Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Collection
2.3. Data Processing
3. Results
3.1. Development of Timber Harvest in the Czech Republic and Studied Factors
3.2. Effect of Annual Precipitation and Annual Air Temperatures on Development of Timber Harvest
3.3. Sunspots as an Inversion Factor to Total Harvested Timber and Salvage Logging
3.4. Cosmic Ray Intensity and Its Pronounced Effect on Timber Harvested
3.5. Studied Factors in 3D Charts and Spectral Analysis
4. Discussion
4.1. Anthropic Impacts and Climate Fluctuations Influencing Salvage Logging
4.2. Salvage Logging Versus Solar and Cosmic Factors
4.3. Relevant Context and Potencials
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyfroidt, P.; Lambin, E. Global Forest transition: Prospects for end to deforestation. Annu. Rev. Environ. Resour. 2011, 36, 343–371. [Google Scholar]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Law, B.E.; Goetz, S.J. Focus on the role of forests and soils in meeting climate change mitigation goals: Summary. Environ. Res. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Collalti, A.; Trotta, C.; Keenan, T.F.; Ibrom, A.; Bond-Lamberty, B.; Grote, R.; Vicca, S.; Reyer, C.P.O.; Migliavacca, M.; Veroustraete, F.; et al. Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. J. Adv. Model. Earth Syst. 2018, 10, 2427–2452. [Google Scholar] [CrossRef] [Green Version]
- Naudts, K.; Chen, Y.; McGrath, M.J.; Ryder, J.; Valade, A.; Otto, J.; Luyssaert, S. Mitigate Climate Warming. Science 2016, 351, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Riedl, M.; Šišák, L. Analysis of the perceived condition of forests in the Czech Republic. J. For. Sci. 2013, 59, 514–519. [Google Scholar]
- Hlásny, T.; Barka, I.; Kulla, L.; Bucha, T.; Sedmák, R.; Trombik, J. Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: The role of climate change. Reg. Environ. Chang. 2017, 17, 65–77. [Google Scholar] [CrossRef]
- Mikulenka, P.; Prokůpková, A.; Vacek, Z.; Vacek, S.; Bulušek, D.; Simon, J.; Šimůnek, V.; Hájek, V. Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Cent. Eur. For. J. 2020, 66, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Härt, F.H.; Barka, I.; Hahn, W.A.; Hlásny, T.; Irauschek, F.; Knoke, T.; Lexer, M.J.; Griess, V.C. Multifunctionality in European mountain forests—An optimization under changing climatic conditions. Can. J. For. Res. 2015, 46, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kulakowski, D.; Seidl, R.; Holeksa, J.; Kuuluvainen, T.; Nagel, T.A.; Panayotov, M.; Svoboda, M.; Thorn, S.; Vacchiano, G.; Whitlock, C.; et al. A walk on the wild side: Dlomnicaisturbance dynamics and the conservation and management of European mountain forest ecosystems. For. Ecol. Manag. 2017, 388, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Vacek, S.; Zingari, P.C.; Jeník, J.; Simon, J.; Smejkal, J.; Vančura, K. Mountain Forests of the Czech Republic; Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2003.
- MAF Report about Forest and Forestry Conditions in the Czech Republic 2017 (Green Report); Ministry of Agriculture: Prague, Czech Republic, 2018.
