Methods for Monitoring Large Terrestrial Animals in the Wild
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Active Observation Methods
3.2. Passive Observation Methods
3.3. Remote Monitoring
3.4. Methods of Aerial Survey
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haalck, L.; Mangan, M.; Webb, B.; Risse, B. Towards image-based animal tracking in natural environments using a freely moving camera. J. Neurosci. Methods 2020, 330, 108–455. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.J.; Sharp, E.J. Thermal Imaging Techniques to Survey and Monitor. Animals in the Wild; Elsevier Inc.: Amsterdam, The Netherlands; Academic Press: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Buxton, R.T.; Lendrum, P.E.; Crooks, K.R.; Wittemyer, G. Pairing camera traps and acoustic recorders to monitor the ecological impact of human disturbance. Glob. Ecol. Conserv. 2018, 16, e00493. [Google Scholar] [CrossRef]
- Hammond, T.T.; Springthorpe, D.; Walsh, R.E.; Berg-Kirkpatrick, T. Using accelerometers to remotely and automatically characterize behavior in small animals. J. Exp. Biol. 2016, 219, 1618–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrick, M.J.; Koprowski, J.L. Should we consider individual behavior differences in applied wildlife conservation studies? Biol. Conserv. 2017, 209, 34–44. [Google Scholar] [CrossRef]
- Said, M.Y.; Ogutu, J.O.; Kifugo, S.C.; Maqui, O.; Reid, R.S.; De Leeuwa, J. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Conserv. 2016, 34, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Cretois, B.; Linnell, J.D.C.; Grainger, M.; Nilsen, E.B.; Røa, J.K. Hunters as citizen scientists: Contributions to biodiversity monitoring in Europe. Glob. Ecol. Conserv. 2020, 23, e01077. [Google Scholar] [CrossRef]
- Cima, V.; BenoîtFontaine, B.; IsabelleWitté, I.; Dupont, P.; Jeanmougin, M.; Touroult, J. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 2020, 110, 105885. [Google Scholar] [CrossRef]
- Neate-Clegg, M.H.C.; Hornsa, J.J.; Adler, F.R.; Aytekin, M.Ç.K.; Şekercioğlu, Ç.H. Monitoring the world’s bird populations with community science data. Biol. Conserv. 2020, 248, 108653. [Google Scholar] [CrossRef]
- Bobek, B.; Merta, D.; Furtek, J. Winter food and cover refuges of large ungulates in lowland forests of south-western Poland. For. Ecol. Manag. 2016, 359, 247–255. [Google Scholar] [CrossRef]
- Valente, A.M.; Binantel, H.; Villanua, D.; Acevedo, P. Evaluation of Methods to Monitor Wild Mammals on Mediterranean Farmland. Mamm. Biol. 2018, 91, 23–29. [Google Scholar] [CrossRef]
- Kubo, T.; Mieno, T.; Kuriyama, K. Wildlife viewing: The impact of money-back guarantees. Tour. Manag. 2018, 70, 49–55. [Google Scholar] [CrossRef]
- Störmer, N.; Weaver, L.C.; Stuart-Hill, G.; Diggle, R.W.; Naidoo, R. Investigating the effects of community-based conservation on attitudes towards wildlife in Namibia. Biol. Conserv. 2019, 233, 193–200. [Google Scholar] [CrossRef]
- Willcox, D.; Nash, H.C.; Trageser, S.; Kim, H.J.; Hywood, L.; Connelly, E.; Ichu Ichu, G.; Kambale, N.; Mousset, M.; Ingram, L.S.; et al. Evaluating methods for detecting and monitoring pangolin populations (Pholidota: Manidae). Glob. Ecol. Conserv. 2019, 17, e00539. [Google Scholar] [CrossRef]
