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Abstract: We describe a polar coordinate transformation of vegetation index profiles which permits a
broad-scale comparison of location-specific phenological variability influenced by climate, topography,
land use, and other factors. We apply statistical data reduction techniques to identify fundamental
dimensions of phenological variability and to classify phenological types with intuitive ecological
interpretation. Remote sensing-based land surface phenology can reveal ecologically meaningful
vegetational diversity and dynamics across broad landscapes. Land surface phenology is inherently
complex at regional to continental scales, varying with latitude, elevation, and multiple biophysical
factors. Quantifying phenological change across ecological gradients at these scales is a potentially
powerful way to monitor ecological development, disturbance, and diversity. Polar coordinate
transformation was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) normalized
difference vegetation index (NDVI) time series spanning 2000-2018 across North America. In a first
step, 46 NDVI values per year were reduced to 11 intuitive annual metrics, such as the midpoint of the
growing season and degree of seasonality, measured relative to location-specific annual phenological
cycles. Second, factor analysis further reduced these metrics to fundamental phenology dimensions
corresponding to annual timing, productivity, and seasonality. The factor analysis explained over
95% of the variability in the metrics and represented a more than ten-fold reduction in data volume
from the original time series. In a final step, phenological classes (‘phenoclasses’) based on the
statistical clustering of the factor data, were computed to describe the phenological state of each pixel
during each year, which facilitated the tracking of year-to-year dynamics. Collectively the phenology
metrics, factors, and phenoclasses provide a system for characterizing land surface phenology and for
monitoring phenological change that is indicative of ecological gradients, development, disturbance,
and other aspects of landscape-scale diversity and dynamics.

Keywords: biodiversity; ecological gradients; land surface phenology; landscape dynamics;
phenological change; remote sensing

1. Introduction

The use of remote sensing to characterize vegetation, map spatial gradients, and monitor temporal
change has significantly advanced the field of landscape ecology [1–3]. This importantly includes
applications using measures of surface reflectance (“greenness”) through time to infer properties of the
vegetative land cover. Remotely sensed seasonal variation in vegetation (land surface phenology (LSP))
based on such measures is strongly correlated with annual pulses of leaf-out through senescence [4–6].
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Given appropriate choices of spatial and temporal resolutions, LSP approaches can be used to
systematically track vegetation dynamics including disturbance, recovery, and development [7,8].
Beyond providing phenological information, LSP linkages to a wide variety of ecosystem and landscape
properties and processes provide insight into large-scale ecological diversity, distributions, and
change [4,9–11]. Ground-based approaches exist for observing landscape-level vegetation phenology
over local areas, but satellite-based LSP is much broader in scale, often spanning biomes with strongly
differing phenologies. These differences are useful for indicating ecological gradients and change, but
they also present challenges for systematic and consistent continental-scale assessment and monitoring.

Satellite-based LSP from sources such as the moderate resolution imaging spectroradiometer
(MODIS) allows large landscape assessment and change diagnosis [12,13]. These measurements cannot
distinguish individual tree-crowns. At medium spatial resolutions (250 m in the case of MODIS),
a phenological measurement typically reflects aggregate behaviors of multiple plant assemblages,
which can be affected by different environmental factors (e.g., harvested and non-harvested patches),
or differential responses within a plant assemblage to a common factor (e.g., species-specific drought
responses). If environmental factors are strong enough to affect the aggregate surface reflectance
signal, temporal and spatial variation in land surface phenology reflects the underlying dynamics of
the ecosystem. Examples include biotic disturbances, such as defoliation from insect outbreaks and
mortality [14–16], and abiotic disturbances tied to regional climate changes [17].

Due in part to complications from scale representativeness and asynchrony, much of the work
in LSP has addressed thematically coarse land cover mapping and disturbance monitoring rather
than variability along nuanced ecological gradients such as those associated with within-ecosystem
plant species compositional and structural change. By contrast, classification schemes which group
image pixels into phenologically self-similar clusters allow for quantifying and mapping phenological
variation at arbitrarily fine levels of distinction [7,18–20]. Successive satellite measurements of a
reliable vegetation indicator such as the normalized difference vegetation index (NDVI) are used
to build a phenological profile across a year, and annual profiles are clustered. Clustering may be
performed on the successive index values themselves or on derived metrics such as growing season
start and length [19]. The process of generating metrics and phenological classes (phenoclasses) can
be automated for each year to assess change. This approach has been used as a basis for monitoring
vegetation dynamics [7].

The capacity to undertake broadscale monitoring of vegetation as it develops and responds
to environmental conditions has been expanded by high-performance computing [21,22] and LSP
algorithm development [23], but more can be done to boost abilities to interpret phenology across
broad scales in a standard way. Further, while clustering approaches elegantly summarize phenological
similarity and difference, their interpretation in intuitive phenological terms (e.g., growing season or
seasonality) can be challenging when the number of starting variables or metrics is large. An optimal
system should be complex enough to provide rich phenological characterization, yet simple enough to
allow rapid processing and ready interpretation.

