was found to be insignificant. Thus, the effect of different
tree growing regions was not considered. Nonlinear regression with an additive error term was
determined as the general biomass equation defined as follows:

Wi = eβi0Xβi1
1 Xβi2

2 · · ·X
βik
k + εi (1)

where Wi represent each biomass components in kg (i = r for roots, s for stems, b for branches, and
f for foliage); X j are several available predictors (j = 1, . . . , k), such as D, H, CW, and CL; βi j are the
model coefficients; εi is the error term. Each of the tree component biomass equations were fitted
using various candidate combinations of available predictor (i.e., D, H, CW, and CL). Then, three
model fitting statistics were used to determine the “best model” based on different predictors for
each component biomass equation: (i) Akaike information criterion (AIC), (ii) root mean squared
error (RMSE), (iii) coefficient of determination (R2), and (iv) significance of model parameters. The
model fitting statistics showed that the component biomass equations have different combinations
of independent variable. Finally, we selected one-, two-, and three-independent variables as the
underlying formats to develop three systems of additive biomass model.

2.2.2. Aggregated Model Systems

The component biomass data were required to be simultaneously fitted in order to elucidate the
intrinsic correlations among component biomass of the same individuals. In this study, we proposed
three different structural arrangements for the aggregated model systems, i.e., those with no parameter
restriction (AMS0), those with one parameter restriction (AMS1), and those with three parameter
restrictions (AMS3), as specified below:

• Aggregated model systems with no parameter restriction

Referring to the model structure detailed in Affleck and Diéguez-Aranda [25], the structural
system of AMS0 are as follows: 

Wr = eβr0Xβr1
1 Xβr2

2 · · ·X
βrk
k + εr

Ws = eβs0Xβs1
1 Xβs2

2 · · ·X
βsk
k + εs

Wb = eβb0Xβb1
1 Xβb2

2 · · ·X
βbk
k + εb

W f = eβ f 0X
β f 1

1 X
β f 2

2 · · ·X
β f k

k + ε f

(2)

where Wr represents roots, Ws refers to stems, Wb refers to branches, and W f refers to foliage biomass.
The other abbreviations were the same as in Equation (1).

• Aggregated model systems with one parameter restriction

Referring to the model structure detailed in Parresol [17], the AMS1 ensures the additivity between
tree component, subtotal, and total biomass with one parameter restriction, i.e., tree total biomass
equals the summation of the whole tree component biomass. The structural system of AMS1 are given
as follows: 

Wr = eβr0Xβr1
1 Xβr2

2 · · ·X
βrk
k + εr

Ws = eβs0Xβs1
1 Xβs2

2 · · ·X
βsk
k + εs

Wb = eβb0Xβb1
1 Xβb2

2 · · ·X
βbk
k + εb

W f = eβ f 0X
β f 1

1 X
β f 2

2 · · ·X
β f k

k + ε f

Wt = Wr + Ws + Wb + W f + εt

(3)

where Wt represents total biomass. The other abbreviations were the same as in Equations (1) and (2).

• Aggregated model systems with three parameter restrictions
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Referring to another of Parresol’s [17] model structure, which has been applied in Dong et al. [19],
the AMS3 ensures the additivity between the tree component and total biomass with three parameter
restrictions, i.e., (1) tree crown biomass is equivalent to the summation of the branch and foliage
biomass; (2) tree aboveground biomass is equivalent to the summation of the stem, branch, and foliage
biomass; (3) tree total biomass is equivalent to the sum of the whole tree components biomass. The
structural system of AMS3 are given as follows:

Wr = eβr0Xβr1
1 Xβr2

2 · · ·X
βrk
k + εr

Ws = eβs0Xβs1
1 Xβs2

2 · · ·X
βsk
k + εs

Wb = eβb0Xβb1
1 Xβb2

2 · · ·X
βbk
k + εb

W f = eβ f 0X
β f 1

1 X
β f 2

2 · · ·X
β f k

k + ε f

Wc = Wb + W f + εc

Wa = Ws + Wb + W f + εa

Wt = Wr + Ws + Wb + W f + εt

(4)

where Wc and Wa represent the crown and aboveground, respectively. The other abbreviations were
the same as in Equations (1)–(3).

2.3. Weighting Function for Heteroscedasticity

Tree biomass data frequently exhibit heteroscedasticity in the model’s error variance. Hence, in
the context of nonlinear regression, a weighting function must be specified for each biomass model in
order to counter the problem. It is well known that the model residuals of the ith observation have
a functional correlation with one or several combinations of predictors. Thus, a power function of
σ2

i = (xi)
p was determined for the independent variables, where the power coefficient p can be obtained

by iteratively using the error variance model of e2
i = (xi)

p, in which, ei is the unweighted (OLS) model
residual. Two different formats of weight functions (i.e., x = D and x = D·H) were compared, but the
difference was not significant between them. Hence, p was determined for each biomass equation and
1/Dp was chosen to be the weighting function. The programming code of resid. Wi = resid.Wi/

√
Dp

was specified by utilizing the PROC MODEL procedure [40] in order to homogenizes the residuals and
improve the model fitting, as noted by Balboa-Murias et al. [41] and Dong et al. [19].

