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Abstract: Next-generation sequencing of reduced representation genomic libraries (RRL) is capable
of providing large numbers of genetic markers for population genetic studies at relatively low costs.
However, one major concern of these types of markers is the precision of genotyping, which is related
to the common problem of missing data, which appears to be particularly important in association
and genomic selection studies. We evaluated three RRL approaches (GBS, RADseq, ddRAD) and
different SNP identification methods (de novo or based on a reference genome) to find the best
solutions for future population genomics studies in two economically and ecologically important
broadleaved tree species, namely F. sylvatica and Q. robur. We found that the use of ddRAD method
coupled with SNP calling based on reference genomes provided the largest numbers of markers (28 k
and 36 k for beech and oak, respectively), given standard filtering criteria. Using technical replicates
of samples, we demonstrated that more than 80% of SNP loci should be considered as reliable markers
in GBS and ddRAD, but not in RADseq data. According to the reference genomes’ annotations, more
than 30% of the identified ddRAD loci appeared to be related to genes. Our findings provide a solid
support for using ddRAD-based SNPs for future population genomics studies in beech and oak.

Keywords: restriction-site associated DNA sequencing; SNP genotyping; technical replicates; popu-
lation genomics; European beech; pedunculate oak

1. Introduction

In the past decade, the development of the next-generation sequencing (NGS) methods
combined with various types of newly developed genomic library preparation protocols
provided the tools for relatively inexpensive discovery and genotyping of large numbers
of loci useful in population genomics studies [1–4]. The ultimate way of obtaining genomic
data from multiple samples is to apply whole-genome sequencing (WGS). This approach
maximizes the quantity of information gathered, and opens up the possibility of a wide
variety of analyses; however, it is currently prohibitively expensive and computationally
challenging [5], especially in non-model species with large genomes. Analyses of genomic
variations relevant in most population genomic studies can be conducted with reduced
representation genomic libraries (RRL) [6,7] where only a few percent of the genome is
sequenced. The most popular techniques use restriction enzymes to prepare the DNA
(restriction-site-associated DNA: RAD) for sequencing. In recent years many methods
based on the RAD approach were developed, differing in the number of enzymes used or
in additional steps of library preparation [8].

In this study, we have focused on three RRL methods: RADseq [9], GBS (genotyping-
by-sequencing) [10], and ddRAD (double-digest RAD sequencing) [11–13]. In RADseq,
DNA is digested with a single, frequently cutting restriction enzyme. To such prepared
DNA, barcodes and common adaptors with the first of two primer (P1) are ligated, then
samples are pooled, randomly sheared, size-selected within a 300–700 bp window and,

Forests 2021, 12, 222. https://doi.org/10.3390/f12020222 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-2981-1205
https://orcid.org/0000-0003-3923-5424
https://orcid.org/0000-0002-6899-2523
https://doi.org/10.3390/f12020222
https://doi.org/10.3390/f12020222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12020222
https://www.mdpi.com/journal/forests
https://www.mdpi.com/1999-4907/12/2/222?type=check_update&version=3


Forests 2021, 12, 222 2 of 17

finally, in the final step P2 adaptors are ligated. Only the DNA containing both adaptors
is PCR-amplified and sequenced in the single-end mode [9]. GBS is a simplified protocol
also relying on a single restriction enzyme. Barcoded adaptors and common adaptors are
randomly ligated to digested DNA, and fragments from multiple samples are pooled. Short
DNA reads with both adaptor types are amplified and sequenced in single-end mode [10].
The ddRAD protocol uses two restriction enzymes—a rare and a frequent cutter. The first
is used to generate fragments, after which barcoded primers are annealed. The second
enzyme is used as the replacement for random shearing to improve the size selection step.
Finally, P2 primers are ligated, and the fragments are amplified and sequenced afterward
in double-end mode [11].

Precision and repeatability of genomic data are essential in most types of population
genomics analyses, particularly in genomic selection surveys [14]. However, the ability to ac-
curately genotype SNP loci from restriction-enzyme-based sequencing is a major concern [8].
Problems occurring in the genotyping step can be categorized into two groups: missing data
and genotyping errors. These problems may originate from incorrect library preparation
and un-optimized bioinformatics processing [13]. When ignored, these biases might affect
the inferences of downstream analyses, to an unpredictable degree [15,16]. Optimizing
library preparation and sequencing [13] mitigates sequencing errors. Unfortunately, some
types of problems are unavoidable with restriction-enzyme-based methods, especially when
the DNA quality is low [8,15].