We introduce an LSP method that reduces data volume through a series of annual metric
computations to isolate the fundamentally important dimensions of phenological variability.
This approach provides intuitive metrics and phenoclass memberships with clear quantitative
phenological descriptions for each pixel and year. This quantifies variability over space and time
along multiple phenological dimensions amenable to comparison with various ecological, biophysical,
and climatological data sets. Phenology data products resulting from our analysis can be explored
through our online landscape phenology monitoring system (https://landat.org).

Our process is three-fold and begins by generating phenology metrics (e.g., length of season,
average greenness) for each pixel using polar coordinate transformation (PCT). The phenology metrics
can be tailored to summarize aspects of biophysical change that are of primary interest. Circular
plots of time series data resulting from PCT visualize annual phenology as an explicitly cyclical
phenomenon [24,25]. This allows for the efficient calculation of the normal phenological year timing
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(as distinct from the calendar year), extraction of phenology metrics relative to the phenological year,
and enhanced the appearance of anomalous phenology years because departures appear as deviations
from the normal annual ellipse.

Next, the metrics are transformed through factor analysis to reduce the data to a set of latent
variables (factor scores), reducing the variables needed to represent the annual phenology profile
while preserving nearly all of the variability. The factor analysis reveals fundamental dimensions
of phenology which are intuitive because they correspond to common interpretations of annual
phenology, and because their variability has straightforward ecological relevance. Last, the factor
scores of each pixel in each year are clustered to yield discrete phenoclasses. Each phenoclass is defined
by its mean factor score values, thereby quantifying similarities and differences among phenoclasses.
The phenology metrics, factor scores, and phenoclasses can all be mapped to reveal the geography of the
various dimensions of vegetation phenological behavior. Tracking year-to-year changes either in factor
scores or phenoclass membership provides a quantitative means of assessing landscape dynamics.

An important advantage of polar coordinate transformation is that it facilitates the comparison of
locations across large domains. Through PCT, each pixel is standardized to its own phenology calendar,
regardless of when its phenological minimum occurs during the year. As a result PCT standardizes
each pixel for its own latitudinal, elevational, or climatic characteristics. PCT provides a new capacity
to measure phenology relative to the calendar year or the phenology year of each pixel beginning at its
own minimum [25]. This has substantial advantages for phenological analysis at continental scales,
especially with respect to climate change. This work focuses on developing a system for monitoring
landscapes as they respond to ecological and climatic change.

2. Materials and Methods

2.1. Study Area and Data

The study area data are derived from normalized difference vegetation index time-series data
set from the MODIS platform. This is a gap-filled and smoothed product with a 250-m nominal
resolution, between 20◦ and 50◦ latitude [26]. The full data set consists of 188.6 million pixels spanning
the Conterminous US and significant parts of Canada and Mexico, with 46 regularly spaced values
per year (an 8-day interval) from 2000 through 2018. Processing procedures for this data set differ
from the MYD13Q1 and MOD13Q1 16-day MODIS NDVI products. First, NDVI measurements from
Aqua and Terra satellites taken on the same day were merged to enhance representation according to
the methodology of [26]. Second, artifacts—primarily clouds—were filtered using maximum value
compositing, as described by [27,28]. Last, additional temporal processing was performed to correct
for other artifacts including snow cover [29].

While MODIS MCD12Q2 provides metrics that identify phenophase transitions, we use PCT to
calculate phenological metrics directly from NDVI time series. An important goal of this approach was
to rely on as few assumptions as possible, particularly about trends and trajectories of the phenology
cycle. This precluded standard LSP products that identify phenophase transitions by first fitting models
to the data and then looking for departures. In addition, our approach allows for the period of least
phenological activity to be excluded from the analysis based on user-defined thresholds for the growing
season. This aids a comparison across latitudes, as high latitudes tend to have snow cover artifacts
during the winter that artificially reduce NDVI. PCT also provides an elegant solution for representing
temporal patterns that span across the beginning or end of calendar years, as explained below.

2.2. Polar Coordinate Transformation and Phenology Metrics

Polar coordinates are used in atmospheric sciences, engineering, astronomy, and elsewhere to
describe two-dimensional measurements relative to a central reference point (e.g., wind speed and
direction). Less commonly, polar transformations have been applied to time series data, treating
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regular cycles as passes around the polar circle. Surprisingly, PCT has rarely been applied to temporal
environmental data (but see [24,25,30,31]).

We applied PCT to land surface phenology as the first step in data analysis. We then calculated
a set of milestones and descriptive statistics using transformed data to collectively characterize the
phenological year and seasonal differences in terms that were relevant to our interest in landscape
analysis (Table 1). The procedure used for PCT is fundamentally the same as commonly found in
atmospheric science, e.g., to determine vector averaged wind speed and direction, except here, time is
converted into radial coordinates. In the first step the day of the year, d = 1 . . . 365, was converted to
radians r using:

r =
(

d
365

)
× 2π (1)

Using r and measured NDVI, v, the time series can be graphed using polar coordinate pairs
[r, v]. Irregularities in the overlapping orbits around the polar plot reflect variations in the eight-day
measurements from year to year (Figure 1b,c).

Table 1. Description of phenological variables based on polar coordinate transformation (PCT).

