How Well Do Three Tree Species Adapt to the Urban Environment in Guangdong-Hongkong-Macao Greater Bay Area of China Regarding Their Growth Patterns and Ecosystem Services?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Trees Selection
2.2. Measurements of Climate Variables
2.3. Measurements of Soil Variables
2.4. Measurements of Biomass Allocation and Tree Growth
2.5. Statistical Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Development of DBH, Height and Volume
3.3. Biomass Allocation and Root:Shoot Ratio
4. Discussion
4.1. Growth Patterns of the Three Tree Species
4.2. Biomass Allocation and Ecosystem Services
4.3. Impact on Soil Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Pauleit, S.; Seeland, K.; de Vries, S. Benefits and uses of urban forests and trees. In Urban Forests and Trees; Springer: Berlin, Heidelberg, 2005; pp. 81–114. [Google Scholar]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Stratopoulos, L.M.F.; Pretzsch, H.; Rötzer, T. How Do Tilia cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services? Forests 2019, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Arthur, T.; Martin, S. Street Tree Directory; Royal Australian Institute of Parks & Recreation: Minneapolis, MN, USA, 1981. [Google Scholar]
- Miller, R.W.; Hauer, R.J.; Werner, L.P. Urban Forestry: Planning and Managing Urban Greenspaces, USA; Waveland Press: Illinois, CL, USA, 2015. [Google Scholar]
- Low, N. The Green City: Sustainable Homes, Sustainable Suburbs; UNSW Press: Sydney, Australia, 2005. [Google Scholar]
- Burden, D. 22 Benefits of Urban Street Trees; Glatting Jackson, Walkable Communities, Inc.: High Springs, FL, USA, 2006. [Google Scholar]
- Sutton, M.; Dragosits, U.; Theobald, M.; McDonald, A.; Nemitz, E.; Blyth, J.; Sneath, R.; Williams, A.; Hall, J.; Bealey, W. The role of trees in landscape planning to reduce the impacts of atmospheric ammonia deposition. In Proceedings of the Twelfth Annual IALE (UK) Conference, Cirencester, UK, 21–24 June 2004. [Google Scholar]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef] [PubMed]
- Day, S.D.; Wiseman, P.E.; Dickinson, S.B.; Harris, J.R. Contemporary concepts of root system architecture of urban trees. Arboric. Urban For. 2010, 36, 149–159. [Google Scholar]
- Grabosky, J.; Bassuk, N. A new urban tree soil to safely increase rooting volumes under sidewalks. J. Arboric. 1995, 21, 187. [Google Scholar]
- Mullaney, J.; Lucke, T.; Trueman, S.J. The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees. Urban For. Urban Green. 2015, 14, 19–29. [Google Scholar] [CrossRef]
- Morgenroth, J.; Buchan, G.D. Soil moisture and aeration beneath pervious and impervious pavements. J. Arboric. 2009, 35, 135. [Google Scholar]
- Zhang, C.; Stratopoulos, L.M.F.; Xu, C.; Pretzsch, H.; Rötzer, T. Development of Fine Root Biomass of Two Contrasting Urban Tree Cultivars in Response to Drought Stress. Forests 2020, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 2017, 7, 15403. [Google Scholar] [CrossRef]
- Tubby, K.; Webber, J. Pests and diseases threatening urban trees under a changing climate. For. Int. J. For. Res. 2010, 83, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Fang, J. Ecological Greenway Construction in Shunde District, Foshan City. J. Anhui Agric. Sci. 2011, 2011, 161. [Google Scholar]