- Crum, N.J.; Fuller, A.K.; Sutherland, C.S.; Cooch, E.G.; Hurst, J. Estimating occupancy probability of moose using hunter survey data. Wildl. Manag. 2017, 3, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Khwaja, H.; Buchan, C.; Wearn, O.R.; Bahaa-el-din, L.; Bantlin, D.; Bernard, H.; Bitariho, R.; Bohm, T.; Borah, J.; Brodie, J.; et al. Pangolins in global camera trap data: Implications for ecological monitoring. Glob. Ecol. Conserv. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Cromsigt, J.P.G.M.; Van Rensburg, S.J.; Etienne, R.S.; Olff, H. Monitoring large herbivore diversity at different scales: Comparing direct and indirect methods. Biodivers. Conserv. 2009, 18, 1219–1231. [Google Scholar] [CrossRef] [Green Version]
- Eggert, L.S.; Eggert, J.A.; Woodruff, D.S. Estimating population sizes for elusive animals: The forest elephants of Kakum National Park, Ghana. Mol. Ecol. 2003, 12, 1389–1402. [Google Scholar] [CrossRef]
- Lioy, S.; Braghiroli, S.; Dematteis, A.; Meneguz, P.G.; Tizzani, P. Faecal pellet count method: Some evaluations of dropping detectability for Capreolus capreolus Linnaeus, 1758 (Mammalia: Cervidae), Cervus elaphus Linnaeus, 1758 (Mammalia: Cervidae) and Lepus europaeus Pallas, 1778 (Mammalia: Leporidae). Ital. J. Zool. 2015, 82, 231–237. [Google Scholar] [CrossRef]
- Plhal, R.; Kamler, J.; Homolka, M.; Drimaj, J. An assessment of the applicability of dung count to estimate the Wild boar population density in a forest environment. J. For. Sci. 2014, 60, 174–180. [Google Scholar] [CrossRef] [Green Version]
- De Assis Morais, T.; Da Rosa, C.A.; Viana-Junior, A.B.; Santos, A.P.; Passamani, M.; De Azevedo, C.S. The influence of population-control methods and seasonality on the activity pattern of wild boars (Sus scrofa) in high-altitude forests. Mamm. Biol. 2020, 100, 101–106. [Google Scholar] [CrossRef]
- Field, K.A.; Paquet, P.C.; Artelle, K.; Proulx, G.; Brook, R.K.; Darimont, C.T. Correction: Publication reform to safeguard wildlife from researcher harm. PLoS Biol. 2019, 18, e3000752. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Mellish, J.A.E.; Weary, D.M. Behavioural responses of juvenile Steller sea lions to hot-iron branding. Appl. Anim. Behav. Sci. 2010, 122, 58–62. [Google Scholar] [CrossRef]
- Ferreira, V.H.B.; Silva, C.P.C.D.; Fonseca, E.D.P.; Chagas, A.C.C.S.D.; Pinheiro, L.G.M.; Almeida, R.N.; De Sousa, M.B.C.; Silva, H.P.A.D.; Galvão-Coelho, N.L.; Ferreira, R.G. Hormonal correlates of behavioural profiles and coping strategies in captive capuchin monkeys (Sapajus libidinosus). Appl. Anim. Behav. Sci. 2018, 207, 108–115. [Google Scholar] [CrossRef]
- Zemanova, M.A. Towards more compassionate wildlife research through the 3Rs principles: Moving from invasive to non-invasive methods. Wildl. Biol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Cordier, T.; Alonso-Sáez, L.; Apothéloz-Perret-Gentil, L.; Aylagas, E.; Bohan, D.A.; Bouchez, A.; Chariton, A.; Creer, S.; Frühe, L.; Keck, F.; et al. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol. Ecol. 2020. [Google Scholar] [CrossRef]
- Shury, T.K.; Pybus, M.J.; Nation, N.; Cool, N.L.; Rettie, W.J. Fascioloides magna in Moose (Alces alces) From Elk Island National Park, Alberta. Vet. Pathol. 2019, 56, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Sieber, A.; Uvarov, N.V.; Baskin, L.M.; Radeloff, V.C.; Bateman, B.L.; Pankov, A.B.; Kuemmerle, T. Post-Soviet land-use change effects on large mammals’ habitat in European Russia. Biol. Conserv. 2015, 191, 567–576. [Google Scholar] [CrossRef]
- Lee, J.-B.; Kim, Y.-K.; Bae, Y.-S. A study of methods for monitoring wild mammals in Unmunsan, Korea. J. Asia-Pac. Biodivers. 2019, 12, 541–544. [Google Scholar] [CrossRef]