Type Variable Name Descriptive Name Units Polar Description

Timing Variables

GSbegin Beginning of
growing season Days

Number of days (or radial angle)
corresponding to 15% of cumulative

annual NDVI

GSmid_early Middle of early
growing season Days

Number of days (or radial angle)
corresponding to 32.5% of
cumulative annual NDVI

GSmid Middle of entire
growing season Days

Number of days (or radial angle)
corresponding to 50% of cumulative

annual NDVI

GSmid_late Middle of late
growing season Days

Number of days (or radial angle)
corresponding to 65% of cumulative

annual NDVI

GSend End of growing
season Days

Number of days (or radial angle)
corresponding to 80% of cumulative

annual NDVI

Greenness &
Seasonality
Variables

LOS Length of growing
season Days Number of days between early and

late growing season thresholds

mean_NDVI_grw Average growing
season greenness NDVI Average NDVI during the growing

season (GSbegin to GSend)

std_NDVI_grw
Variability in

growing season
greenness

NDVI Standard deviation of NDVI during
the growing season

AVearly
Magnitude of early

growing season
seasonality

NDVI
Length of the average vector during

early growing season (GSbegin
to GSmid)

AVgrw
Magnitude of

entire growing
season seasonality

NDVI
Length of the average vector during

entire growing season (GSbegin
to GSend)

AVlate
Magnitude of late
growing season

seasonality
NDVI

Length of the average vector during
late growing season (GSmid

to GSend)

Theta (Offset) 1

Offset between
calendar year and

start of
phenological year

Days

Number of days between the
beginning of the calendar year (1

January) and the start of the
phenological year (defined by when

the average minimum in
NDVI occurs)

1 Offset was not a variable used in analysis but was a timing point used to define the start of the phenological year
within which all PCT variables were measured.
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Figure 1. Visualizations of NDVI data from one MODIS pixel extracted from Great Smoky Mountains 
National Park, North Carolina. (a) Time series showing evergreen decline caused by hemlock tree 
mortality within the pixel. (b) The same data plotted radially in a polar graph. (c) Cumulative NDVI 
as a function of time. The 15% and 80% milestones define the start and end of the specified growing 
season within a phenology-centered year. (d) The phenological offset of each cell from the start of the 
calendar year is used to rotate and standardize the measurement of phenological completion 
milestones and growing season measures. 

Summarizing polar coordinate data requires projection onto two-dimensional Cartesian 
coordinates. Each [ݎ,  pair was projected on a coordinate plane by applying cosine and sine [ݒ
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Figure 1. Visualizations of NDVI data from one MODIS pixel extracted from Great Smoky Mountains
National Park, North Carolina. (a) Time series showing evergreen decline caused by hemlock tree
mortality within the pixel. (b) The same data plotted radially in a polar graph. (c) Cumulative NDVI
as a function of time. The 15% and 80% milestones define the start and end of the specified growing
season within a phenology-centered year. (d) The phenological offset of each cell from the start of the
calendar year is used to rotate and standardize the measurement of phenological completion milestones
and growing season measures.

Summarizing polar coordinate data requires projection onto two-dimensional Cartesian
coordinates. Each [r, v] pair was projected on a coordinate plane by applying cosine and sine
functions to [r, v] as:

x(r, v) = v× cos(r) (2)

y(r, v) = v× sin(r) (3)

Several polar measures were calculated using the mean of x and y, termed x and y. These were
calculated over n samples within the period of interest, simply as:

x =
n∑

i=1

xi/n (4)

y =
n∑

i=1

yi/n (5)

Thus, [ x, y ] describes the coordinates of the average vector, which can be projected back into
polar coordinates of angular displacement and distance, [ r, v ], using the relationships,

r =
{

atan2(y, x) atan2(y, x) > 0
atan2(y, x) + 2π otherwise

(6)

v =

√
x2 + y2 (7)
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[ r, v ] is the resultant vector with a magnitude proportional to the normal (multi-annual) strength
of seasonality, and direction indicating the central tendency of NDVI in the annual cycle. Phenological
timing varies significantly across large landscapes due to latitudinal, elevational, hydrological and
other environmental gradients affecting vegetation. For example, the phenology of deciduous locations
across much of the southwest is six months out of phase with much of the Conterminous United States
(Figure 2a). Polar coordinate transformation facilitates the calculation of standard metrics, normalized
to the customized phenological year of any given pixel, which can clarify similarities in modes of
phenological variability while preserving timing differences.

0 

0.833 

Vector 
length 

0 

360 
Days 

0 

0.951 
NDVI 

(a) (b) 

(c) (d) 

1 

365 

Julian 
day 

182 

Figure 2. Example land surface phenology metric maps for the phenological year 2016 across North
America, based on polar coordinate transformed NDVI time-series data. (a) GSmid, the middle of
the growing season, illustrates regional variability in the timing of the phenology year. (b) LOS, the
length of the growing season. Note short anthropogenic growing seasons of agricultural landscapes
across the Corn Belt and Mississippi River valley. (c) Mean_NDVI_grw, the mean growing season
greenness, is a proxy for vegetation productivity. (d) AVgrw, the strength of seasonality, distinguishes
between evergreen and deciduous vegetation. These variables and others in Table 1 collectively
characterize vegetation similarity and difference at regional and landscape scales. For example, dense
and productive evergreen vegetation in the Pacific Northwest displays a long growing season centered
late in the calendar year, with high mean greenness. Some of these features are shared, while some
contrast with other forested systems such as the boreal forest in eastern Canada, Appalachian deciduous
forests, and southeastern US mixed conifer/hardwood forests.