- Chuanguo, L.J.F.Z.C.; Hongyue, K.M.C. Investigation of Tree Species Composition of Fengshui Woods in Foshan City. Guangdong For. Sci. Technol. 2006, 1, 39–43. [Google Scholar]
- Chaohui, Z.; Jieming, L.; Huiqing, L. The problems and countermeasures of urban greening construction in Foshan. Guangdong For. Sci. Technol. 2014, 36, 57–61. [Google Scholar]
- Chen, L.; Zeng, J.; Jia, H.-Y.; Zeng, J.; Guo, W.-F.; Cai, D.-X. Growth and nutrient uptake dynamics of Mytilaria laosensis seedlings under exponential and conventional fertilizations. Soil Sci. Plant Nutr. 2012, 58, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Iqbal, J.; Hu, R.; Feng, M. N2O emissions from different land uses in mid-subtropical China. Agric. Ecosyst. Environ. 2010, 136, 40–48. [Google Scholar] [CrossRef]
- Li, Y.Y.; Shao, M.A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid Environ. 2006, 64, 77–96. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, N.; Zhang, L.; Liu, Z. Soil Physical and Chemical Analysis and Description of Soil Profiles; China Standard Methods Press: Beijing China, 1996; Volume 24, p. 266. [Google Scholar]
- Lappi, J. Calibration of height and volume equations with random parameters. For. Sci. 1991, 37, 781–801. [Google Scholar]
- Yao, W.; Krzystek, P.; Heurich, M. Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens. Environ. 2012, 123, 368–380. [Google Scholar] [CrossRef]
- Wang, X.; Fang, J.; Tang, Z.; Zhu, B. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 2006, 234, 264–274. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Da Silva, R.P.; dos Santos, J.; Tribuzy, E.S.; Chambers, J.Q.; Nakamura, S.; Higuchi, N. Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. For. Ecol. Manag. 2002, 166, 295–301. [Google Scholar] [CrossRef]
- Vihervaara, P.; Marjokorpi, A.; Kumpula, T.; Walls, M.; Kamppinen, M. Ecosystem services of fast-growing tree plantations: A case study on integrating social valuations with land-use changes in Uruguay. For. Policy Econ. 2012, 14, 58–68. [Google Scholar] [CrossRef]
- Guo, W.F.; Cai, D.X.; Jia, H.Y.; LI, Y.X.; Lu, Z.F. Growth laws of Mytilaria laosensis plantation. For. Res.-Chin. Acad. For. 2006, 19, 585. [Google Scholar]
- Ming, A.; Jia, H.; Zhao, J.; Tao, Y.; Li, Y. Above-and below-ground carbon stocks in an indigenous tree (Mytilaria laosensis) plantation chronosequence in subtropical China. PLoS ONE 2014, 9, e109730. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, A.; Zhang, J. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method. PLoS ONE 2013, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhu, H.; Xu, H.; Xu, F. The characteristics of growing processes of Chinese fir and division of its growth stages. J. Zhejiang For. Coll. 1991, 8, 219–226. [Google Scholar]
- Zhao, D.; Kane, M. Differences in growth dynamics of loblolly and slash pine plantations in the southeastern United States. For. Ecol. Manag. 2012, 281, 84–92. [Google Scholar] [CrossRef]
- Chmura, D.J.; Rahman, M.S.; Tjoelker, M.G. Crown structure and biomass allocation patterns modulate aboveground productivity in young loblolly pine and slash pine. For. Ecol. Manag. 2007, 243, 219–230. [Google Scholar] [CrossRef]
