Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characteristics and Sampling Plots Location
2.2. Data Sources
2.2.1. Using GIS in the Project
2.2.2. The Processing and Classification of Sentinel 2 Images
- -
- Agriculture
- -
- Bare soil
- -
- Deciduous
- -
- Burnt areas
- -
- Coniferous
- -
- Grass
- -
- Rocky areas with shrubs
- -
- Shrubs
- -
- Urban areas
- -
- Water
3. Results
3.1. Landcover Characterization
3.2. Allometric Model for Shrub Biomass Estimation
3.3. Shrub Biomass Estimation Using NDVI Image Processing
4. Discussion
4.1. Sentinel 2 Images
4.2. Shrubland Characterization
4.3. Allometric Equation for Shrub Biomass Estimation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Sentinel-2S2A_20160828T113040_20160828T164718_A006183_T29TPG_N02_04_01
- Sentinel-2S2A_20150804T113226_20160319T010337_A000606_T29TPN_N02_04_01
- Sentinel-2L1C_T29TPG_A010759_20170714T112114
- Sentinel-2L1C_T29TNG_A010759_20170714T112114
- Sentinel-2L1C_T29TPG_A015621_20180619T112602
- Sentinel-2L1C_T29TNG_A006784_20180624T112452
- Sentinel-2L1C_T29TNG_A021341_20190724T112448
- Sentinel-2L1C_T29TPG_A021484_20190803T112140
References
- Caetano, M.; Igreja, C.; Marcelino, F.; Costa, H. Estatísticas e dinâmicas territoriais multiescala de Portugal Continental 1995–2007–2010 com base na Carta de Uso e Ocupação do Solo (COS). Direcção Geral do Território 2017, 149. [Google Scholar]
- Oliveira, S.L.J.; Pereira, J.M.C.; Carreiras, J.M.B. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildl. Fire 2011, 21, 48–60. [Google Scholar] [CrossRef]
- Marques, S.; Borges, J.G.; Garcia-Gonzalo, J.; Moreira, F.; Carreiras, J.M.B.; Oliveira, M.M.; Cantarinha, A.; Botequim, B.; Pereira, J.M.C. Characterization of wildfires in Portugal. Eur. J. For. Res. 2011, 130, 775–784. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Science of the Total Environment Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.G.; Aranha, J.; Amraoui, M. Land cover fire proneness in Europe. For. Syst. 2014, 23, 598–610. [Google Scholar] [CrossRef]
- Ferreira Leite, F.; Bento Gonçalves, A.; Vieira, A. The recurrence interval of forest fires in Cabeço da Vaca (Cabreira Mountain-northwest of Portugal). Environ. Res. 2011, 111, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ursino, N.; Romano, N. Wild forest fire regime following land abandonment in the Mediterranean region. Geophys. Res. Lett. 2014, 41, 8359–8368. [Google Scholar] [CrossRef]
- Cerdá, A.; Doerr, S.H. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. Int. J. Wildl. Fire 2005, 14, 423–437. [Google Scholar] [CrossRef]
- Pereira da Silva, T.; Cardoso Pereira, J.M.; Paúl, P.J.C.; Teresa Santos, M.N.; José Vasconcelos, M.P.; de Investigação, B.; Catedrático, P.; Auxiliar, I. Estimativa de Emissões Atmosféricas Originadas por Fogos Rurais em Portugal Estimate of Atmospheric Emissions Originated by Wildfires in Portugal. Silva Lusit. 2006, 14, 239–263. [Google Scholar]
- Viana, H. Modelling and Mapping Aboveground Biomass for energy Usage and Carbon Storage Assessment in Mediterranean Ecosystems. Ph.D. Thesis, Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal, 2012. [Google Scholar]
- Aranha, J.; Calvão, A.R.; Lopes, D.; Viana, H. Quantificação Da Biomassa Consumida Nos Últimos 20 Anos De Fogos Florestais No Norte Portugal. Info 2011, 26, 44–49. [Google Scholar]
- Kazanis, D.; Xanthopoulos, G.; Arianoutsou, M. Understorey fuel load estimation along two post-fire chronosequences of Pinus halepensis Mill. forests in Central Greece. J. For. Res. 2012, 17, 105–109. [Google Scholar] [CrossRef]
- DL 76/2017-5.ª alteração ao DL 124-2006. Diário da República n.º 158/2017, Série I de 2017-08-17. DR. J. Portuguese Rep. 2017, 4734–4762. [Google Scholar]
- Viana, H.; Fernandes, P.; Rocha, R.; Lopes, D.; Aranha, J. Alometria, Dinâmicas da Biomassa e do Carbono Fixado em Algumas Espécies Arbustivas de Portugal. 6.º Congr. Florest. Nac. 2009, 244–252. [Google Scholar]