2.4. Model Assessment and Validation

As described above, the three candidate aggregated model systems based on different predictor
variables were evaluated in this study. The biomass dataset (sample size n) was used in its entirely
to establish the biomass equations. Meanwhile, the jackknifing technique was utilized to validate
the model, in which the sample size of all-except-one observation (n – 1) was used to build the
biomass models. Further, the fitted model was utilized to estimate the biomass value for the held-out
observation. Five validation statistics of jackknifing were employed to calculate and compare the
model performance: coefficient of determination (R2), root mean square error (RMSE), mean prediction
error (MPE), mean absolute error (MAE) and mean absolute percent error (MAPE). These statistical
analyses are summarized as

R2 = 1−

∑n
i=1 (Wik − Ŵik)

2∑n
i=1 (Wik −Wk)

2 (5)

RMSE =

√∑n
i=1

(
Wik − Ŵik

)2

n
(6)

MPE =

∑n
i=1

(
Wik − Ŵik,−i

)
n

(7)
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MAE =

∑n
i=1

∣∣∣∣Wik − Ŵik,−i

∣∣∣∣
n

(8)

MAPE =

∑n
i=1

∣∣∣∣(Wik − Ŵik,−i)/Wik

∣∣∣∣
n

× 100 (9)

where Wik, Ŵik, and W are the observed, predicted, and average biomass, respectively, of the ith sample
tree from the k components (k = r for roots, s for stems, b for branches, and f for foliage), which were
fitted by using all of the n observations; Ŵik,−i is the predicted value of the model which was fitted by
using n – 1 observations.

2.5. Effects of Tree Size, Region, and Component

To investigate the effect of tree sizes (D), growing regions, and tree components on the variation
of carbon concentration, multi-factor analysis of variance (ANOVA) through a general linear model
was utilized. The model form can be written as follows:

yi jk = µ+ αi + β j + γk + (α · β)i j + (α · γ)ik + (β · γ) jk + (α · β · γ)i jk + εi jk (10)

where yi jk represents the value of observed carbon concentration, µis the average value, αi is the effect
of the ith tree D on yi jk, β j is the effect of the jth region on yi jk, γk is the effect of the kth tree component
on yi jk, (α · β)i j and (α · γ)ik represent the interaction effect between tree D with growing region and tree
component, respectively, (β · γ) jk is the interaction effect between region and components, (α · β · γ)i jk
presents the interaction effect among the three variables, and εi jk is the expression of error. The statistical
analysis system (SAS) software [40] was used for analyses, utilizing the PROC GLM procedure to
investigate the variation in carbon concentration.

2.6. Tree Carbon Quantifications

Six alternative procedures to quantify respective components, subtotals, and total carbon stock
values were evaluated. Since each individual tree component has a different carbon concentration, it is
undoubtedly very complex to always define the value of carbon stock by only relying on it. Once the
carbon stock quantification for each tree component was obtained, they were aggregated to produce
the subtotal and total carbon stock for a particular individual tree.

1. Regional respective component carbon concentration (RRCCc): This procedure multiplied the observed
biomass value (Wi) of each component by the respective component carbon concentration for
each region. Further, the carbon stock of an individual tree was obtained by summing the
component estimates.

2. Regional weighted mean carbon concentration (RWMCc): In this procedure, each of the observed
component biomass values (Wi) were multiplied by the weighted mean carbon concentration for
each region. The weighted mean carbon concentration was measured as follows:

WC j =
∑4

i=1
Ci j × Bi j (11)

where WC is the weighted mean carbon concentration for the jth region, and Ci j and Bi j are the
measured carbon concentration and the relative proportion to total biomass partitioning for the
ith component within the jth region, respectively.

3. Respective component mean carbon concentration (RCMCc): This procedure multiplied the observed
biomass value (Wi) of each component by the respective component mean carbon concentration
regardless of the region for all sampled trees and subtotaling and totaling carbon stocks by
summing respective components.
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4. Total weighted mean carbon concentration (TWMCc): This procedure multiplied each component
observed biomass value (Wi) by the total weighted mean carbon concentration of all sample data.
The weighted calculation was similar with the RWMCc procedure but disregarded region. Hence,
the carbon stock of the subtotal and total individual tree was acquired by the summation of each
component’s carbon stock.

5. Generic carbon concentration conversion factor 1 (GCCCf-1): This procedure multiplied the observed
biomass value (Wi) of each component by a generic carbon concentration conversion factor of 0.45.