- Toth, D.; Maitah, M.; Maitah, K.; Jarolínová, V. The impacts of calamity logging on the development of spruce wood prices in czech forestry. Forests 2020, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, A.W.; Bradford, J.B.; Fraver, S.; Palik, B.J. Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For. Ecol. Manag. 2011, 262, 803–816. [Google Scholar] [CrossRef]
- Cosofret, C.; Bouriaud, L. Which silvicultural measures are recommended to adapt forests to climate change? A literature review. Bull. Transilv. Univ. Brasov Ser. II For. Wood Ind. Agric. Food Eng. 2019, 12, 13–34. [Google Scholar] [CrossRef]
- Bošela, M.; Štefančík, I.; Petráš, R.; Vacek, S. The effects of climate warming on the growth of European beechforests depend critically on thinning strategy and site productivity.e. Agric. For. Meteorol. 2016, 222, 21–31. [Google Scholar]
- Gömöry, D.; Longauer, R.; Hlásny, T.; Pacalaj, M.; Strmeň, S.; Krajmerová, D. Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). Eur. J. For. Res. 2012, 131, 401–411. [Google Scholar] [CrossRef]
- Keenan, T.F.; Prentice, I.C.; Canadell, J.G.; Williams, C.A.; Wang, H.; Raupach, M.; Collatz, G.J. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Hember, R.A.; Kurz, W.A.; Metsaranta, J.M.; Black, T.A.; Guy, R.D.; Coops, N.C. Accelerating regrowth of temperate-maritime forests due to environmental change. Glob. Chang. Biol. 2012, 18, 2026–2040. [Google Scholar] [CrossRef]
- Aertsen, W.; Janssen, E.; Kint, V.; Bontemps, J.D.; Van Orshoven, J.; Muys, B. Long-term growth changes of common beech (Fagus sylvatica L.) are less pronounced on highly productive sites. For. Ecol. Manag. 2014, 312, 252–259. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Hummel, S.; Cullmann, D.A. Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. For. Ecol. Manag. 2010, 259, 710–719. [Google Scholar] [CrossRef]
- Piovesan, G.; Biondi, F.; Di Filippo, A.; Alessandrini, A.; Maugeri, M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 2008, 14, 1265–1281. [Google Scholar] [CrossRef]
- Alvarez, S.; Ortiz, C.; Díaz-Pinés, E.; Rubio, A. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2Fix model. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1045–1058. [Google Scholar] [CrossRef]
- Ashraf, M.I.; Bourque, C.P.A.; MacLean, D.A.; Erdle, T.; Meng, F.R. Estimation of potential impacts of climate change on growth and yield of temperate tree species. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 159–178. [Google Scholar] [CrossRef]
- Noce, S.; Collalti, A.; Valentini, R.; Santini, M. Hot spot maps of forest presence in the Mediterranean basin. IForest 2016, 9, 766–774. [Google Scholar] [CrossRef]
- Tumajer, J.; Altman, J.; Štěpánek, P.; Treml, V.; Doležal, J.; Cienciala, E. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agric. For. Meteorol. 2017, 247, 56–64. [Google Scholar] [CrossRef]
- Kopáček, J.; Cudlín, P.; Fluksová, H.; Kaňa, J.; Picek, T.; Šantrůčková, H.; Svoboda, M.; Vaněk, D. Dynamics and composition of litterfall in an unmanaged Norway spruce (Picea abies) forest after bark-beetle outbreak. Boreal Environ. Res. 2015, 20, 305–323. [Google Scholar]
- Nováková, M.H.; Edwards-Jonášová, M. Restoration of central-european mountain norway spruce forest 15 years after natural and anthropogenic disturbance. For. Ecol. Manag. 2015, 344, 120–130. [Google Scholar] [CrossRef]
- Čermák, P.; Kolář, T.; Žid, T.; Trnka, M.; Rybníček, M. Norway spruce responses to drought forcing in areas affected by forest decline. For. Syst. 2019, 28. [Google Scholar] [CrossRef] [Green Version]
- Milad, M.; Schaich, H.; Bürgi, M.; Konold, W. Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. For. Ecol. Manag. 2011, 261, 829–843. [Google Scholar] [CrossRef]