- Howard, J. Climate change mitigation and adaptation in developed nations: A critical perspective on the adaptation turn in urban climate planning. In Planning for Climate Change; Routledge: London, UK, 2009; pp. 43–56. [Google Scholar]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Funct. Plant Biol. 2000, 27, 1191. [Google Scholar] [CrossRef] [Green Version]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Larocque, G.; DesRochers, A.; Larchevêque, M.; Tremblay, F.; Beaulieu, J.; Mosseler, A.; Major, J.; Gaussiran, S.; Thomas, B.; Sidders, D. Research on hybrid poplars and willow species for fast-growing tree plantations: Its importance for growth and yield, silviculture, policy-making and commercial applications. For. Chron. 2013, 89, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Siregar, U.J.; Rachmi, A.; Massijaya, M.; Ishibashi, N.; Ando, K. Economic analysis of sengon (Paraserianthes falcataria) community forest plantation, a fast growing species in East Java, Indonesia. For. Policy Econ. 2007, 9, 822–829. [Google Scholar] [CrossRef]
- Huang, X.; Yan, L.; Wang, S.; Cheng, Z. Analysis of the characteristics of tornados in Foshan City and their circulation background. Guangdong Meteor 2014, 36, 20–24. [Google Scholar]
- Fan, W.; Yu, X. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor. Mon. 2015, 41, 793–805. [Google Scholar]
- Nicoll, B.C.; Ray, D. Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol. 1996, 16, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Francesch-Huidobro, M.; Mai, Q. Climate advocacy coalitions in Guangdong, China. Adm. Soc. 2012, 44, 43S–64S. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Luo, J.M.; Xiao, Q.; Guillet, B.D. The impact of urbanization on hotel development: Evidence from Guangdong Province in China. Int. J. Hosp. Manag. 2013, 34, 92–98. [Google Scholar] [CrossRef]
- Stratópoulos, L.M.F.; Zhang, C.; Häberle, K.-H.; Pauleit, S.; Duthweiler, S.; Pretzsch, H.; Rötzer, T. Effects of Drought on the Phenology, Growth, and Morphological Development of Three Urban Tree Species and Cultivars. Sustainability 2019, 11, 5117. [Google Scholar] [CrossRef] [Green Version]
- Boix-Fayos, C.; Calvo-Cases, A.; Imeson, A.; Soriano-Soto, M. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 2001, 44, 47–67. [Google Scholar] [CrossRef]
- Tian, Y.; Li, X.; Yuan, Z.; He, Y.; Chen, X.; Ni, A. Studies on benefit of soil and water conservation of different forest types in red soil regions of South Hunan. Res. Soil Water Conserv. 2002, 9, 80–82. [Google Scholar]
- Corcobado, T.; Cubera, E.; Moreno, G.; Solla, A. Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agric. For. Meteorol. 2013, 169, 92–99. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 2005, 126, 129–140. [Google Scholar] [CrossRef]
- Cassel, D.; Nielsen, D. Field capacity and available water capacity. Methods Soil Anal. 1986, 5, 901–926. [Google Scholar]
- Day, S.; Bassuk, N.; Van Es, H. Effects of four compaction remediation methods for landscape trees on soil aeration, mechanical impedance and tree establishment. J. Environ. Hortic. 1995, 13, 64–71. [Google Scholar]
- Selvalakshmi, S.; Vasu, D.; Zhijun, H.; Guo, F.; Ma, X. Soil nutrients dynamics in broadleaved forest and Chinese fir plantations in subtropical forests. J. Trop. For. Sci. 2018, 30, 242–251. [Google Scholar]