6. Generic carbon concentration conversion factor 2 (GCCCf-2): This procedure resembles GCCCf-1
instead employing the generic carbon concentration conversion factor of 0.50 for tree components
to quantify the carbon stock of an individual tree.

In order to identify the best and most reliable carbon stock quantification method, we conducted
a comparison between the six procedures. The absolute relative error (RE) measured respective biases
of carbon stock quantification procedures, computed as

RE(%) =

∑N
=1

Oci−Qci
Oci

× 100%

N
(12)

where Oci and Qci are the ith observed value of carbon stock calculated by multiplying the specific
component biomass with its respective carbon concentration and the value of carbon stock quantified
by six different procedures for the ith sampled tree, respectively; N represents the total sample size of
carbon stock quantification data (i.e., N = 64).

3. Results

3.1. Variation of Carbon Concentration

The average, minimum, maximum, and standard deviation of the carbon concentration values for
each sampled tree components and RWMCC values from five different regions are given in Table 2.
The carbon concentrations found in Mongolian oak were highly varied; values per tree ranged from
0.3949 to 0.5207 across whole components and regions. The highest carbon concentration of tree
components for all regions was found in foliage (varying from 0.4293 to 0.5207), whereas the lowest
carbon concentration was varied between roots (regions XXMN and XXMS) and branch (regions
ZGCME, ZGCMW and CBM). In total, carbon concentration in each component can be ranked as
follows: foliage > stem > branch > root. XXMS had the highest RWMCC with the amount of 0.4747 ±
0.0102 (mean± standard deviation), while ZGCME had the lowest RWMCC with the amount of 0.4349±
0.0095. The types of tree components and growing regions were proven to significantly affect the carbon
concentration at the 5% threshold, while tree sizes (D) had no such significant effect (Table 3). This
result indicates, at least in our sampled data, that tree diameter at breast height does not significantly
affect tree carbon concentration. Moreover, our findings were strengthened by the multiple comparison
tests (employing Tukey–Kramer adjustment method), demonstrated by diffograms (Figure 3).
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Table 2. Carbon concentration statistics for Mongolian oak by region, component, and weighted mean
carbon concentration (WMCC).

Region Sites Components N Mean Min Max SD

XXMN Heihe, Luobei and Sunwu

Root 18 0.4461 0.4137 0.4744 0.0202
Stem 0.4638 0.4372 0.4917 0.0156

Branch 0.4506 0.4082 0.4735 0.0159
Foliage 0.4755 0.4392 0.5085 0.0201

RWMCC 0.4578 0.4313 0.4842 0.0147

XXMS Qingan

Root 12 0.4662 0.4463 0.4863 0.0127
Stem 0.4786 0.4640 0.4962 0.0113

Branch 0.4710 0.4426 0.5043 0.0165
Foliage 0.4858 0.4639 0.5207 0.0177

RWMCC 0.4747 0.4607 0.4885 0.0102

ZGCME Hulin and Ningan

Root 12 0.4194 0.3949 0.4423 0.0171
Stem 0.4396 0.4200 0.4538 0.0109

Branch 0.4324 0.4166 0.4465 0.0097
Foliage 0.4502 0.4305 0.4766 0.0133

RWMCC 0.4349 0.4143 0.4430 0.0095

ZGCMW Acheng and Wuchang

Root 12 0.4408 0.4029 0.4773 0.0220
Stem 0.4571 0.4230 0.4835 0.0228

Branch 0.4527 0.4256 0.4859 0.0233
Foliage 0.4624 0.4293 0.4846 0.0161

RWMCC 0.4537 0.4225 0.4806 0.0215

CBM Fusong and Baishan

Root 10 0.4250 0.4049 0.4475 0.0133
Stem 0.4385 0.4110 0.4623 0.0166

Branch 0.4356 0.4139 0.4613 0.0162
Foliage 0.4551 0.4379 0.4858 0.0168

RWMCC 0.4361 0.4110 0.4595 0.0148

Total All sites

Root 64 0.4406 0.3949 0.4863 0.0234
Stem 0.4568 0.4110 0.4962 0.0211

Branch 0.4491 0.4082 0.5043 0.0208
Foliage 0.4670 0.4293 0.5207 0.0210

TWMCC 0.4525 0.4110 0.4885 0.0201

XXMN: North slope of Xiaoxing’an Mountains; XXMS: South slope of Xiaoxing’an Mountains; ZGCME: Eastern slope
of Zhangguangcai mountains; ZGCMW: Western slope of Zhangguangcai mountains; CBM: Changbai mountains.
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Figure 3. The diffograms (mean-mean scatter diagrams) of multiple comparisons of adjusted least
squares means for the Mongolian oak tree components and growing regions. The diagonal reference
line in each diffogram represents the line of unity for all pairs with equal least square means. The line
segment that is forming a 90-degree angle to the line of unity represents a different series of treatment
as indicated by grid labels, each centered by the pair’s least square means and its length proportional
to the pairwise difference range of values. The line segment colors indicate the significant/insignificant
difference between pairs: blue (p ≤ 0.05); red (not significant).
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Table 3. The effects of tree size (D), region, and tree component on carbon concentrations of Mongolian
oak. Degrees of freedom (DF) and type III sum of squares (SS) are shown.