Following the polar transformations shown above, the next step identifies the unique starting
date for the phenological year associated with each pixel. This corresponds to the period of least
photosynthetic activity, when NDVI values are generally lowest (i.e., winter for most pixels), which
rarely coincides exactly with the beginning of the calendar year. The period of least activity is simply
the diametric opposite of the average vector [ r, v ], i.e., rotated exactly one-half year (π radians) from r.
This new angle θ is a complement of r based on Equation (6) using the full multi-annual time series of
NDVI values (n = 19× 46 = 874). That is,
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θ =

{
(r + π) (r < π)
(r−π) otherwise

(8)

We recorded this parameter as the offset (in radians or back-transformed to days) between the
beginning of the phenological year and that of the calendar year. The straight line formed by θ and r
bisects the polar graph into two sections of equal area under the multi-annual NDVI profile; the sum
of NDVI values clockwise from θ to r is equivalent to the sum clockwise from r to θ.

Subsequent phenological metrics (Table 1) were calculated and are reported by their calendar
date. The time series of coordinate pairs [r, v] was first divided into phenological years, beginning
with the first NDVI reading after θ. The initial and final segments of values that occur before θ in the
first year and after θ in the final year were omitted, thus resulting in 19 – 1 phenological years with
46 dates each (r_1, 1, . . . , r_18, 46). Within each phenological year, NDVI values were converted to
cumulative proportions of the year’s total NDVI accumulation, from zero to one. Proportional values
were used to determine benchmarks that defined beginning, middle, and ending growing season
dates. Any NDVI threshold, t with range (0, 1), can be used to mark a phenological milestone, J(t),
corresponding to the earliest date J when the cumulative proportion exceeds the threshold value t.
We chose the phenological milestones J(0.15), J(0.5), and J(0.8) to define the beginning (GSbegin),
middle (GSmid), and end (GSend) of the growing season (Table 1). These correspond to 15%, 50%,
and 80% completion thresholds of the phenological year; other threshold values can be chosen to suit
a particular analysis. The length of the growing season (LOS) was simply the number of days (or
radians) between J(0.15) and J(0.8) (Figure 1c).

Annual measures of NDVI’s central tendency include the mean (mean_NDVI_grw) and standard
deviation (std_NDVI_grw) of observed NDVI within the growing season, indicating the average
productivity and within-season variability, respectively. We also calculated an average vector for the
growing season, AVgrw,

(
rgrw, vgrw

)
using Equations (4)–(7) with appropriate n, whose vector length

is also a measure of the degree of seasonality. For additional information about the seasonal pattern,
we examined the early (GSbegin to GSmid) and late (GSmid to GSend) portions of the growing season
separately. We calculated average vectors for both of these periods, indicated by

(
rearly, vearly

)
and

(rlate, vlate), respectively. This yielded two additional vector directions (GSmid_early and GSmid_late)
and two additional vector lengths (AVearly and AVlate). Collectively, these vectors and the differences
among them provide insights about modality and symmetry throughout the growing season (Figure 1d).
All phenological metrics are sensitive to different aspects of growing season variability, as discussed
below. PCT analyses were performed in R [32]. Our repository of R code is accessible on GitHub at
https://github.com/LandscapeDynamics/PolarMetrics; additional details of the PCT process are in [25].

2.3. Dimensional Reduction and Phenological Classification
Through the process described above, we produced 11 metrics to describe LSP (Table 1).

These included six measures describing aspects of seasonality and greenness/productivity, and five
timing milestones, i.e., growing season benchmarks recorded as a day of year (r, in radians). For further
analysis as quantitative metrics, these circular timing milestones were transformed using the sin(r) and
cos(r) functions such that dates near the beginning/end of the year had similar values. For example,
1 January and 31 December are distant when expressed in radians or days-of-year, but appropriately
near in the circular sine-cosine coordinate space. This resulted in five timing variable pairs, e.g.,
[sin(GSbegin), cos(GSbegin)]. Therefore, the data set that we subjected to factor analysis consisted of
16 variables for each pixel-year combination.

We used factor analysis to reduce the 16 variables to a smaller set of linear combinations (factors)
that explained the bulk of the variation across the data, and to help identify core dimensions of
phenological variability. We performed a factor analysis using the factanal base stats function in
R [32]. Pearson correlation coefficients among the 16 variables were used to calculate factor loadings.
The factors having eigenvalues greater than one were retained and rotated using varimax rotation to

https://github.com/LandscapeDynamics/PolarMetrics
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improve interpretability. The rotated factor pattern (loadings) was then used to generate factor scores
for each pixel-year combination.

