Phenological Differentiation in Sugar Maple Populations and Responses of Bud Break to an Experimental Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of the Provenances and Seedling Production
2.2. Experimental Design and Bud Break Assessment
2.3. Statistical Analyses
3. Results
3.1. Temperature Variation across Sites
3.2. Timings of Bud Break across Sites
3.3. Effects of Provenance and Thermal Treatment
4. Discussion
4.1. Timings of Bud Break Differ among Provenances
4.2. Converging Responses of Populations to Temperature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, Y.H.; Piao, S.; de Op Beeck, M.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I.A. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [Google Scholar] [CrossRef]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007, 21, GB3018. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Ren, P.; Neron, V.; Rossi, S.; Liang, E.; Bouchard, M.; Deslauriers, A. Warming counteracts defoliation-induced mismatch by increasing herbivore-plant phenological synchrony. Glob. Chang. Biol. 2020. [Google Scholar] [CrossRef]
- Chuine, I.; Beaubien, E.G. Phenology is a major determinant of tree species range. Ecol. Lett. 2001, 4, 500–510. [Google Scholar] [CrossRef] [Green Version]
- Cleland, E.E.; Allen, J.M.; Crimmins, T.M.; Dunne, J.A.; Pau, S.; Travers, S.E.; Zavaleta, E.S.; Wolkovich, E.M. Phenological tracking enables positive species responses to climate change. Ecology 2012, 93, 1765–1771. [Google Scholar] [CrossRef]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [Green Version]
- Chuine, I.; Morin, X.; Bugmann, H. Warming, photoperiods, and tree phenology. Science 2010, 329, 277–278. [Google Scholar] [CrossRef]
- Laube, J.; Sparks, T.H.; Estrella, N.; Hofler, J.; Ankerst, D.P.; Menzel, A. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Chang. Biol. 2014, 20, 170–182. [Google Scholar] [CrossRef]
- Fu, Y.H.; Campioli, M.; Deckmyn, G.; Janssens, I.A. Sensitivity of leaf unfolding to experimental warming in three temperate tree species. Agric. For. Meteorol. 2013, 181, 125–132. [Google Scholar] [CrossRef]
- Liang, L. Beyond the bioclimatic law. Prog. Phys. Geog. 2016, 40, 811–834. [Google Scholar] [CrossRef]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Penuelas, J.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, A.D. The bioclimatic law. J. Wash. Acad. Sci. 1920, 10, 34–40. [Google Scholar]
- Zhang, X.; Tan, B.; Yu, Y. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int. J. Biometeorol. 2014, 58, 547–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Huang, J.G.; Ma, Q.; Hanninen, H.; Rossi, S.; Piao, S.; Bergeron, Y. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Chang. Biol. 2018, 24, 3969–3975. [Google Scholar] [CrossRef]
- Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. USA 2018, 115, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Piao, S.; Fu, Y.H.; Gao, M.; Peñuelas, J.; Janssens, I.A. Climatic warming increases spatial synchrony in spring vegetation phenology across the Northern Hemisphere. Geophys. Res. Lett. 2019, 46, 1641–1650. [Google Scholar] [CrossRef] [Green Version]
- Vitasse, Y.; Delzon, S.; Dufrêne, E.; Pontailler, J.-Y.; Louvet, J.-M.; Kremer, A.; Michalet, R. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agric. For. Meteorol. 2009, 149, 735–744. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.G.; Ma, Q.; Hanninen, H.; Tremblay, F.; Bergeron, Y. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Chang. Biol. 2019, 25, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Morin, X.; Lechowicz, M.J.; Augspurger, C.; O’Keefe, J.; Viner, D.; Chuine, I. Leaf phenology in 22 North American tree species during the 21st century. Glob. Chang. Biol. 2009, 15, 961–975. [Google Scholar] [CrossRef]
- Hänninen, H. Modelling bud dormancy release in trees from cool and temperate regions. Acta For. Fenn. 1990, 213, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 2000, 207, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S. Local adaptations and climate change: Converging sensitivity of bud break in black spruce provenances. Int. J. Biometeorol. 2015, 59, 827–835. [Google Scholar] [CrossRef]
- Rossi, S.; Bousquet, J. The bud break process and its variation among local populations of boreal black spruce. Front. Plant Sci. 2014, 5, 574. [Google Scholar] [CrossRef]
- Chmura, D.J. Phenology differs among Norway spruce populations in relation to local variation in altitude of maternal stands in the Beskidy Mountains. New For. 2006, 32, 21–31. [Google Scholar] [CrossRef]
- Chuine, I.; Belmonte, J.; Mignot, A. A modelling analysis of the genetic variation of phenology between tree populations. J. Ecol. 2000, 88, 561–570. [Google Scholar] [CrossRef]
- Young, A.G.; Warwick, S.I.; Merriam, H.G. Genetic variation and structure at three spatial scales for Acer saccharum (sugar maple) in Canada and the implications for conservation. Can. J. For. Res. 1993, 23, 2568–2578. [Google Scholar] [CrossRef]
- Kriebel, H.B.; Gabriel, W.J. Genetics of Sugar Maple; U.S. Department of Agriculture: Washington, DC, USA, 1969; pp. 1–17.