Source DF Type III SS Mean Square F-Values p-Values

Tree size (D) 1 0.00001407 0.00001407 0.05 0.8326
Region 4 0.04853293 0.01213323 42.93 <0.0001

Component 3 0.02437421 0.00812474 28.75 <0.0001

3.2. Aggregated Model Systems and Validation of Models

The estimated parameters and jackknifing validations for the AMS0, AMS1, and AMS3 based on
D only, combination of D and H, and combination of D, H, and CL are shown in Tables 4–6, respectively.
CW was found to give insignificant improvement as a predictor in all tree component equations; thus, it
was excluded from our models. Preliminary inspection showed that adding H into the root and branch
equations, along with the insertion of CL into the stem equation would not significantly improve the
model fitting. Hence, D was used as the sole predictor for root and branch biomass models (Tables 4–6),
the combination of D and H were used as predictors for the stem (Tables 5 and 6) and foliage biomass
models (Table 5), and the complete set of predictors (D, H, and CL) were used in the foliage biomass
models (Table 6).

D was unquestionably a major predictor of biomass for the three aggregative model systems. The
regular D model itself accounted for ≥93%, ≥95%, ≥96%, and ≥98% of variation in foliage, root, stem,
and all (branch, crown, aboveground, and total) biomass, respectively (Table 4). The insertion of H
into both of the stem and foliage biomass models enhanced the model fitting performance quality of
the stem, aboveground, and total models as a consequence of smaller RMSE, MPE, MAE, and MAPE
(Table 5, Figure 4A,B), while the inclusion of CL into the foliage biomass models only gave a slight
improvement for the model fitting of the foliage and crown biomass models (Table 6 and Figure 4C).

The parameter estimations of D (βi1) were positive in all biomass component equations, whereas
the parameter estimations of H (βi2) were found to be positive in all except for the foliage component
(Tables 5 and 6). The positive value of parameter estimations of D and H in stem biomass models
implicated their positive relationship, in which, for the same amount of D, tree stem biomass increased
with increasing tree height. The positive parameter estimations of D but negative parameter estimations
of H in the foliage component indicated that an increase in D would increase foliage biomass. In contrast,
increasing tree height would decrease foliage biomass for the same value of D.

In the present study, three systems of aggregative biomass models have been developed for
Mongolian oak in natural forests in Northeast China. Each biomass component equation was jointly
fitted by weighted NSUR, and the weighting functions were D3.4640, D2.6952, D3.6937, D2.2455, D4.7602,
D3.1438, and D2.8621 for root, stem, branch, foliage, crown, aboveground, and total biomass, respectively.
Slight differences occurred among the parameter estimation values of AMS0, AMS1, and AMS3, and
the majority of the SEs for AMS3 were lower than either AMS1 or AMS0 (Tables 4–6). The validation
statistics suggested that AMS0, AMS1 and AMS3 had very close values of R2, RMSE, MAE and MAPE
for predicting component, subtotal, and total biomass. However, the AMS0 yielded smaller MPE
than the other two aggregative biomass modeling approaches. Hence, the MPE, MAE, and MAPE
across diameter classes were visualized in order to enhance the quality of validating tree biomass
models (Figure 4). Results show that the three aggregative systems based on D, D and H, and D, H,
and CL fitted well for the subtotals and total biomass for Mongolian oak. Further, AMS0 performed
slightly better than AMS1 and AMS3 for most diameter classes, except for the largest diameter classes
(D > 30 cm) in which AMS3 appears to give better predictions.
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Table 4. Parameter estimates, standard errors (SE), model fitting statistics, weighting functions, and jackknifing validation for AMS0, AMS1, and AMS3 based on
D only.