On the other hand, sequencing artifacts can be minimized to some degree at the
data preparation and core bioinformatics stage [17–19]. Current bioinformatics tools for
genotyping from RAD data follow a series of three crucial steps: (1) raw data processing
(preparation); (2) reading of the alignment against a reference genome or de novo assembly
of the sequence tags; and (3) variant calling and filtering [13,20]. These steps aim to provide
reliable and precise data; however, due to the probabilistic nature of the bioinformatic
algorithms, they can alleviate errors while also generating some new mistakes that can
have a profound effect on the final results of downstream analyses [21]. However, overly
conservative filtering of genomic SNP data may cause data loss leading to misestimation
of genetic effects [12].

One of the main advantages of using RAD methods for genotyping of non-model
species is that loci can be identified de novo, without the availability of a reference genome [8].
However, the presence of reference genomes may be beneficial as RAD loci predicted in
combination with a reference genome will be useful in filtering SNPs from paralogous or
repetitive sequences, identifying indel variation, and avoidance of calling wrong loci due to
biological contaminations [8,22]. With well assembled and annotated reference genomes,
identified RAD loci can be readily positioned along the genome and may become directly
useful in association studies. However, only a few studies have compared the efficiency
and precision of SNP discovery and genotyping based on de novo versus reference-aligned
approaches to date [23–25].

Regardless of the nature of any genotyping problems, one way to monitor the levels
of inconsistencies in SNP discovery and genotyping is to use technical replicates [13,19] or
include parent-offspring dyads, if permitted by experimental designs [23]. Mastretta-Yanes
et al. [19] defined several types of possible errors that could be investigated based on the
use of technical replicates while varying different parameters in Stacks software [26]. Using
ddRAD libraries, they analyzed a non-model plant species without a reference genome.
The study demonstrated that with technical replicates, it is possible to optimize and tune a
de novo genotyping pipeline and to identify and mitigate sources of errors [19].

Due to their foundation roles in terrestrial ecosystems and their broad economic
importance, forest tree species have been thoroughly investigated in the areas of population
genetics and evolutionary biology. The accumulated genomic resources, including genome
assemblies of major tree taxa (Populus trichocarpa [27], Eucalyptus grandis [28], Pinus taeda [29],
Olea europea [30], and Quercus lobata [31]), accelerated the progress of population genomics
in forest trees. The number of studies involving genomic data is continuously increasing,
including works based on RAD approaches [22]. Forest trees, due to their characteristic
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life traits [32] are highly heterozygous as compared to other species [33]. The high level
of genome-wide heterozygosity may complicate genome assemblies [31] and confound
SNP discovery and genotyping in RAD-based experiments. However, studies aimed at
optimizing RAD approaches in forest trees are limited [22].

In this study, we investigated the efficiency of SNP discovery and genotyping in two
of the most important broadleaved tree species in Europe, namely common beech (Fagus
sylvatica L.; abbr. FS) and pedunculate oak (Quercus robur L.; abbr. QR), both belonging to
the Fagaceae family. Using the same set of individuals within the species, we evaluated the
three RAD approaches mentioned earlier: RADseq, GBS, and ddRAD. Taking advantage
of the reference genomes of beech and oak, we contrasted de novo and reference-aligned
marker discovery approaches. Among the samples of each species, we included technical
replicates (four individuals sampled twice), which enabled us to monitor the replicates
genotyping consistency while optimizing specific parameters of the applied bioinformatics
pipelines. Our ultimate goal was to fine-tune protocols and the approaches for gathering
as many loci as possible with the fewest possible artifacts and the lowest proportion of
missing loci. We believe that our findings will be useful for selecting the most appropriate
RAD approaches for population studies in beech and oak, and will provide best-practice
guidelines for processing RAD data in general.