- Kolář, T.; Čermák, P.; Trnka, M.; Žid, T.; Rybníček, M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric. For. Meteorol. 2017, 239, 24–33. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Cukor, J.; Bílek, L. Silviculture as a tool to support stability and diversity of forests under climate change: Study from Krkonoše Mountains Silviculture as a tool to support stability and diversity of forests under climate change: Study from Krkonoše Mountains. Cent. Eur. For. J. 2020. [Google Scholar] [CrossRef]
- Versteegh, G.J.M. Solar forcing of climate. 2: Evidence from the past. Space Sci. Rev. 2005, 120, 243–286. [Google Scholar] [CrossRef]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global Changes in Drought Conditions Under Different Levels of Warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Murphy-Mariscal, M.; Grodsky, S.M.; Hernandez, R.R. Solar Energy Development and the Biosphere. A Compr. Guid. to Sol. Energy Syst. 2018, 391–405. [Google Scholar] [CrossRef]
- Stefani, F.; Giesecke, A.; Weier, T. A Model of a Tidally Synchronized Solar Dynamo. Sol. Phys. 2019, 294. [Google Scholar] [CrossRef] [Green Version]
- Balogh, A.; Hudson, H.S.; Petrovay, K.; von Steiger, R. Introduction to the Solar Activity Cycle: Overview of Causes and Consequences. Space Sci. Rev. 2014, 186, 1–15. [Google Scholar] [CrossRef]
- Beer, J.; McCracken, K.; Steiger, R. Cosmogenic Radionuclides. Theory and Applications in the Terrestrial and Space Environments; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Reiter, R.V. Bio-Meteorologie auf physikalischer Basis. Z. Angew. Meteorol. 1953, 1, 453–464. [Google Scholar]
- Solanki, S.K.; Usoskin, I.G.; Kromer, B.; Schüssler, M.; Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 2004, 431, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Bard, E.; Raisbeck, G.M.; Yiou, F.; Jouzel, J. Comment on “Solar activity during the last 1000 yr inferred from radionuclide records” by Muscheler et al. Quat. Sci. Rev. 2007, 26, 2301–2304. [Google Scholar] [CrossRef]
- Muscheler, R.; Joos, F.; Beer, J.; Müller, S.A.; Vonmoos, M.; Snowball, I. Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 2007, 26, 82–97. [Google Scholar] [CrossRef]
- Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys. 2015, 12, 83. [Google Scholar] [CrossRef]
- Lockwood, M.; Owens, M.; Hawkins, E.; Jones, G.S.; Usoskin, I. Frost fairs, sunspots and the Little Ice Age. Astron. Geophys. 2017, 58, 2.17–2.23. [Google Scholar] [CrossRef] [Green Version]
- Kadonaga, L.K.; Podlaha, O.; Whiticar, M.J. Time series analyses of tree ring chronologies from Pacific North America: Evidence for sub-century climate oscillations. Chem. Geol. 1999, 161, 339–363. [Google Scholar] [CrossRef]
- Maliniemi, V.; Asikainen, T.; Mursula, K. Decadal variability in the Northern Hemisphere winter circulation: Effects of different solar and terrestrial drivers. J. Atmos. Sol. Terr. Phys. 2018, 179, 40–54. [Google Scholar] [CrossRef]
- Dong, J.; Ochsner, T.E. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns. Water Resour. Res. 2018, 54, 2199–2211. [Google Scholar] [CrossRef]
- Mauas, P.J.D.; Buccino, A.P.; Flamenco, E. Solar activity forcing of terrestrial hydrological phenomena. Proc. Int. Astron. Union 2016, 12, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Zhang, Q. Bin a 449 year warm season temperature reconstruction in the southeastern Tibetan plateau and its relation to solar activity. J. Geophys. Res. 2014, 119, 11578–11592. [Google Scholar] [CrossRef]
- Kumar, V.; Dhaka, S.K.; Panwar, V.; Singh, N.; Rao, A.S.; Malik, S.; Yoden, S. Detection of solar cycle signal in the tropospheric temperature using COSMIC data. Curr. Sci. 2018, 115, 2232–2239. [Google Scholar]
- Berger, W.H. On glacier retreat and drought cycles in the Rocky Mountains of Montana and Canada. Quat. Int. 2010, 215, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Latta, G.; Temesgen, H.; Adams, D.; Barrett, T. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest. For. Ecol. Manag. 2010, 259, 720–729. [Google Scholar] [CrossRef]