Model Type Biomass Component βi0 βi1 Weight Function R2 RMSE MPE MAE MAPE
Estimate SE Estimate SE

AMS0

Root −3.295 0.217 2.369 0.072 D3.4640 0.956 9.13 0.08 6.39 30.82
Stem −2.303 0.173 2.391 0.055 D2.6952 0.964 23.33 −0.26 16.11 22.89

Branch −5.725 0.214 3.112 0.067 D3.6937 0.983 6.74 0.01 4.77 28.23
Foliage −5.492 0.274 2.451 0.085 D2.2455 0.937 1.67 0.02 1.03 24.78
Crown 0.983 7.50 0.03 5.46 22.75

Aboveground 0.984 22.56 −0.23 15.15 17.47
Total 0.988 24.63 −0.16 16.83 14.82

AMS1

Root −3.260 0.169 2.358 0.056 D3.4640 0.956 9.13 0.02 6.38 31.07
Stem −2.272 0.162 2.380 0.051 D2.6952 0.964 23.16 −0.11 16.03 23.10

Branch −5.843 0.206 3.151 0.064 D3.6937 0.983 6.77 −0.35 4.85 27.26
Foliage −5.529 0.273 2.463 0.085 D2.2455 0.938 1.67 0.01 1.03 24.70
Crown 0.984 7.47 −0.34 5.41 22.12

Aboveground 0.984 22.71 −0.44 15.19 17.55
Total D2.8621 0.988 24.73 −0.43 16.90 14.97

AMS3

Root −3.397 0.174 2.403 0.057 D3.4640 0.956 9.17 −0.21 6.44 30.43
Stem −2.441 0.117 2.428 0.037 D2.6952 0.963 23.63 1.97 16.27 21.53

Branch −5.641 0.187 3.084 0.057 D3.6937 0.983 6.82 0.16 4.80 29.05
Foliage −5.268 0.139 2.385 0.044 D2.2455 0.935 1.71 −0.09 1.06 26.32
Crown D4.7602 0.983 7.62 0.07 5.47 23.68

Aboveground D3.1438 0.984 22.65 2.04 15.20 16.63
Total D2.8621 0.987 24.88 1.83 16.94 14.01
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Table 5. Parameter estimates, standard errors (SE), model fitting statistics, weighting functions, and jackknifing validation for AMS0, AMS1, and AMS3 based on a
combination of D and H.

Model Type Biomass Component βi0 βi1 βi2 Weight Function R2 RMSE MPE MAE MAPE
Estimate SE Estimate SE Estimate SE

AMS0

Root −3.2901 0.2168 2.3671 0.0718 D3.4640 0.956 9.14 0.09 6.39 30.83
Stem −3.2510 0.1289 1.9183 0.0454 0.8907 0.0688 D2.6952 0.988 13.17 0.06 7.96 10.79

Branch −5.7238 0.2136 3.1111 0.0669 D3.6937 0.983 6.74 0.00 4.77 28.25
Foliage −5.1835 0.3017 2.6080 0.1172 −0.2958 0.1482 D2.2455 0.938 1.66 0.01 1.07 25.50
Crown 0.983 7.52 0.01 5.48 22.97

Aboveground 0.996 11.77 0.08 8.16 10.32
Total 0.995 15.40 0.17 10.82 10.22

AMS1

Root −3.3745 0.1565 2.3935 0.0518 D3.4640 0.956 9.14 0.13 6.38 30.39
Stem −3.2397 0.1250 1.9091 0.0438 0.8971 0.0663 D2.6952 0.989 13.10 0.07 7.94 10.91

Branch −5.8051 0.1867 3.1370 0.0580 D3.6937 0.983 6.73 −0.12 4.80 27.50
Foliage −5.1801 0.2958 2.6091 0.1159 −0.2980 0.1469 D2.2455 0.938 1.66 0.01 1.07 25.42
Crown 0.983 7.48 −0.11 5.44 22.49

Aboveground 0.996 11.86 −0.04 8.21 10.33
Total D2.8621 0.995 15.56 0.09 10.89 10.13

AMS3

Root −3.2692 0.1115 2.3609 0.0356 D3.4640 0.956 9.13 0.04 6.37 30.96
Stem −3.1704 0.0887 1.8928 0.0358 0.8905 0.0546 D2.6952 0.989 12.91 0.10 7.83 11.44

Branch −5.8247 0.1338 3.1426 0.0409 D3.6937 0.983 6.72 −0.06 4.80 27.22
Foliage −4.8658 0.1606 2.6140 0.0901 −0.4180 0.1158 D2.2455 0.935 1.71 −0.02 1.08 27.04
Crown D4.7602 0.983 7.49 −0.08 5.40 23.06

Aboveground D3.1438 0.996 11.63 0.02 8.10 10.81
Total D2.8621 0.995 15.30 0.06 10.72 10.63
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Table 6. Parameter estimates, standard errors (SE), model fitting statistics, weighting functions, and jackknifing validation for AMS0, AMS1, and AMS3 based on a
combination of D, H, and CL.