2. Materials and Methods
2.1. Species Background

Common beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) are broad-
leaved, monoecious, wind-pollinated, and highly outcrossed tree species [34,35], both
belonging to the Fagaceae family. In Europe, they play essential roles in forest ecosystems’
ecology and are essential in the forestry-based economy in several countries [36–38]. Ge-
netics is one of the most thoroughly researched aspects of beech and oak [39,40]. However,
while it is continuously growing, the genomic-based knowledge of these two species is
still limited but continuously growing [41–45]. Reference genomes of the two species were
published relatively recently. The common beech haploid genome (version: 1.3) [46] is
the smaller of the two, totaling 542.3 Mbp with a GC-pair content of 35.69% and 62,085
predicted genes. The pedunculate oak haploid genome (version: PM1N) [47] is distinctly
larger: 814.36 Mbp, consisting of 35.65% GC-pairs, and 25,808 well-defined genes.

2.2. Sample Collection

Beech individuals selected for this study were sampled from the provenance trial
located in the Siemianice Experimental Forest District (51◦12′52.4′′ N, 17◦59′50.1′′ E) in south-
central Poland [48]. The trial consists of 71 provenances originating mostly from Central
Europe; however, for this study, we sampled 91 individuals representing 47 provenances.
Among them, four individuals from four different provenances were sampled twice from the
same individual and were considered technical replicates (duplicated samples) and marked
thereafter as FA, FB, FC, and FD. Oak individuals originated from the provenance/family of
a common-garden trial located in the Mogilica Forest District (53◦12′36.7′′ N, 15◦13′39.7′′ E)
in north-western Poland [49]. The trial consists of the progeny of mother trees originating
from eight Polish provenances (50 mother trees/provenance). As with beech, we sampled
91 individuals representing all of the provenances and 64 unique mother-trees families,
and four individuals were selected as technical replicates, each one being the progeny of a
different provenance/mother-tree, marked as QA, QB, QC, and QD. Such a wide sampling
of individuals from several populations was intended to account for the possibility of large
genetic diversity within species.

Replicates were processed separately to assess the repeatability of SNP identification
and calling procedures. Altogether, within each species and method, 95 samples were
subjected to DNA isolation and sequencing (570 samples in total). Samples for GBS and
RADseq libraries were collected in 2014 from the same individuals. However, to generate
ddRAD libraries, the trees were sampled in 2015, and some individuals (not the replicates)
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were replaced due to health-related dropout cases. Details regarding the sampled material
is presented in Tables S1.1 (for beech) and S1.2 (for oak).

2.3. DNA Isolation, Library Construction, and Sequencing

The sequencing of reduced-representation libraries demands high molecular weight
DNA >50 kb, with a concentration >30 ng/µL and total mass of 1.5–3 µg [50]. To meet
these requirements, we collected flushing leaf buds. Sampled material was dried to ≈10%
humidity with a phytotron (BINDER WTC KB 240) for 24 h at 30 ◦C; afterwards, 30 mg of
tissue was stacked in sterile 2 mL Eppendorf tubes and ground at 30 Hz in a laboratory
mill (Mixer Mill MM 400, Retsch, Haan, Germany). DNA was isolated using GeneMATRIX
Plant & Fungi DNA Purification Kit (EURx, Gdańsk, Poland), with slight modifications to
the manufacturer’s protocol (for details, see Supplementary Materials).

Isolated DNA was shipped to external service providers for enzyme optimization, li-
brary construction, and sequencing: GBS—Cornell University (Ithaca, NY, USA); RADseq—
Floragenex Inc. (Portland, OR, USA); and ddRAD—IGA Technology Services (Udine, Italy).
Details of library construction and sequencing are presented in Table 1.

Table 1. Summary of enzymes and sequencing modes used for each library type.