- Kriebel, H.B. Patterns of Genetic Variation in Sugar; Ohio Agricultural Experiment Station: Wooster, OH, USA, 1957. [Google Scholar]
- Hanes, J.M. Spring leaf phenology and the diurnal temperature range in a temperate maple forest. Int. J. Biometeorol. 2014, 58, 103–108. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L. Field Guide for Monitoring Sugar Maple Bud Development, 8th ed.; Vermont Agricultural Experiment Station RR 70 & Vermont Monitoring Cooperative RR; University of Vermont: Burlington, NJ, USA, 1994. [Google Scholar]
- Frenne, P.; Graae, B.J.; Rodríguez-Sánchez, F.; Kolb, A.; Chabrerie, O.; Decocq, G.; Kort, H.; Schrijver, A.; Diekmann, M.; Eriksson, O.; et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 2013, 101, 784–795. [Google Scholar] [CrossRef]
- Kriebel, H.B.; Wang, C.W. The interaction between provenance and degree of chilling in bud-break of sugar maple. Silvae Genet. 1962, 11, 125–130. [Google Scholar]
- Liang, L. A spatially explicit modeling analysis of adaptive variation in temperate tree phenology. Agric. For. Meteorol. 2019, 266–267, 73–86. [Google Scholar] [CrossRef]
- Post, E.; Steinman, B.A.; Mann, M.E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 2018, 8, 3927. [Google Scholar] [CrossRef]
ID | Latitude (°N) | Longitude (°W) | Annual Temperature (°C) | Total Precipitation (mm) | Number of Frost Days | ||
---|---|---|---|---|---|---|---|
Minimum | Mean | Maximum | |||||
P1 | 43.07 | 79.95 | 3.25 | 7.93 | 12.68 | 890 | 130 |
P5 | 46.65 | 60.45 | 0.56 | 4.39 | 8.26 | 1429 | 183 |
P6 | 47.02 | 60.53 | 1.79 | 5.39 | 9.03 | 1259 | 164 |
P7 | 45.83 | 67.62 | −1.27 | 4.58 | 10.46 | 1064 | 182 |
P9 | 46.37 | 66.67 | −1.47 | 4.04 | 9.58 | 1102 | 181 |
P11 | 46.42 | 66.62 | −1.20 | 4.37 | 10.00 | 1072 | 183 |
P12 | 46.27 | 65.53 | −0.97 | 4.70 | 10.43 | 1149 | 180 |
P13 | 46.85 | 66.17 | −1.59 | 3.95 | 9.55 | 1078 | 193 |
P14 | 45.72 | 65.47 | −0.01 | 5.52 | 11.10 | 1137 | 164 |
P15 | 46.87 | 71.67 | −1.29 | 3.70 | 8.72 | 1144 | 188 |
P16 | 46.85 | 67.63 | −2.11 | 3.35 | 8.88 | 1018 | 177 |
P17 | 46.37 | 66.66 | −1.46 | 4.05 | 9.59 | 1099 | 182 |
P18 | 46.41 | 66.62 | −1.32 | 4.22 | 9.81 | 1086 | 182 |
P19 | 46.37 | 66.66 | −1.46 | 4.05 | 9.59 | 1099 | 182 |
P20 | 46.37 | 66.66 | −1.46 | 4.05 | 9.59 | 1099 | 182 |
P21 | 46.37 | 66.66 | −1.46 | 4.05 | 9.59 | 1099 | 182 |
P22 | 46.41 | 66.62 | −1.32 | 4.22 | 9.81 | 1086 | 182 |
P23 | 46.30 | 63.44 | 1.03 | 5.30 | 9.61 | 1138 | 161 |
P24 | 46.60 | 70.87 | −0.92 | 4.05 | 9.07 | 1062 | 186 |
P25 | 47.36 | 70.03 | −0.68 | 4.03 | 8.77 | 954 | 170 |
