Employing Genome-Wide SNP Discovery to Characterize the Genetic Diversity in Cinnamomum camphora Using Genotyping by Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Isolation
2.2. GBS Library Construction and Population SNP Identification
2.3. Statistical Analysis of Data
3. Results
3.1. GBS Analysis and SNP Identification
3.2. Population Genetic Structure
3.3. Genetic Diversity in C. camphora
4. Discussion
4.1. Genotyping by Sequencing
4.2. Genetic Diversity of C. camphora
4.3. Genetic Differentiation and Population Genetic Structure of C. camphora
4.4. Conservation Strategies for C. camphora
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kameyama, Y. Development of microsatellite markers for Cinnamomum camphora (Lauraceae). Am. J. Bot. 2012, 99, e1–e3. [Google Scholar] [CrossRef] [Green Version]
- Kameyama, Y.; Furumichi, J.; Li, J.; Tseng, Y.-H. Natural genetic differentiation and human-mediated gene flow: The spatiotemporal tendency observed in a long-lived Cinnamomum camphora (Lauraceae) tree. Tree Genet. Genomes 2017, 13, 38. [Google Scholar] [CrossRef]
- Shi, S.; Wu, Q.; Su, J.; Li, C.; Zhao, X.; Xie, J.; Gui, S.; Su, Z.; Zeng, H. Composition analysis of volatile oils from flowers, leaves and branches of Cinnamomum camphora chvar. Borneol in china. J. Essent. Oil Res. 2013, 25, 395–401. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, A.; Li, Z.; Zhang, H.; Liu, L.; Wu, Z.; Li, Y.; Liu, T.; Xu, M.; Yu, F. Genetic Diversity and Population Genetic Structure of Cinnamomum camphora in South China Revealed by EST-SSR Markers. Forests 2019, 10, 1019. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhong, Y.; Yu, F.; Xu, M. Novel SSR marker development and genetic diversity analysis of Cinnamomum camphora based on transcriptome sequencing. Plant Genet. Resour.-Charact. Util. 2018, 16, 568–571. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Zhang, D.; Wen, Y. Microsatellite null alleles affected population genetic analyses: A case study of Maire yew (Taxus chinensis var. mairei). J. For. Res. 2019, 24, 230–234. [Google Scholar] [CrossRef]
- Mammadov, J.; Aggarwal, R.; Buyyarapu, R.; Kumpatla, S. SNP markers and their impact on plant breeding. Int. J. Plant Genom. 2012, 2012, 728398. [Google Scholar] [CrossRef]
- Yang, T.Y.; Gao, T.X.; Meng, W.; Jiang, Y.-L. Genome-wide population structure and genetic diversity of Japanese whiting (Sillago japonica) inferred from genotyping-by-sequencing (GBS): Implications for fisheries management. Fish. Res. 2020, 225, 105501. [Google Scholar] [CrossRef]
- Wu, C.C.; Chang, S.H.; Tung, C.W.; Ho, C.K.; Gogorcena, Y.; Chu, F.H. Identification of hybridization and introgression between Cinnamomum kanehirae Hayata and C. camphora (L.) Presl using genotyping-by-sequencing. Sci. Rep. 2020, 10, 15995. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Poland, J.A.; Rife, T.W. Genotyping-by-Sequencing for Plant Breeding and Genetics. Plant Genome 2012, 5, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.J.; Lee, J.R.; Sebastin, R.; Shin, M.J.; Kim, S.H.; Cho, G.T.; Hyun, D.Y. Genetic Diversity Assessed by Genotyping by Sequencing (GBS) in Watermelon Germplasm. Genes 2019, 10, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.Y.; Jang, S.; Yu, C.R.; Kang, B.C.; Chin, J.H.; Song, K. Population Structure and Genetic Diversity of Cucurbita moschata Based on Genome-Wide High-Quality SNPs. Plants 2021, 10, 56. [Google Scholar] [CrossRef]