Library Type Enzyme and Species Sequencer Read Length Sequencing Mode Barcode Length (bp)

GBS EcoT22I—both HiSeq 2000 100 Single-end 5–8
RADseq PstI—both HiSeq 2000 100 Single-end 10

ddRAD SphI/Sau3AI—F. sylvatica
PstI/Sau3AI—Q. robur HiSeq 2500 125 Paired-end 15

2.4. Data Processing and Analysis

Sequence datasets were checked with FastQC software (v0.11.8; [51]) to assess the
average Phred quality score of each nucleotide position, and the presence of artifacts such
as sequencing adaptors. Samples were demultiplexed using the process_radtags tool: a part
of the Stacks pipeline (v2.3) [26]. Process_radtags was configured to discard reads with
average Phred-score <20, remove the barcode and trim 3′-ends of the reads if necessary.
Among reads from the GBS library, the presence of contaminants (e.g., Illumina universal
adaptors) and a quality drop at the 3′-end meant that these samples were trimmed to 64 bp.
RADseq and ddRAD data were free from these artifacts, providing 90 bp and 110 bp reads,
respectively. Quantity and quality of reads of each individual were again checked with
FastQC; the results were summarized with MultiQC (v1.7) [52]. Finally, the reads were
processed for additional purification with Trimmomatic [53] using default settings.

Initial analyses were conducted based on technical replicates. The intention behind
the use of technical replicates was to investigate to what degree the genotypes reported
from two replicates of the same individual are identical and how the parameters used in
de novo or reference-based SNP calling affect that similarity. For the de novo approach, we
used Stacks (v2.3) [26] to construct loci and extract SNPs. In this study, we tested a set of
three parameters, similarly to the study of Mastera-Yanes et al. [19]. The core parameters in
the denovo_map pipeline were varied across the course of the experiment: m—a minimum
number of reads necessary to create a stack (range 2÷ 15, default 3); M—maximum number
of mismatches between stacks while searching for the allele in an individual (range 2 ÷ 10,
default 2); and n—the maximum number of mismatches between loci searched in a joint
pool (range 1 ÷ 5, default 1). Only one parameter at a time was changed, while others were
set to the default values. The results were outputted to ‘vcf’ file format using the built-in
‘populations’ pipeline, providing 28 datasets for each species and the library for further
analyses (168 datasets in total).

In the reference-based approach, we used bwa software (v 0.7.17) [54] with default
settings to map the reads against available reference genomes and tested the effects of
varying different parameters on the outcome of the SNP-calling procedure. This step was
carried out using Heap software (v0.8) [55]. The program uses an approach similar to
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GATK [56], but it is less stringent and has a rather simpler setting. The following parameters
were tested: depth—a minimum depth of filtered reads that support each of the reported
alleles at the individual level (range 3 ÷ 10, default 3), and mapq—the posterior probability
that mapping position is wrong, expressed as a Phred score (20, 30, 40; default 20). Similarly
to the method outlined above for de novo analyses, only one parameter was changed at a
time while other parameters were fixed to the default values. The results were outputted to
a vcf file format, delivering 34 datasets for each species and the library for further analyses
(234 datasets in total).

The results obtained for technical replicates were filtered with vcftools (v0.1.16) [57]
to exclude indels and include only biallelic SNPs present in at least 6 out of 8 samples
(75%). The key indicators and error types (Table 2) were calculated for each replicated pair
in each dataset, and averaged with a custom-designed script written in bash. Note that
due to filtering out of anything other than biallelic loci, the allele errors of type A|C-A|T
(as indicated in [19]) could not be assessed in our study.

Table 2. Key indicators used to assess method efficiency.

Indicator Description Examples *

Good loci (GL) Genotypes in both replicates are the same. R1 A|A—R2 A|A
R1 A|C—R2 A|C

Missing allele (MA) A variant of one genotype partially fits the other R1 A|A—R2 A|C
Locus error (LE) Both genotypes differ with no common alleles R1 A|A—R2 C|C

Missing loci (ML) One genotype available, second is absent. R1 A|A—R2 0|0
Missing data (MD) Both genotypes of a replicate are absent. R1 0|0—R2 0|0

* R1/R2—first and second technical replicates for a pair; A,C—example nucleotides; 0|0—missing genotype.

Finally, we analyzed the full dataset to assess the efficiency of different RRL libraries
used in this study. To reduce redundancy in the full datasets, we have included only one
replicate from a pair: the one with the higher read number. Samples with less than 50% of
the average number of reads were discarded from the analysis [19]. SNPs from de novo
(Stacks) and reference-based (Heap) protocols were generated using default settings. The
outputted results were filtered with vcftools [57] to exclude indels, non-biallelic SNPs,
and markers present in less than 80% of the samples. To reduce linkage disequilibrium
(LD) bcftools was used with r2 > 0.5 in a 1000 bp window. Filtered SNPs were analyzed
to determine differences in the generated data from the GBS, RADseq, ddRAD genomic
libraries and how genotyping strategies affect each of them.