P26 | 45.65 | 72.57 | 0.04 | 5.47 | 10.93 | 1017 | 156 |
P27 | 45.38 | 71.92 | −1.40 | 4.31 | 10.07 | 1094 | 171 |
P28 | 46.53 | 72.65 | −0.72 | 4.52 | 9.81 | 1048 | 178 |
P29 | 45.57 | 75.78 | 0.23 | 5.22 | 10.25 | 891 | 165 |
P99 | 48.22 | 71.51 | −3.16 | 2.25 | 7.66 | 953 | 187 |
Experiment | Phase | F-Value | p |
---|---|---|---|
1 | Bud swell | 5.06 | <0.001 |
Green tip stage | 5.23 | <0.001 | |
Bud break | 4.71 | <0.001 | |
Extended bud break | 4.24 | <0.001 | |
Full leaf expansion | 3.89 | <0.001 | |
2 | Bud swell | 4.10 | <0.001 |
Green tip stage | 5.91 | <0.001 | |
Bud break | 5.91 | <0.001 | |
Extended bud break | 5.09 | <0.001 | |
Full leaf expansion | 3.41 | <0.001 |
Experiment | Phase | χ2 | F-Value | LS-Mean | |||
---|---|---|---|---|---|---|---|
TP | TT | TP × TT | Colder | Warmer | |||
1 | Bud swell | 818.87 | 22.04 *** | 26.97 *** | 0.15 | 79.01 a | 61.53 b |
Green tip stage | 636.60 | 33.12 *** | 56.68 *** | 0.12 | 89.02 a | 66.30 b | |
Bud break | 572.82 | 21.16 *** | 38.52 *** | 1.14 | 92.36 a | 72.38 b | |
Extended bud break | 647.34 | 23.62 *** | 66.95 *** | 1.42 | 96.79 a | 74.77 b | |
Full leaf expansion | 680.33 | 17.54 *** | 101.35 *** | 0.76 | 106.55 a | 79.48 b | |
2 | Bud swell | 266.17 | 24.41 *** | 25.70 *** | 0.20 | 11.06 a | 7.58 b |
Green tip stage | 203.21 | 51.29 *** | 60.75 *** | 0.00 | 16.03 a | 10.74 b | |
Bud break | 234.42 | 74.39 *** | 64.42 *** | 1.42 | 18.99 a | 12.97 b | |
Extended bud break | 259.30 | 68.75 *** | 110.45 *** | 0.07 | 21.54 a | 14.93 b | |
Full leaf expansion | 248.35 | 58.46 *** | 167.32 *** | 2.13 | 30.31 a | 21.58 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, P.; Liang, E.; Raymond, P.; Rossi, S. Phenological Differentiation in Sugar Maple Populations and Responses of Bud Break to an Experimental Warming. Forests 2020, 11, 929. https://doi.org/10.3390/f11090929
Ren P, Liang E, Raymond P, Rossi S. Phenological Differentiation in Sugar Maple Populations and Responses of Bud Break to an Experimental Warming. Forests. 2020; 11(9):929. https://doi.org/10.3390/f11090929
Chicago/Turabian StyleRen, Ping, Eryuan Liang, Patricia Raymond, and Sergio Rossi. 2020. "Phenological Differentiation in Sugar Maple Populations and Responses of Bud Break to an Experimental Warming" Forests 11, no. 9: 929. https://doi.org/10.3390/f11090929
APA StyleRen, P., Liang, E., Raymond, P., & Rossi, S. (2020). Phenological Differentiation in Sugar Maple Populations and Responses of Bud Break to an Experimental Warming. Forests, 11(9), 929. https://doi.org/10.3390/f11090929