Natural Disturbance Dynamics Analysis for Ecosystem-Based Management—FORDISMAN
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stanturf, J.A. Future landscapes: Opportunities and challenges. New For. 2015, 46, 615–644. [Google Scholar] [CrossRef]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanturf, A.J.; Frelich, L.E.; Donoso, P.J.; Kuuluvainen, T. Advances in managing and monitoring natural hazards and forest disturbances. In Achieving Sustainable Management of Boreal and Temperate Forests; Stanturf, J.A., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 627–716. [Google Scholar]
- Seidl, R.; Honkaniemi, J.; Aakala, T.; Aleinikov, A.; Angelstam, P.; Bouchard, M.; Boulanger, Y.; Burton, P.J.; De Grandpré, L.; Gauthier, S.; et al. Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography 2020, 43, 1–12. [Google Scholar] [CrossRef]
- Lindbladh, M.; Axelsson, A.-L.; Hultberg, T.; Brunet, J.; Felton, A. From broadleaves to spruce−the borealization of southern Sweden. Scand. J. For. Res. 2014, 29, 686–696. [Google Scholar] [CrossRef]
- Nowacki, G.J.; Abrams, M.D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 2008, 58, 123–138. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.; Harris, J.A. Novel ecosystems: Implications for conservation and restoration. Trends Ecol. Evol. 2009, 24, 599–605. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Williams, J.W.; Bateman, B.L.; Burke, K.D.; Carter, S.K.; Childress, E.S.; Cromwell, K.J.; Gratton, C.; Hasley, A.O.; Kraemer, B.M.; et al. The rise of novelty in ecosystems. Ecol. Appl. 2015, 25, 2051–2068. [Google Scholar] [CrossRef] [Green Version]
- Frelich, L.E.; Jõgiste, K.; Stanturf, J.A.; Parro, K.; Baders, E. Natural disturbances and forest management: Interacting patterns on the landscape. In Ecosystem Services from Forest Landscapes: Broadscale Considerations; Perera, A.H., Peterson, U., Martinez Pastur, G., Iverson, L.R., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 221–248. [Google Scholar] [CrossRef]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience (review): Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.C.; Brooks, M.L.; Germino, M.J.; Maestas, J.D.; Board, D.I.; Jones, M.O.; Allred, B.W. Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Front. Ecol. Evol. 2019, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Yáñez, O.; Pukkala, T.; Packalen, P.; Peltola, H. Multifunctional comparison of different management strategies in boreal forests. Forestry 2019, 93, 84–95. [Google Scholar] [CrossRef]
- Grumbine, R.E. What is ecosystem management? Conser. Biol. 1994, 8, 27–38. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Bergeron, Y.; Coates, K.D. Restoration and ecosystem-based management in the circum-boreal forest: Background, challenges, and opportunities. In Restoration of Boreal and Temperate Forests, 2nd ed.; Stanturf, J.A., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 251–270. ISBN 978-1-4822-1196-2. [Google Scholar]
- Lackey, R.T. Seven pillars of ecosystem management. Landsc. Urban Plan. 1998, 40, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Waldron, K.; Ruel, J.-C.; Gauthier, S. Forest structural attributes after windthrow and consequences of salvage logging. For. Ecol. Manag. 2013, 289, 28–37. [Google Scholar] [CrossRef]
- Beese, W.J.; Rollerson, T.P.; Peters, C.M. Quantifying wind damage associated with variable retention harvesting in coastal British Columbia. For. Ecol. Manag. 2019, 443, 117–131. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Gauthier, S. Young and old forest in the boreal: Critical stages of ecosystem dynamics and management under global change. For. Ecosyst. 2018, 5, 26. [Google Scholar] [CrossRef]
- Jõgiste, K.; Frelich, L.E.; Laarmann, D.; Vodde, F.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Korjus, H.; Köster, K.; et al. Imprints of management history on hemiboreal forest ecosystems in the Baltic States. Ecosphere 2018, 9, e02503. [Google Scholar] [CrossRef] [Green Version]
- Jõgiste, K.; Korjus, H.; Stanturf, J.A.; Frelich, L.E.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Köster, K.; Laarmann, D.; et al. Hemiboreal forest: Natural disturbances and the importance of ecosystem legacies to management. Ecosphere 2017, 8, e01706. [Google Scholar] [CrossRef]
