Effect of Natural Drying Methods on Moisture Content and Mass Change of Scots Pine Roundwood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Preparation of Model Trees
2.2. Climatic Data
2.3. Drying Scenarios
- (1)
- Scenario C: logs (1.2 m length) were stored and air-dried in piles;
- (2)
- Scenario W: transpirational drying method for felled trees with branches not removed (whole trees), storage duration: 1 (W1), 2 (W2), or 3 months (W3);
- (3)
- Scenario L: air-drying method for felled trees with branches removed, stemwood length between 9.6 and 14.4 m, storage duration: 1 (L1), 2 (L2), or 3 months (L3).
2.4. Characteristics of the Logs
- V is the volume of the log (m3);
- G0 is the area of the large end of the log (m2);
- G1 is the area of the small end of the log (m2);
- l is the length of the log (m).
2.5. Sampling Procedure (Moisture Content—MC)
- (1)
- Scenario C: wood disks were collected along the trunk, from each segment, every 1.2 m;
- (2)
- Scenario W: wood disks were collected only from the bottom part of the tree trunk;
- (3)
- Scenario L: wood disks were collected from both the bottom and top of the trunk.
- mw is the mass of green wood (g);
- ms is the mass of dry wood (g);
- MC is the wood moisture content (%).
2.6. Statistical Analyses
3. Results
3.1. Climate
3.2. Mass
3.3. Moisture Content
3.4. Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Malladi, K.T.; Sowlati, T. Optimization of operational level transportation planning in forestry: A review. Int. J. For. Eng. 2017, 28, 198–210. [Google Scholar] [CrossRef]
- Mydlarz, K.; Wieruszewski, M. Problems of Sustainable Transport of Large-Sized Roundwood. Sustainability 2020, 12, 2038. [Google Scholar] [CrossRef] [Green Version]
- Stokes, B.J.; McDonald, T.P.; Kelley, T. Transpirational drying and costs for transporting woody biomass—A preliminary review. In Proceedings of the IEA/BA Task IX, Activity 6: Transport and Handling, Aberdeen University, Aberdeen, NB, Canada, 16–25 May 1994; pp. 76–91. [Google Scholar]
- Erber, G.; Huber, C.; Stampfer, K. To split or not to split: Feasibility of pre-storage splitting of large poplar (Populus spp. L.) fuelwood logs. Fuel 2018, 220, 817–825. [Google Scholar] [CrossRef]
- Erber, G.; Kanzian, C.; Stampfer, K. Modelling natural drying of European beech (Fagus sylvatica L.) logs for energy based on meteorological data. Scand. J. For. Res. 2016, 31, 294–301. [Google Scholar] [CrossRef]
- Stokes, B.J.; Watson, W.F.; Miller, D.E. Transpirational Drying of Energywood; American Society of Agricultural Engineers Paper: St. Joseph, CA, USA, 1987; p. 14. [Google Scholar]
- Erber, G.; Holzleitner, F.; Kastner, M.; Stampfer, K. Impact of Different Time Interval Bases on the Accuracy of Meteorological Data Based Drying Models for Oak (Quercus L.) Logs Stored in Piles for Energy Purposes. Croat. J. For. Eng. 2017, 38, 1–9. [Google Scholar]
- Erber, G.; Kanzian, C.; Stampfer, K. Predicting moisture content in a pine logwood pile for energy purposes. Silva. Fenn. 2012, 46. [Google Scholar] [CrossRef] [Green Version]
- Raitila, J.; Heiskanen, V.-P.; Routa, J.; Kolström, M.; Sikanen, L. Comparison of Moisture Prediction Models for Stacked Fuelwood. Bioenerg. Res. 2015, 8, 1896–1905. [Google Scholar] [CrossRef]
- Routa, J.; Kolström, M.; Ruotsalainen, J.; Sikanen, L. Precision measurement of forest harvesting residue moisture change and dry matter losses by constant weight monitoring. Int. J. For. Eng. 2015, 26, 71–83. [Google Scholar] [CrossRef]
- Krigstin, S.; Wetzel, S. A review of mechanisms responsible for changes to stored woody biomass fuels. Fuel 2016, 175, 75–86. [Google Scholar] [CrossRef]
- Hakkila, P. Utilization of Residual Forest Biomass; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-642-74074-9. [Google Scholar]