Model Type Biomass Component βi0 βi1 βi2 βi3 Weight Function R2 RMSE MPE MAE MAPE
Estimate SE Estimate SE Estimate SE Estimate SE

AMS0

Root −3.2968 0.2173 2.3693 0.0719 D3.4640 0.956 9.13 0.08 6.39 30.80
Stem −3.2523 0.1289 1.9182 0.0454 0.8912 0.0688 D2.6952 0.988 13.17 0.06 7.96 10.78

Branch −5.7253 0.2137 3.1116 0.0669 D3.6937 0.983 6.74 −0.00 4.77 28.23
Foliage −4.8127 0.3444 2.5364 0.1179 −0.6352 0.2194 0.3333 0.1634 D2.2455 0.949 1.51 0.00 1.01 25.02
Crown 0.984 7.45 0.00 5.41 22.91

Aboveground 0.996 11.86 0.07 8.19 10.24
Total 0.995 15.53 0.15 10.94 10.21

AMS1

Root −3.3749 0.1560 2.3939 0.0517 D3.4640 0.956 9.14 0.11 6.38 30.41
Stem −3.2393 0.1249 1.9096 0.0437 0.8965 0.0662 D2.6952 0.989 13.10 0.06 7.95 10.91

Branch −5.8117 0.1866 3.1392 0.0580 D3.6937 0.983 6.73 −0.14 4.80 27.44
Foliage −4.7837 0.3382 2.5326 0.1161 −0.6634 0.2162 0.3593 0.1607 D2.2455 0.949 1.51 0.00 1.00 24.92
Crown 0.984 7.41 −0.14 5.35 22.40

Aboveground 0.996 11.96 −0.08 8.24 10.24
Total D2.8621 0.995 15.71 0.03 11.02 10.14

AMS3

Root −3.2855 0.1225 2.3634 0.0397 D3.4640 0.956 9.16 0.38 6.36 30.68
Stem −3.1905 0.0903 1.8852 0.0368 0.9059 0.0562 D2.6952 0.989 12.93 0.30 7.79 11.32

Branch −5.8156 0.1626 3.1419 0.0502 D3.6937 0.983 6.76 −0.31 4.82 27.46
Foliage −4.5376 0.1803 2.5288 0.0741 −0.7336 0.1580 0.3484 0.1029 D2.2455 0.947 1.54 −0.10 1.00 26.45
Crown D4.7602 0.984 7.45 −0.41 5.32 23.10

Aboveground D3.1438 0.996 11.75 −0.12 8.16 10.66
Total D2.8621 0.995 15.45 0.27 10.85 10.56
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Figure 4. Comparison of model performances for the AMS0, AMS1 and AMS3 based on D, combination
of D and H, and combination of D, H, and CL across diameter classes in total biomass (A), aboveground
biomass (B) and crown biomass (C).

3.3. Comparison of Biomass Models

In the present study, we compared our locally developed equations both based on (1) D, and (2) D
and H with the previously developed allometry formulas for Mongolian oak from China State Forestry
Administration (SFA [42]) and Wang [36] (Figure 5). The relationship between observed and predicted
biomass was analyzed for all categories (i.e., root, stem, branch, foliage, crown, aboveground, and total
biomass). Both of the SFA [42] and Wang [36] biomass models were correlated with higher prediction
errors compared with the models developed in the present study, verified by quantified measures of
relative error (RE) and root mean square error (RMSE). The SFA’s equations hugely overestimated
branch, foliage, and crown equations by as much as 73.13%, 36.37%, and 58.91% for the D models, and
65.73%, 28.35%, and 51.97% for the D and H models, respectively, while Wang’s [36] equations gave
a notable underestimation on the root, branch, and crown biomass—as much as 7.14%, 12.50%, and
12.84% (Figure 5), respectively. More importantly, the present study yielded smaller RMSE values in
most categories for both D and D and H biomass equations than did the other two previous studies.
Finally, some notably large RMSE values occurred in four categories for the D models of the earlier
studies: namely RMSE for SFA [42] equations were as much as 14.45, 14.52, 31.15 and 33.40 for branch,
crown, aboveground, and total biomass, respectively, and respectively, 19.37, 19.94, 26.24, and 35.32 for
the Wang [36] equations, while the present study equations yielded just 6.74, 7.50, 22.56, and 24.63,
respectively (all units written in kg).
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from previous studies based on different predictors for Mongolian oak: (A) D only and (B) D and H.