Factors are continuous variables, and the combination of factor scores assigned to a particular
pixel is potentially unique. However, the ecological significance of phenological differences measured
by differences in one or more factor-scores is not known a priori. Pixels can be grouped by similarity to
facilitate comparisons but implicit in such grouping is the presumption that inter-group differences
are more meaningful than intra-group differences. Cluster analysis provided a statistically rigorous
means of grouping pixel-years based on their factor scores, identified herein as phenological classes or
phenoclasses. The term phenoregion is also used [18], but phenoclass is preferred when pixels can
change group membership over time in response to environmental change and when pixels in each
group may be widely disjunct geographically. Phenoclasses can be thought of as categorical types into
which the multidimensional phenological space has been partitioned, and within which vegetation
exhibits a common and characteristic phenological pattern.

We used non-hierarchical k-means clustering [33] where input variables were the factors at
the pixel-year level. Objective clustering was used to minimize the error between each of the k
representative centroids and the cluster members (pixel-years) using the sum of squares criterion while
maximizing the differences between centroids [34]. A k-means clustering approach was used because
it is unsupervised and provides several options for seed selection [35–39].

Ensuring that the clustering process begins with high-quality initial seeds typically results in
better-separated and more representative final clusters. For our purposes, the seed finding algorithm
used in SAS’s “PROC FASTCLUS” [40] was suitable. Several of the more widely used seed finding
algorithms [35–38] were tested and found to produce seeds whose distributions broadly mirrored
those of the factor score values. That is, these methods placed the most seeds where most of the factor
score values were located, with few seeds outside of that central domain. This, in turn, resulted in
final cluster centroids with a similar relation to the original data distribution. Although desirable in
many contexts, one consequence when measuring phenological change is that phenoclasses outside of
the denser part of the data distribution exhibit both larger intra-cluster and inter-cluster differences,
with more widely spaced centroids. For this reason, transitions (changes between phenoclasses) in the
sparse data region would only be observed when phenological changes were unusually large, whereas
in the denser part of the data distribution only comparatively small changes would be required to elicit
phenoclass transitions. The result in ecological terms is that a typical landscape undergoing minor
transitions between closely spaced phenoclasses can appear just as dynamic as a strongly disturbed
landscape undergoing transitions between widely spaced, uncommon phenoclasses. Thus, a clustering
process that tends to result in more uniformly distributed final cluster centroids, as employed here,
has advantages in the context of monitoring phenological change.

The number of classes, k, is negatively correlated with how large a step in the factor score
space a phenoclass transition represents. Typically, k is chosen a priori based on knowledge of or
subjective preference for a given level of division, or it is iteratively determined based on a trade-off

between within-cluster and between-cluster deviance. Deviance between groups (i.e., the between
sum-of-squares, BSS) should be large relative to deviance within groups (i.e., the within sum-of-squares,
WSS). This can be measured as BSS/ (BSS + WSS) or BSS / TSS or (total sum of squares), which
approaches 1 as k approaches the number of pixel-years. In the end we chose a 500-class analysis
for demonstrative purposes based on (1) optimizing computation, and (2) ensuring that there was
sufficient resolution to show relevant ecological divisions, without showing phenology changes due to
minor climatic variation, which detracts from our focus on detecting dynamic change.

3. Results and Discussion

3.1. Phenology Metrics
Each PCT variable measures an intuitive aspect of phenology, e.g., the start of the growing season,

the length of the season, and the average growing season greenness. Reducing the many original



Forests 2020, 11, 606 9 of 17

measurements in each year’s NDVI profile to a suite of PCT variables (Table 1) provides both a
substantial reduction in data volume and intuitive ecological characterization. Phenology maps using
PCT illustrate differences due to varying environmental drivers, including topography, climate, and
land use (Figure 2).

Five of the 11 PCT variables in Table 1 are timing variables, which describe the juxtaposition of
the growing season profile with the annual solar cycle. These variables quantify complex patterns in
one of the most important components of phenological variability, particularly in the western part
of the continent (Figure 2a). For example, the middle of the growing season (GSmid) is coincident
with late summer across most of the continent but shows very different timing in the southwestern
US, where vegetational phenology is more strongly asynchronous with the solar cycle. There, GSmid
varies broadly from September–October in the east (e.g., the Chihuahuan Desert) to February–March
in the west (e.g., the Mohave Desert). Along this broadly east–west timing gradient, there is an
irregular band through southern Nevada, Arizona, and northwestern Mexico with growing season
midpoints between December and January (near Julian days 365 and 1). This regional gradient
illustrates the utility of transforming day-of-year phenology metrics to sine-cosine pairs whose values
grade appropriately across the end-of-year transition. Moreover, the structure of spatial and temporal
gradients in phenology timing is preserved in statistical products such as the factor scores, which take
the sine-cosine variables as inputs.