- Uğur, B.; Feriha, Y. Forecasting risky years for forest fires depending on sunspot cycle. J. For. Res. 2017, 4, 133–142. [Google Scholar]
- Kim, T.-J. Predictions of Galapagos Volcanic Eruption, El Niñoc, Ecuadorian Earthquake, Global Volcanic Eruption and Forest Fire by Sunspot Number. Nat. Sci. 2020, 12, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Brugnara, Y.; Brönnimann, S.; Luterbacher, J.; Rozanov, E. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmos. Chem. Phys. 2013, 13, 6275–6288. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Yi, Y. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity. Astrophys. J. 2017, 840, 14. [Google Scholar] [CrossRef]
- Oloketuyi, J.; Liu, Y.; Amanambu, A.C.; Zhao, M. Responses and Periodic Variations of Cosmic Ray Intensity and Solar Wind Speed to Sunspot Numbers. Adv. Astron. 2020, 2020. [Google Scholar] [CrossRef]
- Easterbrook, D.J. Cause of global climate changes: Correlation of global temperature, sunspots, solar irradiance, cosmic rays, and radiocarbon and berylium production rates. In Evidence-Based Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global Warming, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 245–262. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Maghrabi, A.; Kudela, K. Relationship between time series cosmic ray data and aerosol optical properties: 1999–2015. J. Atmos. Sol. Terr. Phys. 2019, 190, 36–44. [Google Scholar] [CrossRef]
- Tsiropoula, G. Signatures of solar activity variability in meteorological parameters. Atmos. Sol. Terr. Phys. 2003, 65, 469–482. [Google Scholar] [CrossRef]
- Gusev, A.A.; Martin, I.M. Possible evidence of the resonant influence of solar forcing on the climate system. J. Atmos. Sol. Terr. Phys. 2012, 80, 173–178. [Google Scholar] [CrossRef]
- Ormes, J.F. Cosmic rays and climate. Adv. Space Res. 2018, 62, 2880–2891. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Nabuurs, G.J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Raza, M.; Aslam, N.; Le-Minh, H.; Hussain, S.; Cao, Y.; Khan, N.M. A Critical Analysis of Research Potential, Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2018, 20, 39–95. [Google Scholar] [CrossRef]
- ČHMÚ Czech Hydrometeorological Institute. Available online: http://portal.chmi.cz/historicka-data/pocasi/ (accessed on 5 August 2019).
- Nownes, A.J. Methodological Notes, Czech Statistical Office. In Total Lobbying; Cambridge University Press: Cambridge, UK, 2012; pp. 225–232. [Google Scholar]
- Hathaway, D.H.; Adams, M.; Weber, R. Royal Observatory, Greenwich—USAF/NOAA Sunspot Data. Available online: https://solarscience.msfc.nasa.gov/greenwch.shtml (accessed on 7 October 2019).
- Kudela, K. Institute of Experimental Physics SAS. Available online: http://neutronmonitor.ta3.sk/ (accessed on 7 October 2019).
- Team R Core A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.
- Schulz, M.; Mudelsee, M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 2002, 28, 421–426. [Google Scholar] [CrossRef]
- Bunn, A.; Mikko, K. Chronology Building in dplR; R Foundation for Statistical Computing: Vienna, Austria, 2018; pp. 1–13. [Google Scholar]
- Kašpar, M.; Müller, M.; Crhová, L.; Holtanová, E.; Polášek, J.F.; Pop, L.; Valeriánová, A. Relationship between Czech windstorms and air temperature. Int. J. Climatol. 2017, 37, 11–24. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.A.; Thompson, D.K.; Flannigan, M.D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Young, D.J.N.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- Lopez-Bustins, J.A.; Esteban, P.; Labitzke, K.; Langematz, U. The role of the stratosphere in Iberian Peninsula rainfall: A preliminary approach in February. J. Atmos. Sol. Terr. Phys. 2007, 69, 1471–1484. [Google Scholar] [CrossRef] [Green Version]