3.4. Comparison of Tree Carbon Quantification Methods

The RE was computed for comparing the quantification of tree components, subtotals, and total
carbon stocks using the six different procedures (Figure 6). Apart from foliage, the result indicates that
there were three distinct strata of RE formed in each category (component, subtotal and total). RRCCc
and RWMCc appeared to be the best methods with the smallest error and deserved to be called as the
first stratum. Subsequently, three methods followed as the second stratum, namely, RCMCc, TWMCc,
and GCCCf-1. GCCCf-2 was found as the third stratum for having the biggest error and undeniably
appearing as the worst method. The average RE of all categories combined for the first, second, and
third stratum was 3.01 ± 0.18%, 4.08 ± 0.09%, and 10.57%, respectively. Overall, the six approaches for
quantifying carbon stock can be ranked based on the relative error value as follows: RRCCc < RWMCc
< RCMCc < TWMCc < GCCCf-1 < GCCCf-2.
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Figure 6. The relative error (RE) of individual tree biomass carbon stock quantified by six different
procedures. Regional Respective Component Carbon concentration (RRCCc), Regional Weighted Mean
Carbon concentration (RWMCc), Respective Component Mean Carbon concentration (RCMCc), Total
Weighted Mean Carbon concentration (TWMCc), Generic Carbon Concentration Conversion factor–1
(GCCCf-1), and Generic Carbon Concentration Conversion factor–2 (GCCCf-2).

4. Discussion

In the present study, the development of biomass allometric models and the analysis of carbon
concentrations were based on a set of data having a broad range of tree diameters and a wide geographic
coverage, allowing estimations to be more precise. Specifically, this comprehensive sampling strategy
enabled the effects of various tree components on carbon concentrations of Q. mongolica in five
different growing regions, along with their variation within tree sizes, to be thoroughly and duly
scrutinized. Carbon concentrations were found to be significantly different within tree components
and tree-growing regions, ranging from 0.4194 ± 0.0171 in the root of ZGCME region to 0.4858 ±
0.0177 in the foliage of XXMS region. This finding is in accordance with those that have been reported
elsewhere in the literature, which show significant differences in carbon concentration in components
of the balsam fir in Canada [43], 10 Chinese temperate tree species in northeast China [37], and eight
subtropical tree species in southern China [44]. Moreover, Rodríguez-Soalleiro et al. [34] confirmed the
importance of biomass components and tree species as the source of variation in carbon concentration
of several broadleaved species, which were found to explain about 52% and 17% of the variance,
respectively. Overall, carbon concentration was found highest in foliage (0.4670), lowest in root (0.4406),
and slightly lower in branches (0.4491) than stem (0.4568). Thomas and Malczewski [26] and Zhang
et al. [37] studied the carbon content of the same specific species in northeast China. Thomas and
Malczewski [26] focused on analyzing the stem wood carbon content, while Zhang et al. [37] reported
the carbon content in all tree components. By comparison, the total range of carbon concentration
across whole components in this study was figured to be more stable and narrower than reported by
Zhang et al. [37] (0.4620–0.5140), and the stem carbon concentration in this study was about 4% smaller
than Thomas and Malczewski [26].

To date, there are two completely opposing ways to calculate carbon stocks. Some researchers have
used a constant generic 0.50 carbon concentration value to be multiplied by a biomass value [45–47],
in line with the recommendation of Roy et al. [48] and Wenzl [49]. On the contrary, some authors prefer
to multiply the biomass value with the total weighted mean carbon concentration (TWMCc) of an
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individual tree [50,51], while others prefer to used respective mean component carbon concentration
(RMCCc) as a multiplying factor to obtain carbon stock estimates [52]. These second forms of approaches
are considered a better approach since many studies have reported that carbon concentration varies
greatly depending upon the type of tree species and tissues [37,53]. Accordingly, using a generic
carbon concentration conversion factor (0.50) may cause serious errors in estimating carbon stock.
In the current study, six different alternative procedures of quantifying carbon stock were tested
for Mongolian oak. The regional respective component carbon concentration (RRCCc) was the best
procedure to estimate the carbon stock of an individual tree though implementing the RRCCc requires
the comprehensive data of carbon concentration according to the tissue types and specific growing
region. Hence, we propose the usage of a regional weighted mean carbon concentration (RWMCc)
procedure as an appropriate alternative approach to quantify carbon stock, which performed equally as
well as RRCCc. Our result evidence that employing RWMCc will only give 0.25% higher relative error
compared with RRCCc. Our data and analyses firmly recommend against utilizing the generic carbon
concentration proportion of 0.50 for Mongolian oak as it will likely lead to significant biases in yielding
carbon stock estimation, just as it has been reported in other studies for other tree species [28,32,39].

Tree diameter at breast height (D) is an indispensable predictor in biomass modeling and
indubitably appears as among the most fundamental elements in forest inventory practice [54,55]. As a
sole predictor in estimating tree biomass, D has always been providing an accurate model prediction
for many species across numerous regions and delivering a simple model structure that is acquainted
with being easy-to-use for forest practitioners [56,57]. The insertion of tree height (H) and crown
characteristics (i.e., crown length [CL] and crown width [CW]) into biomass allometric models has
been shown to generate a significant improvement in the model fitting and performance. In the current
study, D, D and H, and D, H, and CL were used as a predictor(s) to develop each of the three systems of
additive biomass model (Equations (1)–(4)). One of our available crown attribute predictors, CW, was
intentionally eliminated in the model development since it was not significantly improving the model
fitting performance for all tree component biomass equations. Our results noted that the inclusion of
H and H and CL in the stem and foliage biomass equations, respectively, could improve the overall
model fitting performance. This finding is in accordance with previous literature [6,15,58,59].