Other PCT variables indicate strong contrast in seasonality and growing season length between
much of the northern US (midwestern US through northeastern US and Mississippi River Valley) and
the rest of the continent (Figure 2b,d). Landscapes across this broad northern belt are dominated by
agricultural crops, prairies, and deciduous trees. The growing season length variable (LOS, Figure 2b)
exhibits low values in this region, likely driven by the timing of agricultural activities as well as natural
deciduousness. In comparison, more evergreen landscapes in the Pacific Northwest, Eastern Canada,
and the southern and southwestern US show larger LOS values. Low seasonality in the latter regions is
also indicated by seasonal magnitude (the average growing season vector length, AV_grw, Figure 2d).
Although considerable landscape variability is present within regions, the agricultural landscapes
of the midwestern US appear to be among the most seasonal systems on the continent, followed by
regions dominated by deciduous vegetation such as the central Appalachians and the northeastern US.

Variables quantifying NDVI greenness were correlated with growing season productivity.
For example, high growing season NDVI greenness (mean_NDVI_grw) values for the dense forests of the
eastern US and Pacific Northwest contrasted with much of the western US (Figure 2c). NDVI greenness
also aided in further discriminating regional and landscape phenologies. Consider, for example, that
on the basis of length of season (LOS) alone, the Pacific Northwest and Mountain West were difficult to
distinguish (Figure 2b). However, through mean_NDVI_grw (Figure 2c), the ecological distinction was
clear. The high NDVI of productive, evergreen vegetation in the Pacific Northwest contrasted sharply
with lower values in the intermountain and mountain west regions where sparser, more dry-adapted
evergreen vegetation dominates.

3.2. Dimensional Reduction

Factor scores provide a small, orthogonal set of variables that describe phenological pattern,
and are a concise means of quantifying spatial (among-pixels) and interannual (within-pixel) differences
in phenology. While PCT reduced the data volume by two thirds (46 variables per year to 16), a further
reduction in data volume and increased explanatory power per variable was achieved through factor
analysis. There were four factors with eigenvalues greater than 1, which collectively explained over 95
percent of the variance among the 16 variables in the PCT data set (Table 2).

Rotated factor loadings discriminate three main phenology characteristics: timing, productivity,
and seasonality. Rotated factors 1 and 2 are heavily loaded on the timing variables (GSbegin_cos,
GSbegin_sin, etc.), and together explain 58 percent of the variance in the data. This indicates that
most of the observed differences in phenology are simply determined by when milestones occur.
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The complementary loadings of factors 1 and 2 (Table 2) indicate that two dimensions are required to
represent circular annual timing as expressed through the sine and cosine variables (Figure 3). Factor
3 explains an additional 23% of the variance and was heavily loaded on variables associated with
vegetative productivity as reflected in higher NDVI values, (i.e., mean_NDVI_grw) and the vector
length variables (AVgrw, AVearly, AVlate). This is not surprising, as NDVI is one of two measures used
to calculate the vector lengths. Factor 4 had heavy loadings for length of season (LOS) and variability
in NDVI (std_NDVI_grw) and is referred to here as “seasonality.” Note that due to the signs of the
loadings, factor 4 values related inversely to seasonality. Thus, high LOS values and low variation in
NDVI result in high factor 4 values, whereas short growing seasons with high intra-season variability
result in low factor 4 values. Our interpretation of factor 3 and 4 loadings is that while several of the
original variables reflect mixtures of seasonality and productivity, these components are separable and
result in two orthogonal factors.

The false-color composite continental map of phenological variability shown in Figure 4 was
generated for an individual phenological year by assigning one of the timing factors (factor 1) in
combination with the productivity and seasonality factors to blue, green, and red, respectively. This
visualization illustrates that the combined factors provide a nuanced description of phenological
variation, and collectively are a robust indicator of gradients in ecological and biophysical diversity at
landscape, regional, and continental scales. For example, agriculture-dominated landscapes across the
US Midwest corn belt and the Mississippi River Valley, where the timing of planting and harvest are
synchronized and highly regular at regional scales, show internal similarity that distinguishes them
from other regions.

The factor scores also quantify phenological change within pixels. We used a false-color composite
mapping approach to illustrate magnitudes of inter-annual variability in the same three factors
(Figure 5). For example, grassland and shrubland regions from the Dakotas to south Texas show
high inter-annual variability across all factors, whereas forest and desert regions are more stable.
Most regions show distinctive mixtures of variability in some phenological characteristics and stability
in others.

Table 2. Factor loadings from factor analysis using varimax rotation. Coefficients smaller than |0.2| are
not shown. Variable definitions are given in Table 1.

Factor 1 Factor 2 Factor 3 Factor 4

Timing
Variables

GSbegin sin −0.892 0.311 0.244
GSbegin cos 0.283 0.911

GSmid_early sin 0.959
GSmid_eary cos 0.927 −0.245 0.202

GSmid sin 0.675 0.702
GSmid cos 0.672 −0.662 0.241

GSmid_late sin 0.936 −0.231 0.215
GSmid_late cos −0.939 0.304

GSend sin 0.568 −0.689 0.392
GSend cos −0.764 −0.579

Greenness &
Seasonality
Variables

LOS 0.898
mean_NDVI_grw −0.209 0.964

std_NDVI_grw 0.321 −0.836
AVearly 0.960
AVgrw −0.247 0.838 −0.457
AVlate −0.274 0.859 −0.367