Basic statistics of different datasets were generated with bcftools from the samtools
package (v1.9) [58] with option: stats. A summary of the statistics was conducted in the R
environment [59]. Annotation of the reference-based SNPs was carried out using SnpEff [60]
using default settings, with gff3 files provided with the reference sequences of beech and
oak [46,47]. The annotation was performed on the sets containing biallelic SNPs with
markers present in at least 80% of the samples, and minor allele frequency (MAF) > 0.05.

3. Results
3.1. Technical Replicates

The highest average number of reads after cleaning was obtained for GBS libraries for
both species: FS: 1.93 × 106 reads/sample; QR: 3.34 × 106 reads/sample. In the other two
libraries the quantity of data was considerably lower: RADseq—FS 1.15 × 106 reads/sample,
QR: 1.15 × 106 reads/sample; ddRAD—FS: 1.07 × 106 reads/sample; QR: 1.08 × 106

reads/sample (for details, see Table S2). We noticed that the replicated pairs with higher read
numbers generated more SNPs; however, larger differences in the number of reads between
individuals within the pair negatively affected the quantity of data obtained per pair.

The analyses conducted using default settings showed that different types of libraries
provided comparable results for oak and beech (Table 3). The ddRAD and RADseq datasets,
in contrast to GBS, generated a proportionally higher number of raw SNPs in the mapping
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approach than in the de novo approach. We also found that after filtering (only biallelic
SNPs; present in at least 6 out of 8 samples; indels removed), the set of SNPs generated de
novo had a distinctly higher percentage of the retained markers than the set obtained using
the mapping approach (average 53.4% vs. 43.2%; Table 3). However, the actual number
of SNP loci after filtering was the highest for ddRAD, and from the mapping approach in
particular (Table 3).

The proportion of good loci (GL) was significantly higher in GBS and ddRAD datasets
as compared to RADseq (Table 3). This may have been caused by fragmention of DNA,
as the RADseq protocol heavily relies on initial DNA quality and may produce uneven
coverage among the samples [15,61]. This assumption is supported by the distinctly altered
proportions of missing loci (ML) and allele error (LE) counts in the RADseq data as compared
to the other two libraries. The proportion of missing alleles (MA) in the GBS and ddRAD
sets increased when using the mapping method. This is probably a result of the SNP calling
procedure, where the allele must be present in at least three reads to call a variant. In general,
all libraries had similar levels of missing data (MD).

In conclusion, given the yield of filtered SNP loci and the proportion of reliable loci
(GL) for both species, the most efficient method to gather the largest quantity of data is
by applying the ddRAD technique and implementation of a mapping approach for SNP
discovery and calling. Finally, in respect of ‘good’ loci, we were able to find 52,280 in beech
and 67,977 in oak, given the filtering criteria applied.

3.2. Influence of Parameters Used in Genotyping Procedures

Finding the best-fitting parameters is a crucial aspect of bioinformatics [62]. By increas-
ing the threshold for the minimum number of reads required to create a locus (m) in the
de novo procedure using Stacks (v2.3) [26], the number of SNPs in all analyzed datasets
was decreased. The parameter itself may be treated as an additional filtering tool for obtain-
ing loci with higher coverage, and for increasing reliability of the results. Comparing the
number of markers generated with a variable m value (for details see: Tables S3.1 and S3.2)
indicated a decrease of SNPs reported in raw and filtered datasets, as expected. The share
of good loci (GL) in all analyzed cases decreased with increasing m, which was correlated
with the increase of missing loci (ML). In general, the m parameter had a minor effect on
MA, LE, and MD; however, the filtering nature of the m value mitigated locus error (LE) to
some degree in RADseq sets (for detailed results, see: Tables S3.1 and S3.2). Overall, we
found the default value (3) of the m parameter to be the best in optimizing the quantity and
quality of discovered SNPs for both species.