- Gratani, L.; Varone, L.; Ricotta, C.; Catoni, R. Mediterranean shrublands carbon sequestration: Environmental and economic benefits. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 1167–1182. [Google Scholar] [CrossRef]
- Cairns, M.A.; Lajtha, K.; Beedlow, P.A. Dissolved carbon and nitrogen losses from forests of the Oregon Cascades over a successional gradient. Plant Soil 2009, 318, 185–196. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Imeson, A. Desertification, Land Degradation and Sustainability; John Wiley & Sons: West Sussex, UK, 2012; ISBN 1119978483. [Google Scholar]
- Bochet, E.; Poesen, J.; Rubio, J.L. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: Influence of plant morphology and rainfall intensity. Earth Surf. Process. Landforms 2006, 31, 536–549. [Google Scholar] [CrossRef]
- Mangas, J.G.; Lozano, J.; Cabezas-Díaz, S.; Virgós, E. The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers. Conserv. 2008, 17, 43–51. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Helming, K.; Diehl, K.; Geneletti, D.; Wiggering, H. Mainstreaming ecosystem services in European policy impact assessment. Environ. Impact Assess. Rev. 2013, 40, 82–87. [Google Scholar] [CrossRef]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Quinta-Nova, L.; Fernandez, P.; Pedro, N. GIS-Based Suitability Model for Assessment of Forest Biomass Energy Potential in a Region of Portugal. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 042059. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Spies, T.A.; Oetter, D.R. Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. Int. J. Remote Sens. 2001, 22, 2279–2310. [Google Scholar] [CrossRef]
- Botequim, B.; Zubizarreta-Gerendiain, A.; Garcia-Gonzalo, J.; Silva, A.; Marques, S.; Fernandes, P.M.; Pereira, J.M.C.; Tomé, M. A model of shrub biomass accumulation as a tool to support management of portuguese forests. iForest 2014, 8, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.K.L.; Nguyen, B.N. Mapping biomass and carbon stock of forest by remote sensing and GIS technology at Bach Ma National Park, Thua Thien Hue province. J. Viet. Env. 2016, 8, 80–87. [Google Scholar]
- Deng, S.; Shi, Y.; Jin, Y.; Wang, L. A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: A case study. Energy Proc. 2011, 5, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, A.; Kusnadi, S.; Gloaguen, R.; Heilmeier, H. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS. J. For. Res. 2010, 21, 1–12. [Google Scholar] [CrossRef]
- Roy, P.S.; Ravan, S.A. Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. J. Biosci. 1996, 21, 535–561. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, J.; Cao, C.; Tian, H. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Glob. Ecol. Conserv. 2018, 16, e00479. [Google Scholar] [CrossRef]
- Norovsuren, B.; Tseveen, B.; Batomunkuev, V. Estimation for Forest Biomass and Coverage Using Satellite Data in Small Scale Area, Mongolia. IOP Conf. Ser. Eart Environ. Sci. 2019, 320, 012019. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J.; Llorens, L.; Estiarte, M. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 2004, 90, 308–318. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- ICNF. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc (accessed on 8 January 2020).
- EFFIS. Available online: https://effis.jrc.ec.europa.eu/applications/data-request-form (accessed on 8 January 2020).
- Copernicus. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 10 January 2020).
- Glovis. Available online: https://glovis.usgs.gov/app (accessed on 10 January 2020).
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Teillet, P.M.; Staenz, K.; William, D.J. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-knorn, M.; Bieniarz, J. Sentinel-2 Sen2cor: L2a Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 2016, pp. 9–13. [Google Scholar]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Llovería, R. Montorio Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2 (accessed on 9 January 2020).