- Sitková, Z.; Nalevanková, P.; Střelcová, K.; Fleischer, P., Jr.; Ježík, M.; Sitko, R.; Pavlenda, P.; Hlásny, T. How does soil water potential limit the seasonal dynamics of sap flow and circumference changes in European beech? Ako vodný potenciál pôdy limituje sezónnu dynamiku transpiračného prúdu a zmien obvodov kmeňa u buka lesného? Cent. Eur. For. J. 2014, 60, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Hlásny, T.; Turčáni, M. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: Case study from Central Europe. Ann. For. Sci. 2013, 70, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.J. Wind as a natural disturbance agent in forests: A synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Vacek, S.; Bílek, L.; Schwarz, O.; Hejcmanová, P.; Mikeska, M. Effect of Air Pollution on the Health Status of Spruce Stands Effect of Air Pollution on the Health Status of Spruce Stands. Mt. Res. Dev. 2013, 33, 40–50. [Google Scholar]
- Putalová, T.; Vacek, Z.; Vacek, S.; Štefančík, I.; Bulušek, D.; Král, J. Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Cent. Eur. For. J. 2019, 65, 21–33. [Google Scholar] [CrossRef]
- Král, J.; Vacek, S.; Vacek, Z.; Putalová, T.; Bulušek, D.; Štefančík, I. Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. For. J. 2015, 61, 175–187. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Bílek, L.; Remeš, J.; Štefančík, I. Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology 2015, 73, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Vacek, S.; Lepš, J. Changes in the horizontal structure in a spruce forest over a 9-year period of pollutant exposure in the Krkonoše mountains, Czechoslovakia. For. Ecol. Manag. 1987, 22, 291–295. [Google Scholar] [CrossRef]
- Bottero, A.; Garbarino, M.; Long, J.N.; Motta, R. The interacting ecological effects of large-scale disturbances and salvage logging on montane spruce forest regeneration in the western European Alps. For. Ecol. Manag. 2013, 292, 19–28. [Google Scholar] [CrossRef]
- Siefermann-Harms, D.; Boxler-Baldoma, C.; Von Wilpert, K.; Heumann, H.G. The rapid yellowing of spruce at a mountain site in the Central Black Forest (Germany). Combined effects of Mg deficiency and ozone on biochemical, physiological and structural properties of the chloroplasts. J. Plant Physiol. 2004, 161, 423–437. [Google Scholar] [CrossRef]
- Tomiczek, C. Nutrient Deficiency of Spruce Needles Caused By Root and Butt Rots—A Factor in Forest Decline. J. Arboric. 1995, 21, 113–117. [Google Scholar]
- Grodzki, W. The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Śląski and Żywiecki: Theoretical concept and reality. Beskydy 2010, 3, 19–26. [Google Scholar]
- Hlásny, T.; Sitková, Z. Spruce Forests Decline in the Beskids; Forestry and Game Management Research Institute Jíloviště: Strnady, Czech Republic, 2010; ISBN 9788080931278. [Google Scholar]
- Seidl, R.; Rammer, W.; Lasch, P.; Badeck, F.W.; Lexer, M.J. Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fenn. 2008, 42, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Vacek, S.; Prokupková, A.; Vacek, Z.; Buluek, D.; Simunek, V.; Králícek, I.; Prausová, R.; Hájek, V. Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J. For. Sci. 2019, 65, 331–345. [Google Scholar] [CrossRef]
- Matthews, B.; Netherer, S.; Katzensteiner, K.; Pennerstorfer, J.; Blackwell, E.; Henschke, P.; Hietz, P.; Rosner, S.; Jansson, P.E.; Schume, H.; et al. Transpiration deficits increase host susceptibility to bark beetle attack: Experimental observations and practical outcomes for Ips typographus hazard assessment. Agric. For. Meteorol. 2018, 263, 69–89. [Google Scholar] [CrossRef]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.C.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Schroeder, L.M.; Lindelöw, Å. Attacks on living spruce trees by the bark beetle ips typographus (Col. Scolytidae) following a storm-felling: A comparison between stands with and without removal of wind-felled trees. Agric. For. Entomol. 2002, 4, 47–56. [Google Scholar] [CrossRef]