- Franklin, J.F. Biological legacies: A critical management concept from Mount St. Helens. In Proceedings of the Transactions of the Fifty-Fifth North American Wildlife and Natural Resource Conference, Denver, CO, USA, 16–21 March 1990; McCabe, R., Ed.; Wildlife Management Institute: Washington, DC, USA, 1990; pp. 216–219. ISSN 0078-1355. [Google Scholar]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, P.E.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 2014, 24, 2063–2077. [Google Scholar] [CrossRef] [Green Version]
- Kostenko, O.; Bezemer, T.M. Abiotic and biotic soil legacy effects of plant diversity on plant performance. Front. Ecol. Evol. 2020, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.; Swanson, F.; Aber, J.; Burke, I.; Brokaw, N.; Tilman, D.; Knapp, A. The importance of land-use legacies to ecology and conservation. BioScience 2003, 53, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Bryant, T.; Waring, K.; Sánchez Meador, A.; Bradford, J.B. A framework for quantifying resilience to forest disturbance. Front. For. Glob. Change 2019, 2, 56. [Google Scholar] [CrossRef]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Weldon, J.; Grandin, U. Major disturbances test resilience at a long-term boreal forest monitoring site. Ecol. Evol. 2019, 9, 4275–4288. [Google Scholar] [CrossRef] [Green Version]
- Young, T.P.; Schwartz, M.W. The decade on ecosystem restoration is an impetus to get it right. Conserv. Sci. Pract. 2019, 1, e145. [Google Scholar] [CrossRef] [Green Version]
- Stanturf, J.; Mansourian, S.; Kleine, M. (Eds.) Implementing Forest Landscape Restoration, a Practitioner’s Guide; International Union of Forest Research Organizations: Vienna, Austria, 2017; p. 128. ISBN 978-3-902762-78-8. [Google Scholar]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. IPBES (2018): Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES secretariat: Bonn, Germany, 2018; p. 44. ISBN 978-3-947851-04-1. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. Available online: http://www.ecologyandsociety.org/vol14/iss2/art32/ (accessed on 10 June 2020). [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.C.; Campbell, J.L.; Franklin, J.F. Multiple successional pathways and precocity in forest development: Can some forest born complex? J. Veg. Sci. 2012, 23, 576–584. [Google Scholar] [CrossRef]
- Swanson, M.E.; Franklin, J.F.; Beschta, R.L.; Crisafulli, C.M.; DellaSala, D.A.; Hutto, R.L.; Lindenmayer, D.B.; Swanson, F.J. The forgotten stage of forest succession; early-successional ecosystems on forest sites. Front. Ecol. Environ. 2011, 9, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M. Beyond global warming: Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Mori, A.S. Ecosystem management based on natural disturbances: Hierarchical context and non-equilibrium paradigm. J. Appl. Ecol. 2011, 48, 280–292. [Google Scholar] [CrossRef]
- Lugo, A.E.; Abelleira Martinez, O.J.; Medina, E.; Aymard, G.; Heartsill Scalley, T. Chapter two—Novelty in the tropical forests of the 21st century. Adv. Ecol. Res. 2020, 62, 53–116. [Google Scholar] [CrossRef]
- Hulvey, K.B.; Standish, R.J.; Hallett, L.M.; Starzomski, B.M.; Murphy, S.D.; Nelson, C.R.; Gardener, M.R.; Kennedy, P.L.; Seastedt, T.R.; Suding, K.N. Incorporating novel ecosystems into management frameworks. In Novel Ecosystems: Intervening in the New Ecological World Order, 1st ed.; Hobbs, R.J., Higgs, E.S., Hall, C.M., Eds.; John Wiley & Sons: West Sussex, UK, 2013; pp. 157–171. [Google Scholar] [CrossRef]
- Kowarik, I.; Hiller, A.; Planchuelo, G.; Seitz, B.; von der Lippe, M.; Buchholz, S. Emerging urban forests: Opportunities for promoting the wild side of the urban green infrastructure. Sustainability 2019, 11, 6318. [Google Scholar] [CrossRef] [Green Version]
- Perring, M.P.; Standish, R.J.; Hobbs, R.J. Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. Ecol. Process. 2013, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, Y.; Chen, H.Y.H.; Kenkel, N.C.; Leduc, A.L.; Macdonald, S.E. Boreal mixedwood stand dynamics: Ecological processes underlying multiple pathways. For. Chron. 2014, 90, 202–2013. [Google Scholar] [CrossRef] [Green Version]
- Jõgiste, K.; Metslaid, M.; Uri, V. Afforestation and land use dynamics in the Baltic States. In Restoration of Boreal and Temperate Forests, 2nd ed.; Stanturf, J.A., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 187–200. [Google Scholar] [CrossRef]
- Tomson, P.; Kaart, T.; Sepp, K. Role of 19th-century rotational slash-and-burn cultivation in the development of boreal forests in southern Estonia and implications for forest management. For. Ecol. Manag. 2018, 409, 845–862. [Google Scholar] [CrossRef]