Factor 1 Factor 2 Factor 3 Factor 4

Proportional
Variance 0.294 0.282 0.231 0.145

Cumulative
Variance 0.294 0.576 0.807 0.953
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Figure 3. Distributions of cluster centroids (k = 500) resulting from cluster analysis, with respect to
(a) factors 1 and 2 (timing factors) and (b) factors 3 and 4 (productivity and seasonality factors).
The distributions in the margins compare the factor score data to their representative cluster
centroids. The more uniform distribution of centroids was chosen intentionally to disperse phenoclass
representation across factor-space. The prominent circular distribution of centroids in (a) is a result of
the relationship between factors 1 and 2, which are sine and cosine complements of each other. That
is, the factor 1 dimension represents a subset of sine, cosine phenology timing variables that mirrors
another subset of sine, cosine variables represented by the factor 2 dimension (Table 2). While the fixed
relationship of sine and cosine for input dates plots points exclusively on the periphery of a circle,
clustered output values can result in internal points as well. The direction of these points indicates
seasonal dates, and the magnitude indicates strength of that seasonality. (b) Factor 3 and factor 4
centroid values indicate average NDVI, seasonal amplitude, and variability.

3.3. Phenological Classification

Transitional changes of a pixel from one phenoclass to another between years is determined by
the relative position of cluster centroids in the four-dimensional factor score space. Each centroid
represents the “center of mass” of a cluster group (i.e., phenoclass) in that space. The phenoclass
centroids exhibit different distributions along each of the four factor dimensions, and in three of those
dimensions the values are concentrated about a central tendency (Figure 3). As discussed above
in Section 2.3, we used a clustering approach with a seed finding algorithm that produced more
uniformly spaced centroids, so that the centroid distributions are more uniform than the underlying
factor score data. This was done to reduce bias in phenoclass change detection that would otherwise
occur when counting transitions for phenoclasses that occurred near the central distribution of the
data. This difference is especially evident in the factor 1 and 2 dimensions, wherein the circular joint
distribution of timing factors is well-represented by fairly evenly distributed phenoclasses (Figure 3a).
Utilizing a more uniform cluster centroid distribution allows for a more ecologically consistent measure
of change from one phenoclass to another. Ultimately, classifying continuous factor scores into discrete
phenoclasses provides a basis for measuring transitional jumps between phenological states, which can
help in identifying meaningful ecological change.

Note that a phenoclass map will illustrate spatial and temporal patterns effectively identical to
those evident in Figures 4 and 5, which explicitly map three factor scores as red-green-blue (RGB)
composites. This is because phenoclasses preserve factor score values in discretized form, with each
phenoclass defined by its centroid’s four factor values. The greater the number of phenoclasses
produced by a given analysis, the more closely a phenoclass map will approximate continuous, rather
than discrete, factor score variability.
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Factor 3 

Factor 4 

Factor 1 

(a) 

(b) 

Figure 4. RGB composite based on three of the four factors from Table 2 for the phenological year
2016 (Red, Green, and Blue are associated with phenological Seasonality, Productivity, and Timing
respectively). (a) Continental scale. (b) Central Texas is shown with ecoregion boundaries to illustrate
local variation. The combined factors provide a nuanced description of phenology and collectively
are a robust indicator of gradients in phenological diversity at landscape, regional, and continental
scales. Hue and intensity in this image together indicate overall phenological distinctiveness and
similarity. For example, the Southeastern US, Atlantic coast, and Pacific Northwest share a relatively
low seasonality and high greenness (in the RGB spectrum, yellow results from high R and G values).
Likewise, the largely agricultural Corn Belt and Mississippi River Valley are shown to be phenologically
similar, as are the forested Appalachian and Great Lakes regions. Color similarity results from both
shared low and high values; for example, red in parts of the Colorado Plateau and northern Great
Plains results from both low factor 3 (low productivity) values and high factor 4 (weak seasonality).
In (b) Land uses are evident, such as urban areas, as are landscape-scale ecological gradients such as
between river floodplains and uplands.
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Figure 5. Phenological variability over time as indicated by changing factor scores and phenological
class frequencies. (a) Standard deviation in factor score values among phenological years, 2000–2017.
The RGB color composite indicates variability in three different factors. Lighter tones indicate more
active year-to-year dynamics, and dominance of a given color indicates more variability in that factor.
(b) Mean year of occurrence of 500 different phenoclasses, weighted by their frequency within years,
shows continental trends over time in phenological traits. The x-axis gives the phenological year,
where 9 is the center year among years 1 through 17. Line endpoints relative to year 9 give the
frequency-weighted mean year of phenoclass occurrence. Y-axes give the phenoclass centroid values
for the three factors shown in the map. Factor one is sine-transformed because its factor loadings are
on the day-of-year variables. Broadly, phenological variability over time was highest in the center of
the continent and at the highest elevations, and included continental trends towards phenoclasses with
higher factor 1, lower factor 3, and more extreme factor 4 values.

Our results demonstrate that temporal variation in phenology is geographically variable (Figure 5a).
Moreover, phenoclass change through time can be used to quantify directional phenological change as
reflected in the centroid values. For example, changes in the frequency of different phenoclasses at the
continental scale suggest directional shifts in timing, productivity, and seasonality over the period of
observation (Figure 5b). We can precisely quantify such changes, but we cannot say with certainty
that the observed changes are ecologically important. It is possible to examine areas believed to have
experienced substantive change, however, and to objectively assess whether land surface phenology
provides a useful method for detection.