- Moser, A.; Rahman, M.A.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Inter-and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Int. J. Biometeorol. 2017, 61, 1095–1107. [Google Scholar] [CrossRef]
- Jia, Y.-b.; Yang, X.-e.; Feng, Y.; Jilani, G. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. J. Zhejiang Univ. Sci. B 2008, 9, 427. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, H.; Chen, F.; Yang, Y.; Zeng, J.; Van Nostrand, J.D.; Zhou, J.; Ouyang, Z. Artificial reforestation produces less diverse soil nitrogen-cycling genes than natural restoration. Ecosphere 2019, 10, e02562. [Google Scholar] [CrossRef]
- Li, Z.; Fang, W.; Lu, D. Physical and chemical properties of soils in Heshan hilly land. Acta Ecol. Sin. 1995, 15, 93–102. [Google Scholar]
Species | Soil Layers (cm) | n | BD (g·cm−3 ± SD) | FC [% ± SD] | SMC (g·kg−1 ± SD) | Sncp (% ± SD) | Scp (% ± SD) | Stp (% ± SD) |
---|---|---|---|---|---|---|---|---|
Sp | 0–25 | 3 | 1.48 ± 0.09 | 18.26 ±3.14 | 284.68 ± 39.85 | 3.78 ± 0.71 | 38.09 ± 2.84 | 41.87 ± 3.49 |
25–50 | 3 | 1.49 ± 0.12 | 18.01 ± 6.12 | 274.93 ± 54.46 | 2.43 ± 0.32 | 38.06 ± 5.47 | 40.48 ± 5.49 | |
20–75 | 3 | 1.43 ± 0.15 | 21.33 ± 6.11 | 303.64 ± 63.99 | 3.41 ± 0.85 | 39.39 ± 6.02 | 42.80 ± 5.64 | |
75–100 | 3 | 1.46 ± 0.08 | 23.32 ± 1.43 | 308.74 ± 7.64 | 3.26 ± 1.38 | 41.89 ± 1.50 | 45.15 ± 1.30 | |
0–100 | 3 | 1.47 ± 0.06 | 20.21 ± 2.22 | 1171.99 ± 95.41 | 3.22 ± 0.28 | 39.36 ± 2.00 | 42.58 ± 1.86 | |
Cf | 0–25 | 3 | 1.42 ± 0.08 | 21.40 ± 5.25 | 316.32 ± 26.21 | 2.23 ± 1.18 | 42.58 ± 2.98 | 44.81 ± 4.05 |
25–50 | 3 | 1.41 ± 0.12 | 22.19 ± 4.32 | 342.66 ± 17.47 | 4.10 ± 1.17 | 44.12 ± 5.15 | 48.23 ± 4.45 | |
20–75 | 3 | 1.54 ± 0.13 | 17.06 ± 4.38 | 258.37 ± 54.12 | 2.78 ± 0.57 | 36.63 ± 5.47 | 39.41 ± 4.97 | |
75–100 | 3 | 1.62 ± 0.05 * | 18.37 ± 5.42 | 265.98 ± 57.76 | 3.78 ± 1.02 | 39.11 ± 7.44 | 42.89 ± 8.17 | |
0–100 | 3 | 1.50 ± 0.03 | 20.36± 2.14 | 1183.33 ± 42.92 | 3.22 ± 0.21 | 40.61 ± 2.20 | 43.84 ± 2.42 | |
Ml | 0–25 | 3 | 1.22 ± 0.14 | 26.22 ± 8.05 | 397.94 ± 83.94 | 3.10 ± 0.27 | 44.91 ± 5.23 | 48.00 ± 5.49 |
25–50 | 3 | 1.49 ± 0.14 | 24.65 ± 1.56 | 315.90 ± 28.20 | 3.11 ± 0.74 | 43.59 ± 0.78 | 46.70 ± 0.59 | |
20–75 | 3 | 1.55 ± 0.02 | 26.28 ± 2.73 | 321.78 ± 14.80 | 2.94 ± 0.92 | 46.91 ± 0.91 | 49.86 ± 1.83 | |
75–100 | 3 | 1.41 ± 0.03 | 28.50 ± 1.49 * | 351.13 ± 11.50 | 3.15 ± 1.67 | 46.23 ± 0.86 | 49.38 ± 1.26 | |
0–100 | 3 | 1.42 ± 0.03 | 26.19 ± 1.20 | 1386.75 ± 68.34 | 3.07 ± 0.42 | 45.41 ± 0.73 | 48.49 ± 1.14 |
Species | Soil Layers (cm) | n | pH | SOM (g·kg−1 ± SD) | TN (g·kg−1 ± SD) | TP (g·kg−1 ± SD) | TK (g·kg−1 ± SD) | AN (mg·kg−1 ± SD) | AP (mg·kg−1 ± SD) | AK (mg·kg−1 ± SD) |
---|---|---|---|---|---|---|---|---|---|---|
Sp | 0–25 | 3 | 3.93 ± 0.22 | 24.30 ± 10.69 | 1.14 ± 0.45 | 0.31 ± 0.04 | 19.47 ± 5.43 | 92.90 ± 25.20 | 1.33 ± 0.51 | 31.00 ± 19.31 |
25–50 | 3 | 4.50 ± 0.42 | 15.70 ± 1.97 | 0.76 ± 0.04 | 0.24 ± 0.06 | 18.00 ± 6.02 | 61.07 ± 15.85 | 1.13 ± 0.61 | 56.67 ± 54.85 | |
50–75 | 3 | 4.36 ± 0.26 | 12.17 ± 1.96 | 0.61 ± 0.08 | 0.29 ± 0.02 | 16.37 ± 3.21 | 43.60 ± 4.28 | 1.04 ± 0.34 | 21.00 ± 6.56 | |
75–100 | 3 | 4.19 ± 0.25 | 14.63 ± 3.70 | 0.62 ± 0.11 | 0.31 ± 0.02 | 16.77 ± 2.10 | 56.07 ± 18.32 | 1.00 ± 0.27 | 22.00 ± 17.44 | |