- Davis, A.J.; Leland, B.; Bodenchuk, M.; Vercauteren, K.C.; Pepin, K.M. Estimating population density for disease risk assessment: The importance of understanding the area of influence of traps using wild pigs as an example. Prev. Vet. Med. 2017, 14, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, T.; Aramilev, V.V.; Nagata, J.; McCullough, D.R. Winter food habits of sympatric carnivores, Amur tigers and Far Eastern leopards, in the Russian Far East. Mamm. Biol. 2016, 81, 214–218. [Google Scholar] [CrossRef]
- Zaumyslova, O.Y.; Bondarchuk, S.N. The Use of Camera Traps for Monitoring the Population of Long-Tailed Gorals. Achiev. Life Sci. 2015, 9, 15–21. [Google Scholar] [CrossRef]
- Markov, N.; Pankova, N.; Morelle, K. Where winter rules: Modeling wild boar distribution in its north-eastern range. Sci. Total Environ. 2019, 68, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Badescu, A.-M.; Cotofana, L. A wireless sensor network to monitor and protect tigers in the wild. Ecol. Indic. 2015, 57, 447–451. [Google Scholar] [CrossRef]
- Zhang, L.; Ameca, E.I.; Jiang, Z. Viability analysis of the wild sika deer (Cervus nippon) population in China: Threats of habitat loss and effectiveness of management interventions. J. Nat. Conserv. 2018, 43, 117–125. [Google Scholar] [CrossRef]
- Papin, M.; Aznar, M.; Germain, E.; Guérold, F.; Pichenot, J. Using acoustic indices to estimate wolf pack size. Ecol. Indic. 2019, 103, 202–211. [Google Scholar] [CrossRef]
- Kalan, A.K.; Mundry, R.; Wagner, O.J.J.; Heinicke, S.; Boesch, C.; Kühl, H.S. Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring. Ecol. Indic. 2015, 54, 217–226. [Google Scholar] [CrossRef]
- Sugai, L.S.M.; Llusia, D. Bioacoustic time capsules: Using acoustic monitoring to document biodiversity. Ecol. Indic. 2019, 99, 149–152. [Google Scholar] [CrossRef]
- Enari, H.; Enari, H.S.; Okuda, K.; Maruyama, T.; Okuda, K. An evaluation of the efficiency of passive acoustic monitoring in detecting deer and primates in comparison with camera traps. Ecol. Indic. 2018, 98, 753–762. [Google Scholar] [CrossRef]
- Hertel, A.G.; Leclerc, M.; Warren, D.; Pelletier, F.; Zedrosser, A.; Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 2019, 147, 91–104. [Google Scholar] [CrossRef]
- Nicholson, K.L.; Warren, M.J.; Rostan, C.R.; Mansson, J.; Paragi, T.F.; Sand, H. Using fine-scale movement patterns to infer ungulate parturition. Ecol. Indic. 2019, 101, 22–30. [Google Scholar] [CrossRef]
- Boughton, R.K.; Allen, B.L.; Tillman, E.A.; Wisely, S.M.; Engeman, R.M. Road hogs: Implications from GPS collared feral swine in pastureland habitat on the general utility of road-based observation techniques for assessing abundance. Ecol. Indic. 2019, 99, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Nicheporchuk, V.; Gryazin, I.; Favorskaya, M.N. Framework for Intelligent Wildlife Monitoring. In International Conference on Intelligent Decision Technologies IDT 2020: Intelligent Decision Technologies; Springer: Singapore, 2020; Volume 193, pp. 167–177. [Google Scholar] [CrossRef]
- Gilbert, N.A.; Clare, J.D.J.; Stenglein, J.L.; Zuckerberg, B. Abundance estimation of unmarked animals based on camera-trap data. Conserv. Biol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Suraci, J.P.; Hunter, J.S.; Gaynor, K.M.; Keller, C.B.; Palmer, M.S.; Atkins, J.L.; Castañeda, I.; Cherry, M.J.; Garvey, P.M.; et al. Zooming in on mechanistic predator–prey ecology: Integrating camera traps with experimental methods to reveal the drivers of ecological interactions. J. Anim. Ecol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Wright, W.; Hogan, F.E.; Davies, H. Detectability and activity patterns of sambar deer (Rusa unicolor) in Baw Baw National Park, Victoria. Aust. Mammal. 2020. [Google Scholar] [CrossRef]