- Solomon, A.M.; Han, K.; Lee, J.H.; Lee, H.Y.; Jang, S.; Kang, B.C. Genetic diversity and population structure of Ethiopian Capsicum germplasms. PLoS ONE 2019, 14, e0216886. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-Lillo, G.; Balladares, C.; Pavez, C.; Urra, C.; Sanhueza, D.; Vendramin, E.; Dettori, M.T.; Arús, P.; Verde, I.; Blanco-Herrera, F.; et al. High-density genetic map and QTL analysis of soluble solid content, maturity date, and mealiness in peach using genotyping by sequencing. Sci. Hortic. 2019, 257, 108734. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, D.; Guo, L.; Guo, Q.; Wang, H.; Hou, X. Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of P. ostii ‘Fengdan Bai’ and P. suffruticosa ‘Xin Riyuejin’. Sci. Hortic. 2019, 246, 190–200. [Google Scholar] [CrossRef]
- Carrasco, B.; Gonzalez, M.; Gebauer, M.; Garcia-Gonzalez, R.; Maldonado, J.; Silva, H. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. PLoS ONE 2018, 13, e0208032. [Google Scholar] [CrossRef]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and genotyping Loci de novo from short-read sequences. G3-Genes Genomes Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.; Koh, G. Faster single-end alignment generation utilizing multi-thread for BWA. Bio-Med. Mater. Eng. 2015, 26, S1791–S1796. [Google Scholar] [CrossRef] [Green Version]
- Etherington, G.J.; Ramirez-Gonzalez, R.H.; MacLean, D. Bio-samtools 2: A package for analysis and visualization of sequence and alignment data with SAMtools in Ruby. Bioinformatics 2015, 31, 2565–2567. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.; Yoshida, R.; Pachter, L. Beyond pairwise distances: Neighbor-joining with phylogenetic diversity estimates. Mol. Biol. Evol. 2006, 23, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Peng, J.; Wang, P.; Risch, N.J. Estimation of Individual Admixture: Analytical and Study Design Considerations. Genet. Epidemiol. 2005, 28, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pootakham, W.; Jomchai, N.; Ruang-Areerate, P.; Shearman, J.R.; Sonthirod, C.; Sangsrakru, D.; Tragoonrung, S.; Tangphatsornruang, S. Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 2015, 105, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Gurcan, K.; Teber, S.; Ercisli, S.; Yilmaz, K.U. Genotyping by Sequencing (GBS) in Apricots and Genetic Diversity Assessment with GBS-Derived Single-Nucleotide Polymorphisms (SNPs). Biochem. Genet. 2016, 54, 854–885. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Shi, S.; Zhang, Z.; Liao, W.; Wu, W.; Zhou, R.; Fan, Q. High genetic diversity and weak population structure of Rhododendron jinggangshanicum, a threatened endemic species in Mount Jinggangshan of China. Biochem. Syst. Ecol. 2015, 58, 178–186. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Li, L.; You, J.; Ni, B.; Chen, X. Clonal plasticity and diversity facilitates the adaptation of Rhododendron aureum Georgi to alpine environment. PLoS ONE 2018, 13, e0197089. [Google Scholar] [CrossRef] [Green Version]
- Quintana, J.; Contreras, A.; Merino, I.; Vinuesa, A.; Orozco, G.; Ovalle, F.; Gomez, L. Genetic characterization of chestnut (Castanea sativa Mill.) orchards and traditional nut varieties in El Bierzo, a glacial refuge and major cultivation site in northwestern Spain. Tree Genet. Genomes 2014, 11, 826. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Hou, L.; Zhang, Z.; Pang, X.; Li, Y. De Novo Transcriptome Assembly and Population Genetic Analyses for an Endangered Chinese Endemic Acer miaotaiense (Aceraceae). Genes 2018, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, M.M.; Eguiarte, L.E.; Montana, C. Genetic structure and outcrossing rates in Flourensia cernua (Asteraceae) growing at different densities in the South-western Chihuahuan Desert. Ann. Bot. 2004, 94, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Cheng, Y.; Li, K.; Li, H. Integrating Phylogeographic Analysis and Geospatial Methods to Infer Historical Dispersal Routes and Glacial Refugia of Liriodendron chinense. Forests 2019, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Hong, Z.; Xu, D.; Jia, H.; Zhang, N.; Liu, X.; Yang, Z.; Lu, M. Genetic Diversity of the Endangered Dalbergia odorifera Revealed by SSR Markers. Forests 2019, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Kulshreshtha, V.P. Plant population Genetics, Breeding and Genetic Resources. Sinauer Assoc. 1990, 10, 43–63. [Google Scholar]
- Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Tan, J.; Zhao, Z.-G.; Guo, J.-J.; Wang, C.-S.; Zeng, J. Genetic Diversity and Population Genetic Structure of Erythrophleum fordii Oliv., an Endangered Rosewood Species in South China. Forests 2018, 9, 636. [Google Scholar] [CrossRef] [Green Version]
- Hartvig, I.; So, T.; Changtragoon, S.; Tran, H.T.; Bouamanivong, S.; Theilade, I.; Kjær, E.D.; Nielsen, L.R. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits. Ecol. Evol. 2017, 8, 530–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S. Evolution in mendelian populations. Genetics 1931, 16, 97–159. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo, R.G.; Carrillo, L.F.; Aparicio, A.; Fernandez-Manjarres, J.F.; Gonzalez-Varo, J.P. Population genetic structure in Myrtus communis L. in a chronically fragmented landscape in the Mediterranean: Can gene flow counteract habitat perturbation? Plant Biol. 2009, 11, 442–453. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Tian, S.; Kou, Y.; Zhang, Z.; Yuan, L.; Li, D.; Lopez-Pujol, J.; Fan, D.; Zhang, Z. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol. Biol. 2018, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hu, H.; Huang, H.; Vargas-Mendoza, C.F. Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): A dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genet. Genomes 2014, 10, 1531–1539. [Google Scholar] [CrossRef]
- Qiu, Y.X.; Fu, C.X.; Comes, H.P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenetics Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Wang, I.J.; Comes, H.P.; Peng, H.; Qiu, Y.X. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Sci. Rep. 2016, 6, 24041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, M.F.; Karafet, T.M.; Park, H.; Omoto, K.; Harihara, S.; Stoneking, M.; Horai, S. Dual origins of the Japanese: Common ground for hunter-gatherer and farmer Y chromosomes. J. Hum. Genet. 2006, 51, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M. Paleography of the Ryukyu Islands. Tropics 2000, 10, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Haq, B.U.; Hardenbol, J.A.N.; Vail, P.R. Chronology of fluctuating sea levels since the triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, S.; Qiu, Y.X.; Liu, Y.H.; Xin-Shuai, Q.I.; Kim, S.H.; Han, J.; Takeuchi, Y.; Worth, J.; Yamasaki, M.; Sakurai, S. Climate oscillation during the Quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia. Mol. Ecol. 2012, 21, 3823–3838. [Google Scholar] [CrossRef]
- Lambeck, K.; Chappell, J. Sea level change through the last glacial cycle. Science 2001, 292, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.K.; Wang, Y.H.; Wang, B.Y.; Ma, H.Y.; Shen, G.Z.; Han, Z.W. Distribution, stand characteristics and habitat of a critically endangered plant Euryodendron excelsum H. T. Chang (Theaceae): Implications for conservation. Plant Species Biol. 2009, 24, 133–138. [Google Scholar] [CrossRef]
- Setoguchi, H.; Mitsui, Y.; Ikeda, H.; Nomura, N.; Tamura, A. Genetic structure of the critically endangered plant Tricyrtis ishiiana (Convallariaceae) in relict populations of Japan. Conserv. Genet. 2010, 12, 491–501. [Google Scholar] [CrossRef]
Population Code | Sample Size | Locations | Latitude (°N) | Longitude (°E) |
---|---|---|---|---|
Western China | 14 | |||
SCLZ | 5 | Luzhou, Sichuan | 28.967 | 105.433 |
SCYB | 5 | Yibing, Sichuan | 28.417 | 104.417 |
CQDZ | 4 | Dazu, Chongqing | 29.533 | 105.650 |
Central China | 25 | |||