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Abatzoglou, J.T.; Hudak, A.T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Tedim, F.; Royé, D.; Bouillon, C.; Fernando, J.M.C.; Leone, V. Understanding unburned patches patterns in extreme wildfire events: A new approach. In Proceedings of the Advances in forest fire research—VIII International Conference on Forest Fire Research, Coimbra, Portugal, 9–16 November 2018; Viegas, D.X., Ed.; pp. 700–715. [Google Scholar] [CrossRef] [Green Version]
- Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-based integrated assessment of environmental variables and wildfire severity through Sentinel-2 Data. Forests 2019, 10, 1021. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Hussain, A.; Negi, A.K. An overview of Biomass Estimation methods. Res. J. Soc. Sci. Manag. 2014, 4, 42–57. [Google Scholar]
- Banti, M.A.; Kiachidis, K.; Gemitzi, A. Estimation of spatio-temporal vegetation trends in different land use environments across Greece. J. Land Use Sci. 2019, 14, 21–36. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
Allometric Model | R2 (Adj) | Ref |
---|---|---|
Trees, shrubs and herbaceous y = 73,709.9241 − 48,420.44 χ1 + 67,242.43 χ2 where, y = Biomass (kg), χ1 = NDVI value, χ2 = NDVI MIR index value | 0.70 | [30] |
Trees, shrubs and herbaceous Log10 y = 3.7163 − 0.01078 χ1 + 0.007065 χ2 where, y = Biomass (kg), χ1 = Brightness value, χ2 = Wetness value | 0.66 | [31] |
Shrubs y = 46:678 χ1 + 7:929 χ2 + 32:565 where, y = Biomass (kg), χ1 = Brightness value, χ2 = RVI (ratio vegetation index) | 0.70 | [31] |
Total biomass AGB prediction = 3.35 + 3.13 VV + 0.21 VH + 1.53 NDVI where: VV—the backscatter coefficients for a specific polarization; VH—the backscatter coefficients for a specific polarization; NDVI—normalized difference vegetation index. | 0.66 | [32] |
Shrubs Biomass y = 0.18363 + 0.85669 NDVI where, y = Biomass (Mg), NDVI—normalized difference vegetation index | 0.74 | [33] |
Fractional green vegetation cover (fc) fc = 0.114 + 1.284 NDVI (R2 = 0.89) | 0.89 | [34] |
Sample Class | N | Pa (%) | Ua (%) | Ce (%) | Oe (%) |
---|---|---|---|---|---|
Agriculture | 77 | 46 | 80 | 54 | 20 |
Bare soil | 35 | 80 | 48 | 20 | 52 |
Deciduous | 31 | 87 | 68 | 13 | 32 |
Burnt areas | 16 | 100 | 89 | 0 | 11 |
Coniferous | 161 | 96 | 96 | 4 | 4 |
Grass | 13 | 69 | 69 | 31 | 31 |
Rocky and shrubs | 46 | 83 | 64 | 17 | 36 |
Shrubs | 67 | 84 | 92 | 16 | 8 |
Urban areas | 31 | 48 | 65 | 52 | 35 |
Water | 9 | 89 | 100 | 11 | 0 |
2016 | 2017 | 2018 | ||||
---|---|---|---|---|---|---|
NW | NE | NW | NE | NW | NE | |
NDVI | ||||||
Count | 28 | 30 | 21 | 12 | 23 | 8 |
Minimum | 0.388 | 0.378 | 0.280 | 0.136 | 0.048 | 0.120 |
Maximum | 0.700 | 0.700 | 0.696 | 0.655 | 0.694 | 0.688 |
Average | 0.590 | 0.580 | 0.552 | 0.345 | 0.521 | 0.390 |
Standard deviation | 0.090 | 0.100 | 0.144 | 0.193 | 0.219 | 0.259 |
Age | ||||||
Count | 28 | 30 | 21 | 12 | 23 | 8 |
Minimum | 5 | 5 | 3 | 3 | 1 | 2 |
Maximum | 15 | 15 | 15 | 11 | 15 | 14 |
Average | 8.7 | 8.7 | 8.6 | 4.8 | 7.8 | 5.9 |
Standard deviation | 3.4 | 3.4 | 4.1 | 2.6 | 4.2 | 4.5 |
Shrub biomass | ||||||
Count | 28 | 30 | 21 | 12 | 23 | 8 |
Minimum | 3.49 | 4.80 | 1.73 | 0.46 | 0.19 | 0.67 |
Maximum | 34.48 | 37.60 | 34.48 | 27.90 | 30.82 | 37.60 |
Average | 17.04 | 18.76 | 16.46 | 6.50 | 15.97 | 12.77 |
Standard deviation | 8.24 | 10.37 | 11.62 | 8.69 | 10.26 | 14.58 |
NDVI (Dimension Less) | Shrubs Biomass (Mg ha−1) | |
---|---|---|
Count | 110 | 110 |
Minimum | 0.048 | 0.186 |
Maximum | 0.700 | 37.596 |
Average | 0.525 | 15.494 |
Standard deviation | 0.179 | 10.781 |
Standard error | 0.342 | 0.696 |
Median | 0.596 | 15.291 |
Date | Allometric Equation | R2 (Adj) | RMSE (Mg/ha) |
---|---|---|---|
2016 | 66.383 NDVI 2.6073 | 0.894 | 4.08 |
2017 | 68.476 NDVI 2.6053 | 0.876 | 4.22 |
2018 | 58.139 NDVI 1.9541 | 0.855 | 4.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranha, J.; Enes, T.; Calvão, A.; Viana, H. Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests 2020, 11, 555. https://doi.org/10.3390/f11050555
Aranha J, Enes T, Calvão A, Viana H. Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests. 2020; 11(5):555. https://doi.org/10.3390/f11050555
Chicago/Turabian StyleAranha, José, Teresa Enes, Ana Calvão, and Hélder Viana. 2020. "Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification" Forests 11, no. 5: 555. https://doi.org/10.3390/f11050555
APA StyleAranha, J., Enes, T., Calvão, A., & Viana, H. (2020). Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests, 11(5), 555. https://doi.org/10.3390/f11050555