- Atwood, M.P.; Kie, J.G.; Millspaugh, J.J.; Matocq, M.D.; Bowyer, R.T. Condition of mule deer during winter: Stress and spatial overlap with North American elk. Mammal Res. 2020, 65, 349–358. [Google Scholar] [CrossRef]
- Milleret, C.; Ordiz, A.; Chapron, G.; Andreassen, H.P.; Kindberg, J.; Månsson, J.; Tallian, A.; Wabakken, P.; Wikenros, C.; Zimmermann, B.; et al. Habitat segregation between brown bears and gray wolves in a human-dominated landscape. Ecol. Evol. 2018, 8, 11450–11466. [Google Scholar] [CrossRef]
- Fang, Y.; Du, S.; Abdoola, R.; Djouani, K.; Richards, C. Motion Based Animal Detection in Aerial Videos. Procedia Comput. Sci. 2016, 92, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Prugh, L.R.; Sivy, K.J.; Mahoney, P.J.; Ganz, T.R.; Ditmer, M.A.; de Kerk, M.; Gilbert, S.L.; Montgomery, R.A. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 2019, 232, 194–207. [Google Scholar] [CrossRef]
- Ezat, M.A.; Fritsch, C.J.; Downs, C.T. Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa. Biol. Conserv. 2018, 223, 76–81. [Google Scholar] [CrossRef]
- Lethbridge, M.; Stead, M.; Wells, C. Estimating kangaroo density by aerial survey: A comparison of thermal cameras with human observers. Wildl. Res. 2019, 46, 639–648. [Google Scholar] [CrossRef]
- Aguzzi, J.; Iveša, N.; Gelli, M.C.; Costa, C.; Gavrilovic, A.; Cukrov, N.; Cukrov, M.; Cukrov, N.; Omanovic, D.; Štifanić, M.; et al. Ecological video monitoring of Marine Protected Areas by underwater cabled surveillance cameras. Mar. Policy 2020, 119, 104052. [Google Scholar] [CrossRef]
- Verfuss, U.K.; Aniceto, A.S.; Harris, D.V.; Gillespie, D.; Fielding, S.; Jiménez, G.; Johnston, P.; Sinclair, R.R.; Sivertsen, A.; Solbø, S.A.; et al. A review of unmanned vehicles for the detection and monitoring of marine fauna. Mar. Pollut. Bull. 2019, 140, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Broughton, S.; Harrison, J. Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficialinsects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop Prot. 2012, 42, 156–163. [Google Scholar] [CrossRef]
- Schoeny, A.; Gognalons, P. Data on winged insect dynamics in melon crops in southeastern France. Data Brief 2020, 29, 105132. [Google Scholar] [CrossRef]
- Van Swaay, C.; Regan, E.; Ling, M.; Bozhinovska, E.; Fernandez, M.; Marini-Filho, O.J.; Huertas, B.; Phon, C.K.; Korösi, A.; Meerman, J.; et al. Guidelines for Standardised Global Butterfly Monitoring. GEO BON Technical Series 1; Group on Earth Observations Biodiversity Observation Network: Leipzig, Germany, 2015. [Google Scholar]
- Zhang, C.; Harpke, A.; Kühn, E.; Páramo, F.; Setteleb, J.; Stefanescu, C.; Wiemers, M.; Zhang, Y.; Schweiger, O. Applicability of butterfly transect counts to estimate species richness in different parts of the palaearctic region. Ecol. Indic. 2018, 95, 735–740. [Google Scholar] [CrossRef]
- Hoffmann, A.; Decher, J.; Rovero, F.; Schaer, J.; Voigt, C.; Wibbelt, G. Field methods and techniques for monitoring mammals. In Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories and Monitoring; Degreef, J., Häuser, C., Mohje, J.C., Samyn, Y., Spiegel, V.D., Eds.; Abc Taxa: Brussels, Belgium, 2010; pp. 482–529. [Google Scholar]
- Leoni, J.; Tanelli, M.; Strada, S.C.; Berger-Wolf, T. Ethogram-based automatic wild animal monitoring through inertial sensors and GPS data. Ecol. Inform. 2020, 59, 101112. [Google Scholar] [CrossRef]
- Skalon, N.V.; Skalon, T.A. Zveri Sibiri [Animals of Siberia]; SPPE «Kuzbass»: Kemerovo, Russia, 2008. (In Russian) [Google Scholar]