0–100 | 3 | 4.32 ± 0.15 * | 16.04 ± 2.69 | 0.77 ± 0.08 | 0.28 ± 0.01 | 17.05 ± 4.22 | 59.83 ± 9.14 * | 1.12 ± 0.42 | 30.42 ± 8.18 * | |
Cf | 0–25 | 3 | 4.06 ± 0.07 | 23.13 ± 1.10 | 1.28 ± 0.19 | 0.34 ± 0.02 | 30.80 ± 4.36 * | 115.70 ± 15.70 | 1.74 ± 0.45 | 76.00 ± 16.52 * |
25–50 | 3 | 4.02 ± 0.03 | 16.53 ± 0.55 | 0.82 ± 0.10 | 0.32 ± 0.06 | 27.63 ± 5.35 | 83.23 ± 19.24 | 1.13 ± 0.44 | 56.67 ± 7.64 | |
50–75 | 3 | 4.07 ± 0.06 | 15.63 ± 3.57 | 0.77 ± 0.25 | 0.33 ± 0.02 | 29.43 ± 3.73 * | 65.13 ± 12.44 | 1.08 ± 0.27 | 60.00 ± 13.23 * | |
75–100 | 3 | 3.97 ± 0.06 | 10.28 ± 4.36 | 0.59 ± 0.26 | 0.28 ± 0.02 | 28.50 ± 3.93 * | 51.43 ± 18.43 | 0.91 ± 0.31 | 40.00 ± 8.66 | |
0–100 | 3 | 4.03 ± 0.02 | 16.40 ± 1.98 | 0.87 ± 0.19 | 0.31 ± 0.03 | 29.09 ± 4.27 * | 78.88 ± 6.99 | 1.21 ± 0.23 | 58.17 ± 9.21 * | |
Ml | 0–25 | 3 | 3.94 ± 0.10 | 33.80 ± 7.01 | 1.58 ± 0.37 | 0.34 ± 0.08 | 15.63 ± 1.04 | 141.13 ± 30.89 | 1.78 ± 0.35 | 26.33 ± 9.81 |
25–50 | 3 | 3.97 ± 0.08 | 17.80 ± 5.37 | 0.84 ± 0.25 | 0.28 ± 0.02 | 15.97 ± 2.47 | 86.00 ± 9.40 | 1.13 ± 0.32 | 15.33 ± 4.51 | |
50–75 | 3 | 3.81 ± 0.27 | 9.97 ± 0.22 | 0.55 ± 0.02 | 0.26 ± 0.04 | 13.80 ± 3.00 | 50.20 ± 9.21 | 1.07 ± 0.17 | 17.33 ± 4.04 | |
75–100 | 3 | 3.84 ± 0.28 | 9.84 ± 1.79 | 0.48 ± 0.08 | 0.33 ± 0.04 | 15.40 ± 1.51 | 47.53 ± 2.89 | 0.77 ± 0.07 | 14.00 ± 1.73 | |
0–100 | 3 | 3.89 ± 0.18 | 17.85 ± 0.64 | 0.86 ± 0.04 | 0.30 ± 0.04 | 15.20 ± 1.79 | 81.21 ± 6.16 | 1.19 ± 0.03 | 18.25 ± 2.38 * |
Species | n | Age | H (m ± SD) | DBH (cm ± SD) | Biomass (kg ± SD) | ||||
---|---|---|---|---|---|---|---|---|---|
Above-Ground | Below-Ground | ||||||||
Stem | Branch | Leaf | Coarse Root | Fine Root | |||||
Sp | 3 | 18 | 14.10 ± 0.89 | 16.67 ± 0.15 | 144.53 ± 7.94 | 11.67 ± 4.02 | 10.97 ± 6.61 | 24.83 ± 5.27 | 13.80 ± 4.91 |
Cf | 3 | 12 | 9.50 ± 0.72 | 11.77 ± 0.67 | 48.27 ± 8.34 | 6.97 ± 4.97 | 7.10 ± 2.07 | 13.33 ± 7.41 | 4.47 ± 2.68 |
Ml | 3 | 12 | 13.23 ± 1.03 | 15.27 ± 0.80 | 129.60 ± 22.65 | 44.73 ± 26.04 | 16.87 ± 6.17 | 46.70 ± 6.09 | 20.23 ± 3.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhao, Q.; Tang, H.; Qian, W.; Su, M.; Pan, L. How Well Do Three Tree Species Adapt to the Urban Environment in Guangdong-Hongkong-Macao Greater Bay Area of China Regarding Their Growth Patterns and Ecosystem Services? Forests 2020, 11, 420. https://doi.org/10.3390/f11040420
Zhang C, Zhao Q, Tang H, Qian W, Su M, Pan L. How Well Do Three Tree Species Adapt to the Urban Environment in Guangdong-Hongkong-Macao Greater Bay Area of China Regarding Their Growth Patterns and Ecosystem Services? Forests. 2020; 11(4):420. https://doi.org/10.3390/f11040420
Chicago/Turabian StyleZhang, Chi, Qing Zhao, Honghui Tang, Wanhui Qian, Murong Su, and Lijun Pan. 2020. "How Well Do Three Tree Species Adapt to the Urban Environment in Guangdong-Hongkong-Macao Greater Bay Area of China Regarding Their Growth Patterns and Ecosystem Services?" Forests 11, no. 4: 420. https://doi.org/10.3390/f11040420
APA StyleZhang, C., Zhao, Q., Tang, H., Qian, W., Su, M., & Pan, L. (2020). How Well Do Three Tree Species Adapt to the Urban Environment in Guangdong-Hongkong-Macao Greater Bay Area of China Regarding Their Growth Patterns and Ecosystem Services? Forests, 11(4), 420. https://doi.org/10.3390/f11040420