In this study, the aboveground (stem, branch, and foliage) and belowground (root) biomass data
were obtained across a range of diameter (1.70–31.90 cm) and height (2.40–27.00 m). Previous research
revealed that Mongolian oak might grow to exceed the diameter and height range investigated in this
study [60]. However, the existences of those large sizes of Mongolian oak are extremely rare in practice,
especially in natural secondary forest. Moreover, the Chinese Government has strictly forbidden to
cut the large size trees (D > 50 cm) for any kind of purposes. Thus, our newly developed aggregated
biomass model systems are inappropriate for estimating the tree components, subtotals, and total
biomass exceeding the diameter and height range provided in the present study.

The three aggregative modeling approaches were constructed to develop biomass models. The
AMS0 contains no parameter restriction, while the AMS1 and AMS3 contain one and three parameter
restrictions, respectively, which guarantees that the sum of the component estimations will be exactly
the same as the direct estimation of subtotals and total biomass. In this study, the focus was on
demonstrating the differences between AMS0, AMS1, and AMS3 due to the parameter restrictions
imposed on the model systems. Our results indicate that all the three aggregative modeling approaches
performed well in the context of average prediction errors for components, subtotals, and total
biomass estimations. Compared with AMS1 and AMS3, AMS0 was actually better to predict the
component, crown, aboveground, and total biomass, although AMS1 only utilizes the total biomass
model as a dependent equation, while AMS3 specifies all of the crown, aboveground, and total biomass.
These results conform with the previous findings reported by Zhao et al. [21] and Dong et al. [24],
which specifically stated that AMS0 is the most suitable approach to construct aggregated systems of
biomass models.
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It was realized that a limited number of individual tree biomass equations exist for the particular
tree species, especially in Northeast China. Wang [36] developed biomass models for this species
from the Maoershan Ecosystem Research Station in Heilongjiang Province, Northeastern China. The
biomass models were also fitted by using a range of tree sizes, but unfortunately, the equations were
lacking an additivity property for component, subtotal, and total biomass. Compared with the present
research, Wang’s [36] study produced similar predictions in estimating stem, aboveground, and total
biomass for Mongolian oak, while there were some notable differences in estimating root, branch, and
crown biomass. Moreover, the present study was compared with the previous equations developed
by China State Forestry Administration [42]. The State’s equations tend to give a distinguished
underestimate of stem biomass and produce a remarkable overestimate prediction on branch and
crown equations, chiefly for large-sized trees, whereas delivered similar estimations in estimating root,
aboveground, and total biomass. The potential explanations of these discrepancies may be due to
the differences in sampling sizes, sites, and the characteristic of stands where the trees were sampled.
These issues may inevitably relate to the disparities in terms of climate variations, altitude, slope, and
soil conditions as external factors; along with stand density, competition from the neighboring trees,
and the morphological traits of tree roots as internal factors [6,61,62].

5. Conclusions

We developed three aggregative systems of biomass equation for Mongolian oak occupying five
mountainous regions in Northeast China: one based on D only, one on the combination of D and H,
and one on the combination of D, H, and CL. We found that the inclusion of H into the aggregative
systems improved the performances and model fit significantly for the stem, aboveground, and total
biomass models, while adding CL into the aggregative model system only gave a slight improvement
for the model fitting of the foliage and crown biomass models. All of the new systems developed here
guarantee the additivity property between the components, subtotals, and total biomass, and provide
more accurate estimations than previous research works. There was not available any single function
or structural system that was perfect for estimating biomass for all of the tree components, crown,
aboveground, or total biomass. Based on numerous fit statistics, the overall performances of the three
aggregative model systems can be ranked in the following order: AMS0 > AMS1 > AMS3.

The carbon concentrations were found to be significantly different among tree components and
growing regions in our natural secondary forest sites. Different procedures for quantifying the carbon
stocks of Mongolian oak individual trees were evaluated. The results indicate that considering carbon
concentration differences among tree tissues and growing regions appeared to be the best approach.
Contrarily, the usage of a 0.50 generic carbon concentration value will give a relatively high bias in
quantifying carbon stocks and evidently appeared as the worst method. The tree species used in
this research is widespread in northeastern China. The aggregative biomass models and the carbon
concentration analyses presented in this study might become an essential reference for researchers,
forest practitioners, and governments, particularly for the Chinese National Forest Inventory. However,
the newly developed model systems are not recommended to be used in estimating the biomass of
trees outside the scope of the data, both geographically and in terms of tree size.
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