CQYY | 3 | Youyang, Chongqing | 28.700 | 108.000 |
GZDZ | 3 | Daozhen, Guizhou | 28.750 | 107.567 |
GZTR | 4 | Tongren, Guizhou | 27.567 | 109.183 |
HBYC | 5 | Yichang, Hubei | 30.650 | 111.283 |
HNHH | 5 | Huaihua, Hunan | 28.000 | 110.167 |
Eastern China | 128 | |||
HBCB | 4 | Chibi, Hubei | 29.700 | 113.817 |
HBHA | 5 | Hongan, Hubei | 31.333 | 114.633 |
AHAQ | 5 | Anqing, Anhui | 30.500 | 117.000 |
HNCZ | 4 | Chenzhou, Hunan | 25.783 | 112.983 |
HNCS | 5 | Changsha, Hunan | 28.200 | 112.933 |
JXYX | 3 | Yongxiu, Jiangxi | 29.033 | 115.550 |
JXAY | 4 | Anyi, Jiangxi | 28.800 | 115.617 |
JXHK | 4 | Hukou, Jiangxi | 29.717 | 116.200 |
JXWY | 4 | Wuyuan, Jiangxi | 29.083 | 117.450 |
JXRC | 3 | Ruichang, Jiangxi | 29.717 | 115.600 |
JXPX | 4 | Pingxiang, Jiangxi | 27.600 | 113.833 |
JXLA | 5 | Lean, Jiangxi | 27.283 | 115.700 |
JXZX | 4 | Zixi, Jiangxi | 27.983 | 117.583 |
JXQN | 3 | Quannan, Jiangxi | 24.633 | 114.367 |
JXRJ | 5 | Ruijin, Jiangxi | 25.883 | 115.950 |
JXSC | 4 | Suichuan, Jiangxi | 26.300 | 114.483 |
JXTH | 3 | Taihe, Jiangxi | 26.800 | 114.967 |
JXWA | 5 | Wanan, Jiangxi | 26.550 | 114.867 |
JXAF | 4 | Anfu, Jiangxi | 27.367 | 114.667 |
JXXJ | 4 | Xiajiang, Jiangxi | 27.853 | 115.316 |
JXXG | 5 | Xingan, Jiangxi | 27.800 | 115.450 |
JXYF | 5 | Yongfeng, Jiangxi | 27.150 | 115.450 |
JXJA | 5 | Jian, Jiangxi | 27.067 | 115.133 |
JXJS | 4 | Jishui, Jiangxi | 27.217 | 115.117 |
FJPT | 5 | Putian, Fujian | 25.317 | 118.567 |
FJPC | 5 | Pucheng, Fujian | 27.917 | 118.517 |
FJWYS | 4 | Wuyishan, Fujian | 27.733 | 118.017 |
ZJCA | 4 | Chunan, Zhejiang | 29.600 | 119.033 |
ZJQY | 4 | Qingyuan, Zhejiang | 27.600 | 119.000 |
ZJXS | 5 | Xiangshan, Zhejiang | 29.367 | 121.867 |
Japan | 4 | |||
JP | 4 | Osaka, Japan | 34.493 | 133.246 |
Total | 171 |
Group | N | Ho | He | FIS | π |
---|---|---|---|---|---|
Western China | 14 | 0.333 | 0.333 | 0.011 | 0.288 |
Central China | 25 | 0.322 | 0.327 | −0.026 | 0.318 |
Eastern China | 128 | 0.302 | 0.306 | 0.020 | 0.305 |
Japan | 4 | 0.504 | 0.442 | −0.151 | 0.230 |
Total | 171 | 0.365 | 0.352 | −0.037 | 0.285 |
Source | Degree of Freedom | Sum of Squares | Variance Components | Percentage of Variation % |
---|---|---|---|---|
Among groups | 3 | 27,901.615 | 154.380 | 7.02 |
Within groups among populations | 167 | 345,029.070 | 20.920 | 0.95 |
Within populations | 171 | 346,138.500 | 2024.202 | 92.03 |
Total | 341 | 719,069.184 | 2199.502 |
Western China | Central China | Eastern China | Japan | |
---|---|---|---|---|
Western China | 0 | 3.321 | 4.558 | 1.395 |
Central China | 0.070 | 0 | 3.271 | 1.406 |
Eastern China | 0.052 | 0.071 | 0 | 2.354 |
Japan | 0.152 | 0.151 | 0.096 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Yang, A.; Wu, Z.; Chen, C.; Li, H.; Liu, Q.; Yu, F.; Zhong, Y. Employing Genome-Wide SNP Discovery to Characterize the Genetic Diversity in Cinnamomum camphora Using Genotyping by Sequencing. Forests 2021, 12, 1511. https://doi.org/10.3390/f12111511
Gong X, Yang A, Wu Z, Chen C, Li H, Liu Q, Yu F, Zhong Y. Employing Genome-Wide SNP Discovery to Characterize the Genetic Diversity in Cinnamomum camphora Using Genotyping by Sequencing. Forests. 2021; 12(11):1511. https://doi.org/10.3390/f12111511
Chicago/Turabian StyleGong, Xue, Aihong Yang, Zhaoxiang Wu, Caihui Chen, Huihu Li, Qiaoli Liu, Faxin Yu, and Yongda Zhong. 2021. "Employing Genome-Wide SNP Discovery to Characterize the Genetic Diversity in Cinnamomum camphora Using Genotyping by Sequencing" Forests 12, no. 11: 1511. https://doi.org/10.3390/f12111511
APA StyleGong, X., Yang, A., Wu, Z., Chen, C., Li, H., Liu, Q., Yu, F., & Zhong, Y. (2021). Employing Genome-Wide SNP Discovery to Characterize the Genetic Diversity in Cinnamomum camphora Using Genotyping by Sequencing. Forests, 12(11), 1511. https://doi.org/10.3390/f12111511