- Skalon, N.; Stepanov, P.; Prosekov, A. Features of seasonal migrations and wintering of epy elks (Alces alces) in the Kuznetsk-Salair mountain region. In Proceedings of the IOP Conference Series: Earth and Environmental Science: 012020International Conference on Sustainable Development of Cross-Border Regions (SDCBR 2019), Barnaul, Russia, 19–20 April 2019; Volume 395, p. 156286. [Google Scholar] [CrossRef] [Green Version]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Introduction to Distance Sampling: Estimating Abundance of Biological Populations; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [Green Version]
- Popescu, V.D.; Artelle, K.A.; Pop, M.I.; Manolache, S.; Rozylowicz, L. Assessing biological realism of wildlife population estimates in data-poor systems. J. Appl. Ecol. 2016, 53, 1248–1259. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. REVIEW: Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
- Chandler, R.B.; Andrew Royle, J. Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat. 2013, 7, 936–954. [Google Scholar] [CrossRef]
- Boyce, M.S.; Corrigan, R. Moose survey app for population monitoring. Wildl. Soc. Bull. 2017, 41, 125–128. [Google Scholar] [CrossRef]
- Pacyna, A.D.; Frankowski, M.; Kozioł, K.; Węgrzyn, M.H.; Wietrzyk-Pełka, P.; Lehmann-Konera, S.; Polkowska, Ż. Evaluation of the use of reindeer droppings for monitoring essential and non-essential elements in the polar terrestrial environment. Sci. Total Environ. 2019, 658, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, A.; Rodgers, A.R.; Whaley, K. Demographic Status of Moose populations in the boreal plain Ecozone of Canada. Alces A J. Devoted Biol. Manag. Moose 2020, 55, 43–60, ISSN: 2293-6629. [Google Scholar]
- Obermoller, T.R.; Delgiudice, G.D.; Severud, W.J. Maternal Behavior Indicates Survival and Cause-Specific Mortality of Moose Calves. J. Wildl. Manag. 2019, 83, 790–800. [Google Scholar] [CrossRef]
- Rickbeil, G.J.M.; Merkle, J.A.; Anderson, G.; Atwood, M.P.; Beckmann, J.P.; Cole, E.K.; Courtemanch, A.B.; Dewey, S.; Gustine, D.D.; Kauffman, M.J.; et al. Plasticity in elk migration timing is a response to changing environmental conditions. Glob. Chang. Biol. 2019, 25, 2368–2381. [Google Scholar] [CrossRef]
- Kellie, K.; Colson, K.; Reynolds, J. Challenges to Monitoring Moose in Alaska. Alsk. Dep. Fish Game. Wildl. Manag. Rep. 2019. [Google Scholar] [CrossRef]
- Alves, J.; Alves da Silva, A.; Soares, A.M.V.M.; Fonseca, C. Pellet group count methods to estimate red deer densities: Precision, potential accuracy and efficiency. Mamm. Biol. 2013, 78, 134–141. [Google Scholar] [CrossRef]
- Forsyth, D.M.; Barker, R.J.; Morriss, G.; Scroggie, M.P. Modeling the Relationship between Fecal Pellet Indices and Deer Density. J. Wildl. Manag. 2007, 71, 964–970. [Google Scholar] [CrossRef]
- Månsson, J.; Andrén, H.; Sand, H. Can pellet counts be used to accurately describe winter habitat selection by moose Alces alces? Eur. J. Wildl. Res. 2011, 57, 1017–1023. [Google Scholar] [CrossRef]
- Jung, T.S.; Kukka, P.M. Influence of habitat type on the decay and disappearance of elk Cervus canadensis pellets in boreal forest of northwestern Canada. Wildl. Biol. 2016, 22, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Blåhed, I.M.; Ericsson, G.; Spong, G. Noninvasive population assessment of moose (Alces alces) by SNP genotyping of fecal pellets. Eur. J. Wildl. Res. 2019, 65, 96. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, S.E.; Spitzer, R.; Allen, A.M.; Hofmeester, T.R.; Ericsson, G.; Widemo, F.; Singh, N.J.; Cromsigt, J.P.G.M. Pictures or pellets? Comparing camera trapping and dung counts as methods for estimating population densities of ungulates. Remote Sens. Ecol. Conserv. 2018, 4, 173–183. [Google Scholar] [CrossRef]