- Turčáni, M.; Hlásny, T. Spatial distribution of four spruce bark beetles in north-western Slovakia. J. For. Sci. 2007, 53, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Økland, B.; Berryman, A. Resource dynamic plays a key role in regional fluctuations of the spruce bark beetles Ips typographus. Agric. For. Entomol. 2004, 6, 141–146. [Google Scholar] [CrossRef]
- Ludwig, P.; Pinto, J.G.; Hoepp, S.A.; Fink, A.H.; Gray, S.L. Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Mon. Weather Rev. 2015, 143, 1417–1437. [Google Scholar] [CrossRef] [Green Version]
- Almedeij, J. Long-term periodic drought modeling. Stoch. Environ. Res. Risk Assess. 2016, 30, 901–910. [Google Scholar] [CrossRef]
- Li, H.Y.; Xue, L.J.; Wang, X.J. Relationship between solar activity and flood/drought disasters of the Second Songhua river basin. J. Water Clim. Chang. 2015, 6, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Laurenz, L.; Lüdecke, H.J.; Lüning, S. Influence of solar activity changes on European rainfall. J. Atmos. Sol. Terr. Phys. 2019, 185, 29–42. [Google Scholar] [CrossRef]
- Al-Tameemi, M.A.; Chukin, V.V. Global water cycle and solar activity variations. J. Atmos. Sol. Terr. Phys. 2016, 142, 55–59. [Google Scholar] [CrossRef]
- Tinsley, B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation. Adv. Space Res. 2012, 50, 791–805. [Google Scholar] [CrossRef]
- Mishra, V.K.; Mishra, A.P. Study of solar activity and cosmic ray modulation during solar cycle 24 in comparison to previous solar cycle. Indian J. Phys. 2016, 90, 1333–1339. [Google Scholar] [CrossRef]
- Laurenza, M.; Vecchio, A.; Storini, M.; Carbone, V. Quasi-biennial modulation of galactic cosmic rays. Astrophys. J. 2012, 749. [Google Scholar] [CrossRef] [Green Version]
- Sarp, V.; Kilcik, A.; Yurchyshyn, V.; Ozguc, A.; Rozelot, J.P. Cosmic Ray Modulation with the Maximum CME Speed Index During Solar Cycles 23 and 24. Sol. Phys. 2019, 294, 1–11. [Google Scholar] [CrossRef]
- Kasatkina, E.A.; Shumilov, O.I.; Timonen, M. Solar activity imprints in tree ring-data from northwestern Russia. J. Atmos. Sol. Terr. Phys. 2019, 193, 105075. [Google Scholar] [CrossRef]
- Shumilov, O.I.; Kasatkina, E.A.; Mielikainen, K.; Timonen, M.; Kanatjev, A.G. Palaeovolcanos, Solar activity and pine tree-rings from the Kola Peninsula (Northwestern Russia) over the last 560 years Palaeovolcanos. Int. J. Environ. Res. 2011, 5, 855–864. [Google Scholar]
- Dorotovič, I.; Louzada, J.L.; Rodrigues, J.C.; Karlovský, V. Impact of Solar Activity on the Growth of Pine Trees: Case Study; Springer: Berlin/Heidelberg, Germany, 2014; Volume 133, pp. 639–648. [Google Scholar]
- Wang, X.; Zhang, Q. Bin Evidence of solar signals in tree rings of Smith fir from Sygera Mountain in southeast Tibet. J. Atmos. Sol. Terr. Phys. 2011, 73, 1959–1966. [Google Scholar] [CrossRef]
- Hlásny, T.; Barka, I.; Roessiger, J.; Kulla, L.; Trombik, J.; Sarvašová, Z.; Bucha, T.; Kovalčík, M.; Čihák, T. Conversion of Norway spruce forests in the face of climate change: A case study in Central Europe. Eur. J. For. Res. 2017, 136, 1013–1028. [Google Scholar] [CrossRef]
- Müller, J.; Noss, R.F.; Thorn, S.; Bässler, C.; Leverkus, A.B.; Lindenmayer, D. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 2019, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nascimbene, J.; Thor, G.; Nimis, P.L. Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe—A review. For. Ecol. Manag. 2013, 298, 27–38. [Google Scholar] [CrossRef]
- Vacek, S.; Moucha, P.; Bílek, L.; Mikeska, M.; Remeš, J.; Simon, J.; Hynek, V.; Šrůtka, P.; Schwarz, O.; Mánek, J.; et al. Péče o Lesní Ekosystémy v Chráněných Územích ČR. [Management of Forest Ecosystems in the Protected Areas of the Czech Republic]; Ministry of the Environment of the Czech Republic: Prague, Czech Republic, 2012.