- Wang, Z.; Zhou, Z.; Wang, X.; Chen, Z. Relationships between transpiration, water loss, and air conditions during physiological drying. Dry. Technol. 2018, 36, 245–254. [Google Scholar] [CrossRef]
- Osonubi, O.; Davies, W.J. The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity. Oecologia 1980, 46, 1–6. [Google Scholar] [CrossRef]
- Tomczak, A.; Jelonek, T.; Leszczyński, N. Natural drying of wood in the cutting area. Sylwan 2017, 161, 898–908. [Google Scholar] [CrossRef]
- Röser, D.; Mola-Yudego, B.; Sikanen, L.; Prinz, R.; Gritten, D.; Emer, B.; Väätäinen, K.; Erkkilä, A. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass Bioenergy 2011, 35, 4238–4247. [Google Scholar] [CrossRef]
- Visser, R.; Berkett, H.; Spinelli, R. Determining the effect of storage conditions on the natural drying of radiata pine logs for energy use. N. Z. J. Sci. 2014, 44, 3. [Google Scholar] [CrossRef] [Green Version]
- Nurmi, J.; Lehtimäki, J. Debarking and drying of downy birch (Betula pubescens) and Scots pine (Pinus sylvestris) fuelwood in conjunction with multi-tree harvesting. Biomass Bioenergy 2011, 35, 3376–3382. [Google Scholar] [CrossRef]
- Nurmi, J.; Hillebrand, K. The characteristics of whole-tree fuel stocks from silvicultural cleanings and thinnings. Biomass Bioenergy 2007, 31, 381–392. [Google Scholar] [CrossRef]
- Defo, M.; Brunette, G. A log drying model and its application to the simulation of the impact of bark loss. For. Prod. J. 2006, 56, 8. [Google Scholar]
- Anisimov, P.; Onuchin, E.; Vishnevskaja, M. Modeling Pine and Birch Whole Tree Drying. Croat. J. For. Eng. 2017, 38, 11–17. [Google Scholar]
- McMinn, J.W. Transpirational drying of red oaks, sweetgum, and yellow-poplar in the Upper Piedmont of Georgia. For. Prod. J. 1986, 36, 25–27. [Google Scholar]
- Rogers, K.E. Preharvest drying of logging residues. For. Prod. J. 1981, 31, 32–36. [Google Scholar]
- Cutshall, J.B.; Greene, W.D.; Baker, S.A. Transpirational Drying Effects on Energy and Ash Content from Whole-Tree Southern Pine Plantation Chipping Operations. South. J. Appl. For. 2013, 37, 133–139. [Google Scholar] [CrossRef]
- Gislerud, O. Drying and storing of comminuted wood fuels. Biomass 1990, 22, 229–244. [Google Scholar] [CrossRef]
- Filbakk, T.; Høibø, O.A.; Dibdiakova, J.; Nurmi, J. Modelling moisture content and dry matter loss during storage of logging residues for energy. Scand. J. For. Res. 2011, 26, 267–277. [Google Scholar] [CrossRef]
- Wetzel, S.; Volpe, S.; Damianopoulos, J.; Krigstin, S. Can Biomass Quality Be Preserved through Tarping Comminuted Roadside Biomass Piles? Forests 2017, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Labbé, R.; Carey, P.; Trincado, G.; Thiers, O. Natural drying of forest biomass: Effect of stack height and cover in the province of Valdivia, Chile. Bosque (Valdivia) 2018, 39, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, A.; Grodziński, G.; Jakubowski, M.; Jelonek, T.; Grzywiński, W. Effects of Short-Term Storage Method on Moisture Loss and Weight Change in Beech Timber. Croat. J. For. Eng. 2018, 39, 35–43. [Google Scholar]
- Saralecos, J.; Keefe, R.; Tinkham, W.; Brooks, R.; Smith, A.; Johnson, L. Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco). Forests 2014, 5, 2289–2306. [Google Scholar] [CrossRef] [Green Version]
- Abbot, P.; Lowore, J.; Khofi, C.; Werren, M. Defining firewood quality: A comparison of quantitative and rapid appraisal techniques to evaluate firewood species from a southern African savanna. Biomass Bioenergy 1997, 12, 429–437. [Google Scholar] [CrossRef]
- Röser, D.; Erkkilä, A.; Mola-Yudego, B.; Sikanen, L.; Prinz, R.; Heikkinen, A.; Kaipainen, H.; Oravainen, H.; Hillebrand, K.; Emer, B.; et al. Natural Drying Methods to Promote Fuel Quality Enhancement of Small Energywood Stems; Working Papers; Finnish Forest Research Institute: Vantaa, Finland, 2010; p. 60.