- Busse, M.; Schwerdtner, W.; Siebert, R.; Doernberg, A.; Kuntosch, A.; König, B.; Bokelman, W. Analysis of animal monitoring technologies in Germany from an innovation system perspective. Agric. Syst. 2015, 138, 55–65. [Google Scholar] [CrossRef]
- Found, R.; Clair, C.C.S. Behavioural syndromes predict loss of migration in wild elk. Anim. Behav. 2016, 115, 35–46. [Google Scholar] [CrossRef]
- Smith, T.N.; Rota, C.T.; Keller, B.J.; Chitwood, M.C.; Bonnot, T.W.; Hansen, L.P.; Millspaugh, J.J. Resource selection of a recently translocated elk population in Missouri. J. Wildl. Manag. 2019, 83, 365–378. [Google Scholar] [CrossRef]
- Phillips, E.C.; Lehman, C.P.; Klaver, R.W.; Jarding, A.R.; Rupp, S.P.; Jenks, J.A.; Jacques, C.N. Evaluation of an Elk Detection Probability Model in the Black Hills, South Dakota. West. North Am. Nat. 2020, 79, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Bergman, E.J.; Hayes, F.P.; Lukacs, P.M.; Bishop, C.J. Moose calf detection probabilities: Quantification and evaluation of a ground-based survey technique. Wildl. Biol. 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Bristow, K.D.; Clement, M.J.; Crabb, M.L.; Harding, L.E.; Rubin, E.S. Comparison of aerial survey methods for elk in Arizona. Wildl. Soc. Bull. 2019, 43, 77–92. [Google Scholar] [CrossRef]
- Andreozzi, H.A.; Pekins, P.J.; Kantar, L.E. Using Aerial Survey Observations to Identify Winter Habitat Use of Moose in Northern Maine. Alces A J. Devoted Biol. Manag. Moose 2016, 52, 41–53, ISSN: 0835-5851. [Google Scholar]
- Chrétien, L.P.; Théau, J.; Ménard, P. Visible and thermal infrared remote sensing for the detection of white-tailed deer using an unmanned aerial system. Wildl. Soc. Bull. 2016, 40, 181–191. [Google Scholar] [CrossRef]
- Rey, N.; Volpi, M.; Joost, S.; Tuia, D. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 2017, 200, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Kellenberger, B.; Marcos, D.; Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 2018, 216, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Rivas, A.; Chamoso, P.; González-Briones, A.; Corchado, J.M. Detection of cattle using drones and convolutional neural networks. Sensors 2018, 18, 2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A study on the detection of cattle in UAV images using deep learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, C.; Koski, W.; Pace, P.; McLuckie, B.; Bird, D.M. Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador. J. Unmanned Veh. Syst. 2016, 4, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting using Mask R-CNN in quadcopter vision system. Comput. Electron. Agric. 2020, 171, 105–300. [Google Scholar] [CrossRef]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle detection and counting in UAV images based on convolutional neural networks. Int. J. Remote Sens. 2020, 41, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests-preliminary results. Int. J. Remote Sens. 2018, 39, 5504–5521. [Google Scholar] [CrossRef]
- Dziki-Michalska, K.; Tajchman, K.; Budzyńska, M. Increase in the moose (Alces alces L. 1758) population size in Poland: Causes and consequences. Ann. Wars. Univ. Life Sci. -Sggw. Anim. Sci. 2019, 58, 203–214. [Google Scholar] [CrossRef]
- Lavsund, S.; Nygrén, T.; Solberg, E.J. Status of Moose Populations and Challenges to Moose Management in Fennoscandia. Alces A J. Devoted Biol. Manag. Moose 2003, 39, 109–130. [Google Scholar]