- Krejcí, F.; Vacek, S.; Bílek, L.; Mikeska, M.; Hejcmanová, P.; Vacek, Z. The effects of climatic conditions and forest site types on disintegration rates in Picea abies occurring at the Modrava Peat Bogs in the Šumava National Park. Dendrobiology 2013, 70, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Remeš, J.; Pulkrab, K.; Bílek, L.; Podrázský, V. Economic and production effiect of tree species change as a result of adaptation to climate change. Forests 2020, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Vacek, S.; Vacek, Z.; Bílek, L.; Hejcmanová, P.; Štícha, V.; Remeš, J. The dynamics and structure of dead wood in natural spruce-beech forest stand—A 40 year case study in the Krkonoše national park. Dendrobiology 2015, 73, 21–32. [Google Scholar] [CrossRef]
- Dobor, L.; Hlásny, T.; Rammer, W.; Zimová, S.; Barka, I.; Seidl, R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J. Appl. Ecol. 2020, 57, 67–76. [Google Scholar] [CrossRef]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Moris, J.V.; Viñas, R.A. Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis. Carbon Balance Manag. 2016, 11. [Google Scholar] [CrossRef]
- Petrovay, K. Solar Cycle Prediction; Eötvös Loránd University: Budapest, Hungary, 2020; Volume 17, ISBN 0123456789. [Google Scholar]
- Dani, T.; Sulistiani, S. Prediction of maximum amplitude of solar cycle 25 using machine learning Prediction of maximum amplitude of solar cycle 25 using machine learning. J. Phys. Conf. Ser. 2019. [Google Scholar] [CrossRef]
- Wu, C.J.; Krivova, N.A.; Solanki, S.K.; Usoskin, I.G. Solar total and spectral irradiance reconstruction over the last 9000 years. Astron. Astrophys. 2018, 620, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, A.V.; Shapiro, A.I.; Gizon, L.; Krivova, N.A.; Solanki, S.K. Solar-cycle irradiance variations over the last four billion years. Astron. Astrophys. 2020, 636, 1–8. [Google Scholar] [CrossRef] [Green Version]
Time Period 1961–2018 | Time Period 1973–2018 | Time Period 2000–2018 | |
---|---|---|---|
Sunspot area | |||
Salvage logging | −0.0932 | −0.3263 | −0.7800 |
Total timber harvest | −0.2045 | −0.2224 | −0.6550 |
Cosmic ray | |||
Salvage logging | −0.1221 | 0.3620 | 0.7575 |
Total timber harvest | 0.0608 | 0.1519 | 0.6307 |
Temperature | |||
Salvage logging | 0.5269 | 0.0994 | 0.4374 |
Total timber harvest | 0.3122 | 0.3650 | 0.5080 |
Sunspot area | 0.0610 | 0.0005 | 0.1048 |
Cosmic ray | −0.1895 | −0.0263 | 0.2399 |
Precipitation | |||
Salvage logging | 0.1099 | 0.1541 | −0.3885 |
Total timber harvest | 0.0135 | −0.0434 | −0.4438 |
Sunspot area | −0.1450 | −0.1549 | 0.1315 |
Cosmic ray | −0.0240 | 0.0395 | −0.2816 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimůnek, V.; Vacek, Z.; Vacek, S. Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation. Forests 2020, 11, 973. https://doi.org/10.3390/f11090973
Šimůnek V, Vacek Z, Vacek S. Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation. Forests. 2020; 11(9):973. https://doi.org/10.3390/f11090973
Chicago/Turabian StyleŠimůnek, Václav, Zdeněk Vacek, and Stanislav Vacek. 2020. "Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation" Forests 11, no. 9: 973. https://doi.org/10.3390/f11090973
APA StyleŠimůnek, V., Vacek, Z., & Vacek, S. (2020). Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation. Forests, 11(9), 973. https://doi.org/10.3390/f11090973