- Jõgiste, K.; Jonsson, B.G.; Kuuluvainen, T.; Gauthier, S.; Moser, W.K. Forest landscape mosaics: Disturbance, restoration, and management at times of global change. Can. J. For. Res. 2015, 45, v–vi. [Google Scholar] [CrossRef] [Green Version]
- Parro, K.; Köster, K.; Jõgiste, K.; Vodde, F. Vegetation dynamics in a fire damaged forest area: The response of major ground vegetation species. Balt. For. 2009, 15, 206–215. [Google Scholar]
- Ilisson, T.; Metslaid, M.; Vodde, F.; Jõgiste, K.; Kurm, M. Vascular plant response to windthrow severity in Norway spruce-dominated Myrtillus site type forests in Estonia. Ecoscience 2006, 13, 193–202. [Google Scholar] [CrossRef]
- De Chantal, M.; Granström, A. Aggregations of dead wood after wildfire act as browsing refugia for seedlings of Populus tremula and Salix caprea. For. Ecol. Manag. 2007, 250, 3–8. [Google Scholar] [CrossRef]
- Vodde, F.; Köster, K.; Metslaid, M.; Kuuluvainen, T. Preface to the special issue: The impact of ungulates and other mammalian herbivores on forest ecosystems. Boreal. Env. Res. 2013, 18, 1–3. [Google Scholar]
- Marozas, V.; Kibiša, A.; Brazaitis, G.; Jõgiste, K.; Šimkevičius, K.; Bartkevičius, E. Distribution and habitat selection of free-ranging European bison (Bison bonasus L.) in a mosaic landscape—A Lithuanian case. Forests 2019, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Krisans, O.; Saleniece, R.; Rust, S.; Elferts, D.; Kapostins, R.; Jansons, A.; Matisons, R. Effect of bark-stripping on mechanical stability of Norway spruce. Forests 2020, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Snepsts, G.; Kitenberga, M.; Elferts, D.; Donis, J.; Jansons, A. Stem damage modifies the impact of wind on Norway spruces. Forests 2020, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Šēnhofa, S.; Jaunslaviete, I.; Šņepsts, G.; Jansons, J.; Liepa, L.; Jansons, Ā. Deadwood characteristics in mature and old-growth birch stands and their implications for carbon storage. Forests 2020, 11, 536. [Google Scholar] [CrossRef]
- Rungis, D.; Luguza, S.; Baders, E.; Škipars, V.; Jansons, A. Comparison of genetic diversity in naturally regenerated Norway spruce stands and seed orchard progeny trials. Forests 2019, 10, 926. [Google Scholar] [CrossRef] [Green Version]
- Potapov, A.; Toomik, S.; Yermokhin, M.; Edvardsson, J.; Lilleleht, A.; Kiviste, A.; Kaart, T.; Metslaid, S.; Järvet, A.; Hordo, M. Synchronous growth releases in peatland pine chronologies as an indicator for regional climate dynamics—A multi-site study including Estonia, Belarus and Sweden. Forests 2019, 10, 1097. [Google Scholar] [CrossRef] [Green Version]
- Rebane, S.; Jõgiste, K.; Kiviste, A.; Stanturf, J.A.; Metslaid, M. Patterns of carbon sequestration in a young forest ecosystem after clear-cutting. Forests 2020, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Luguza, S.; Snepsts, G.; Donis, J.; Desaine, I.; Baders, E.; Kitenberga, M.; Elferts, D.; Jansons, A. Advance regeneration of Norway spruce and Scots pine in hemiboreal forests in Latvia. Forests 2020, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- Samariks, V.; Krisans, O.; Donis, J.; Silamikele, I.; Katrevics, J.; Jansons, A. Cost-benefit analysis of measures to reduce windstorm impact in pure Norway spruce (Picea abies L. Karst.) stands: A case study in Latvia. Forests 2020, 11, 576. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jõgiste, K.; Frelich, L.E.; Vodde, F.; Kangur, A.; Metslaid, M.; Stanturf, J.A. Natural Disturbance Dynamics Analysis for Ecosystem-Based Management—FORDISMAN. Forests 2020, 11, 663. https://doi.org/10.3390/f11060663
Jõgiste K, Frelich LE, Vodde F, Kangur A, Metslaid M, Stanturf JA. Natural Disturbance Dynamics Analysis for Ecosystem-Based Management—FORDISMAN. Forests. 2020; 11(6):663. https://doi.org/10.3390/f11060663
Chicago/Turabian StyleJõgiste, Kalev, Lee E. Frelich, Floortje Vodde, Ahto Kangur, Marek Metslaid, and John A. Stanturf. 2020. "Natural Disturbance Dynamics Analysis for Ecosystem-Based Management—FORDISMAN" Forests 11, no. 6: 663. https://doi.org/10.3390/f11060663
APA StyleJõgiste, K., Frelich, L. E., Vodde, F., Kangur, A., Metslaid, M., & Stanturf, J. A. (2020). Natural Disturbance Dynamics Analysis for Ecosystem-Based Management—FORDISMAN. Forests, 11(6), 663. https://doi.org/10.3390/f11060663