To illustrate, we examined factor scores and phenoclasses for an area of the south-central US,
centered on Texas, known to have been affected by severe drought during October 2010 through
September 2011 (Figure 6). Impacts of the drought on vegetation are captured by the phenological
response across the immediate drought interval, in terms of both regional factor score variation and
frequency of phenoclass changes. A strong difference between the 2011 growing season and the
growing seasons of adjoining years 2010 and 2012 is obvious in the multitemporal factor score maps
(Figure 6a,b). The extent and severity of short-term drought impacts, including reduced productivity
and delayed growing season timing, are evident throughout eastern and central Texas and north across
the High Plains. Anomalous factor values in 2011 also drove a more than 8% increase in pixel-level
phenoclass transitions (Figure 6d).

Phenoclass transitions provide a wide variety of additional information about landscape condition
and change not explored here. Information pertaining to dynamic landscape mosaics, directional
ecological change, predictability, and stability over short and long terms can be gathered, for example,
by examining multi-pixel landscapes in terms of their factor score and phenoclass composition
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and dynamics. Because pixels can change phenoclass assignment between years, it is possible to
monitor phenological change in a framework of states and transitions. Preliminary analyses using this
approach to address phenological evolution, disturbance, recovery, and land management applications
look promising.

Note that phenoclasses are not explicitly land cover classes, although there may be congruence
between many land-cover types and their signature phenology. Some land-cover types likely exhibit
a mixture of phenological responses due to interannual meteorological differences or other factors.
Alternatively, some different vegetation classes likely share phenological signatures, e.g., variation in
species composition among pine-dominated ecosystems. Examining such relationships could readily
be performed using the data products described here.

0.2 0.4 0.6 

2010 
2011 

Offset 

NDVI MGS 

Factor 3 
Multitemporal composite 

Red: 2010 
Green: 2011 
Blue: 2012 

Factor 1 
Multitemporal composite 

Red: 2010 
Green: 2011 
Blue: 2012 

(a) 

(b) (d) 

(c) 

2012 

Figure 6. An historic drought in 2011 in Texas and surrounding states resulted in depressed vegetation
productivity, a delayed growing season, and other observable vegetation phenology impacts. RGB
multitemporal false color images of (a) factor 1 and (b) factor 3 show both regionally coherent drought
impacts and strong local variability (see Table 2: factor 1 is correlated with growing season timing
variables, and factor 3 with greenness/productivity variables). Each color band represents a different
year. Gray tones indicate similar phenology values for all years 2010–2012 (lighter grays indicate higher
values). Purple color in the large central domain indicates that values in 2010 and 2012 were high
relative to 2011. In this region, lower factor 1 values correspond to a later growing season. (c) A radial
NDVI plot for a single MODIS pixel (yellow cross on maps) reflects reduced greenness and a delayed
growing season in 2011 (MGS = Middle of growing season); seasonality impacts are also evident.
(d) shows the 2011 drought response as the percentage of pixels in the view frame that changed their
phenoclass membership from the preceding year.
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4. Conclusions

The three-step process of polar coordinate transformation, dimensional reduction using factor
analysis, and statistical clustering into phenoclasses proved to be an effective and efficient means
of using land surface phenology to characterize and monitor landscape dynamics. PCT allowed a
ten-fold reduction in data volume while showing no loss in sensitivity to NDVI change. Multiple
PCT-generated phenology metrics provide a rich characterization of the LSP cycle across large areas
at high spatial and temporal resolution. Any of these can be used in focused analyses, based on
their relevance for particular types of ecological investigations (e.g., climate drift, land degradation,
ecological disturbance and recovery).

Developing factor score variables and phenoclasses from PCT variables resulted in a concise,
integrative mapping and classification of LSP on an annual basis. Each phenoclass represents the gross
phenological timing, productivity, and seasonality of the vegetation within a pixel, and variations in
phenology are quantified across years. Movement along the factor dimensions and transitions between
phenological states provide quantifiable evidence of ecological change. An advantage for landscape
ecologists and others studying phenological variation and change is that landscapes are depicted using
intuitive measures (PCT variables) rather than a complex time series of NDVI values.

Vegetation condition and dynamics mediate, in varying degrees, linkages between natural
resources of conservation interest in terrestrial systems (e.g., endangered species, ecosystem services,
forest products) and their stressors and drivers (e.g., climate change, land use change, wildland fire).
Land surface phenology facilitates vegetation monitoring via remote sensing beyond thematically and
temporally coarse land use/cover and towards ecologically nuanced gradients and dynamics. As such,
the potential applications of large-scale LSP data sets for studying biodiversity and natural resource
conservation and management are vast. These include studies of ecosystem resilience and vulnerability,
species and resource distribution modeling, conservation planning, and other applications. The data
presented here are available for such applications through an actively managed online database and
viewer, namely the Landscape Dynamics Assessment Tool (LanDAT, https://landat.org).
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