- Myslenkov, A.I.; Miquelle, D.G. Comparison of Methods for Counting Hoofed Animal Density in Sikhote-Alin. Achiev. Life Sci. 2015, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Paragi, T.F.; Kellie, K.A.; Peirce, J.M.; Warren, M.J. Movements and sightability of moose in Game Management Unit 21E. In Final Wildlife Research Report 2017ADF&G/DWC/WRR-2017-2; Alaska Department of Fish and Game: Juneau, AK, USA, 2017. [Google Scholar]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Cezar, E.; Silva, G.F.C. Reflectance calibration of UAV-based visible and near-infrared digital images acquired under variant altitude and illumination conditions. Remote Sens. Appl. Soc. Environ. 2020, 18, 100312. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Sahu, N.; Guizani, M. Applications of blockchain in unmanned aerial vehicles: A review. Veh. Commun. 2020, 23, 100249. [Google Scholar] [CrossRef]
- Gentle, M.; Finch, N.; Speed, J.; Pople, A. A comparison of unmanned aerial vehicles (drones) and manned helicopters for monitoring macropod populations. Wildl. Res. 2018, 45, 586–594. [Google Scholar] [CrossRef]
- Harris, C.M.; Herat, H.; Hertel, F. Environmental guidelines for operation of Remotely Piloted Aircraft Systems (RPAS): Experience from Antarctica. Biol. Conserv. 2019, 236, 521–531. [Google Scholar] [CrossRef]
Method | Animals | Sources |
---|---|---|
Survey and questionnaire | Large and medium-sized animals | [12,13,14,15] |
Counting by traces of vital activity (counting indirect signs-the number of burrows, claw marks, the number of feces, etc.) | Large and medium-sized mammals | [16,17,18,19,20,21] |
Sampling and marking | All animal species | [22,23,24,25,26,27] |
Winter route tracking | Large, medium, and small animals, birds | [28,29] |
The use of traps, pens, and nets | Large and medium-sized mammals | [11,30,31,32,33] |
Remote tracking using specialized equipment (camera traps, sensor nets, acoustic sensors, and GPS sensors) | All animal, bird, and insect species | [16,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] |
Aerial survey (counting, photo, and video shooting from aerial devices and systems) | Large animals | [1,49,50,51,52] |
Database | Search Query | Number of Articles | Matching Search Results* |
---|---|---|---|
Scopus | Moose monitoring methods [title/abstract/keywords] | 19 | 8 |
Elk monitoring methods [title/abstract/keywords] | 20 | 2 | |
Animal monitoring methods [title/abstract/keywords] | 1976 | 827 | |
WoS | Moose monitoring methods | 17 | 8 |
Elk monitoring methods | 19 | 5 | |
Animal monitoring methods | 499 | 322 | |
Google Scholar | Moose monitoring methods | 11,800 | 468 |
Elk monitoring methods | 16,300 | 231 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosekov, A.; Kuznetsov, A.; Rada, A.; Ivanova, S. Methods for Monitoring Large Terrestrial Animals in the Wild. Forests 2020, 11, 808. https://doi.org/10.3390/f11080808
Prosekov A, Kuznetsov A, Rada A, Ivanova S. Methods for Monitoring Large Terrestrial Animals in the Wild. Forests. 2020; 11(8):808. https://doi.org/10.3390/f11080808
Chicago/Turabian StyleProsekov, Alexander, Alexander Kuznetsov, Artem Rada, and Svetlana Ivanova. 2020. "Methods for Monitoring Large Terrestrial Animals in the Wild" Forests 11, no. 8: 808. https://doi.org/10.3390/f11080808
APA StyleProsekov, A., Kuznetsov, A., Rada, A., & Ivanova, S. (2020). Methods for Monitoring Large Terrestrial Animals in the Wild. Forests, 11(8), 808. https://doi.org/10.3390/f11080808