- Brand, M.A.; Muñiz, G.I.B.D.; Brito, J.O.; Quirino, W.F. Influence of size and shape of forest biomass, stored in piles, on quality of wood fuel. Rev. Árvore 2014, 38, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Choi, J. Estimating Wood Weight Change on Air Drying Times for Three Coniferous Species of South Korea. J. For. Environ. Sci. 2016, 32, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, J. Dendrometry; PWRiL: Warsaw, Poland, 1973. [Google Scholar]
- EN. ISO 18134-2 Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part Two: Total Moisture—Simplified Method; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Acuna, M.; Anttila, P.; Sikanen, L.; Prinz, R.; Asikainen, A. Predicting and Controlling Moisture Content. Croat. J. For. Eng. 2012, 33, 225–238. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Paletto, G.; Preti, C. Determining the impact of some wood characteristics on the performance of a mobile chipper. Silva. Fenn. 2011, 45. [Google Scholar] [CrossRef] [Green Version]
- Routa, J.; Kolström, M.; Ruotsalainen, J.; Sikanen, L. Validation of Prediction Models for Estimating the Moisture Content of Small Diameter Stem Wood. Croat. J. For. Eng. 2015, 36, 283–291. [Google Scholar]
- Pecenka, R.; Lenz, H.; Hering, T. Options for Optimizing the Drying Process and Reducing Dry Matter Losses in Whole-Tree Storage of Poplar from Short-Rotation Coppices in Germany. Forests 2020, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Rafael, S.; Tarelho, L.; Monteiro, A.; Monteiro, T.; Gonçalves, C.; Freitas, S.; Lopes, M. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal. Environ. Eng. Sci. 2015, 32, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Tymendorf, Ł.; Trzciński, G. Multi-Factorial Load Analysis of Pine Sawlogs in Transport to Sawmill. Forests 2020, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Kanzian, C.; Kühmaier, M.; Erber, G. Effects of Moisture Content on Supply Costs and CO2 Emissions for an Optimized Energy Wood Supply Network. Croat. J. For. Eng. 2016, 37, 51–60. [Google Scholar]
Scenario | n | V [m3] ± SD | Mass [kg] ± SD (Storage Time in Pile-Months) | |||
---|---|---|---|---|---|---|
C | 29 | 0.011 ± 0.005 | 11.23 ± 4.811,2,3 (0) | 10.09 ± 4.920,2,3 (1) | 8.95 ± 5.020,1,3 (2) | 7.99 ± 4.411,2,3 (3) |
W1 | 31 | 0.011 ± 0.005 | 10.24 ± 3.922,3 (0) | 8.92 ± 3.771,3 (1) | 7.98 ± 3.671,2 (2) | |
L1 | 32 | 0.011 ± 0.005 | 10.76 ± 4.652,3 (0) | 9.39 ± 4.541,3 (1) | 8.91 ± 4.451,2 (2) | |
W2 | 26 | 0.010 ± 0.004 | 9.19 ± 3.443 (0) | 8.25 ± 3.312 (1) | ||
L2 | 29 | 0.011 ± 0.005 | 10.23 ± 4.723 (0) | 9.28 ± 4.622 (1) | ||
W3 | 30 | 0.012 ± 0.006 | 10.17 ± 4.07 (0) | |||
L3 | 29 | 0.011 ± 0.005 | 9.20 ± 4.60 (0) |
Scenario | Initial Moisture Content (iMC) | Storage Time-Months Mean [%] ± SD | ||
---|---|---|---|---|
1 | 2 | 3 | ||
C | 49.6 ± 4.93 | - | - | 26.7 ± 4.90 |
W1 | 45.2 ± 3.1 | 41.9 ± 9.4 L13 | - | 29.9 ± 10.21 |
L1 | 50.3 ± 2.9 | 47.0 ± 7.2 W13 | - | 26.5 ± 11.21 |
W2 | 49.3 ± 2.1 | - | 38.8 ± 12.83 | 29.9 ± 8.82 |
L2 | 51.2 ± 3.3 | - | 34.9 ± 12.93 | 26.8 ± 6.82 |
W3 | 45.1 ± 7.1 | - | - | 35.1 ± 14.0 |
L3 | 49.6 ± 6.9 | - | - | 33.8 ± 11.0 |
Scenario | Storage Time-Months Mean [kg/m3] ± SD | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
C | 1028 ± 73.51,2,3 | 903 ± 50.5 W1 0,2,3 | 776 ± 95.4 W2, L2 0,1,3 | 695 ± 86.4 W2, L2, W3, L3 0,1,2 |
W1 | 963 ± 66.4 C 2,3 | 827 ± 55.21,3 | 730 ± 80.31,2 | |
L1 | 957 ± 85.92,3 | 816 ± 97.71,3 | 728 ± 103.11,2 | |
W2 | 895 ± 75.1 C3 | 787 ± 80.9 C2 | ||
L2 | 881 ± 78.9 C3 | 789 ± 105.0 C2 | ||
W3 | 835 ± 96.6 C | |||
L3 | 806 ± 69.4 C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczak, K.; Tomczak, A.; Jelonek, T. Effect of Natural Drying Methods on Moisture Content and Mass Change of Scots Pine Roundwood. Forests 2020, 11, 668. https://doi.org/10.3390/f11060668
Tomczak K, Tomczak A, Jelonek T. Effect of Natural Drying Methods on Moisture Content and Mass Change of Scots Pine Roundwood. Forests. 2020; 11(6):668. https://doi.org/10.3390/f11060668
Chicago/Turabian StyleTomczak, Karol, Arkadiusz Tomczak, and Tomasz Jelonek. 2020. "Effect of Natural Drying Methods on Moisture Content and Mass Change of Scots Pine Roundwood" Forests 11, no. 6: 668. https://doi.org/10.3390/f11060668
APA StyleTomczak, K., Tomczak, A., & Jelonek, T. (2020). Effect of Natural Drying Methods on Moisture Content and Mass Change of Scots Pine Roundwood. Forests, 11(6), 668. https://doi.org/10.3390/f11060668