We found that the two Stacks parameters that allow for mismatches, namely M
(number of mismatches between stacks within the individual) and n (number of mismatches
in the joint pool of individuals), elevated the numbers of raw markers in all studied cases.
Only in the QR-GBS dataset did the number of filtered SNPs slightly decreased with
increasing M (Table S3.2). This occurs when a locus is underrepresented in a joint catalog
being filtered for a minimum number of individuals, which causes a marker dropout.
All datasets were insensitive in terms of the influence of the M parameter on the key
indicators defined in Table 2. For example, we observed only a slight decrease (2.3%–4.9%)
in the GL when increasing the number of mismatches (for detailed results, see: Tables S3.1
and S3.2). In general, our results indicated that the elevated number of mismatches within
the individual has only a slight influence on the key indicators, and the most important
factor responsible for marker quality is the initial quality of the data itself. However, when
choosing the optimal value of M, several other factors must be considered, such as the
length of sequence reads, the biology of species (including heterozygosity levels), and
the degree of relatedness/differentiation among individuals or populations. Considering
the above, and the fact that our sampling material in each species represented several
populations (see Methods) we decided to choose the optimal value of the M value to be
2 (default), both for beech and oak, although slightly higher values should provide more
markers with only a slight loss of GL.
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Table 3. Total number of raw (unfiltered) and filtered SNPs, and key indicators for replicated samples and each library type and genotyping method; data generated with default settings
(GL—good loci, MA—missing allele, LE—locus error, ML—missing loci, MD—missing data).

Fagus sylvatica Quercus robur
GBS RADseq ddRAD GBS RADseq ddRAD

Average number of reads/sample 1,927,317 1,159,360 1,071,369 3,342,097 1,513,053 1,086,261

Genotyping method de novo map de novo map de novo map de novo map de novo map de novo map

Number of raw SNPs 32,180 21,860 37,063 43,538 81,338 145,548 67,123 51,747 45,026 88,151 76,376 162,674

Number of SNPs after filtering * 20,813 12,666 16,454 13,764 42,732 65,082 42,859 29,482 10,888 13,415 51,814 78,786

% of SNPs after filtering * 64.68 57.94 44.39 31.61 52.54 44.72 63.85 56.97 24.18% 15.22% 67.84 48.43

K
ey

in
di

ca
to

rs
of

th
e

fil
te

re
d

SN
Ps GL 87.01% 84.80% 46.23% 48.43% 80.90% 80.33% 87.50% 86.70% 42.60% 46.00% 87.25% 86.28%

MA 2.04% 5.32% 17.21% 8.83% 2.80% 5.35% 2.0% 4.23% 15.1% 7.3% 1.86% 4.34%

LE 0.12% 0.04% 5.45% 9.17% 0.18% 0.04% 0.2% 0.02% 6.8% 9.7% 0.10% 0.02%

ML 6.94% 6.91% 28.89% 31.14% 12.07% 10.50% 6.1% 6.00% 32.9% 34.1% 7.03% 5.62%

MD 3.89% 2.94% 2.22% 2.43% 4.04% 3.79% 4.2% 3.03% 2.6% 2.8% 3.75% 3.73%

* Only biallelic SNPs, present in at least 6 out of 8 samples, indels removed.
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The n parameter is responsible for allowing mismatches in a joint pool, and as expected,
increasing n resulted in increased numbers of SNPs in both raw and filtered data. The GL
parameter decreased slightly in GBS and ddRAD sets (<5%) and was rather stable in RADseq.
The effect of n on other key parameters was considerably lower. The RADseq data was
weakly affected by changes of n parameter (for detailed results, see Tables S3.1 and S3.2).
When choosing the appropriate value for n parameter, similar cautions should be needed
as for parameter M. However, it is also important to note the degree of diversity among
populations/individuals included in the analysis. Since increasing n may also increase the
proportion of paralogous loci we decided to use the default value (1) as the optimal value
for this parameter in our study.

The Heap tool used in this study implements a similar bioinformatics approach as
GATK to call SNPs, but it seems to be less conservative [55]. In Heap, the depth parameter sets
a threshold for the minimum number of mapped reads/nucleotides needed to call an SNP.
It can be treated as an additional filtering tool for increasing confidence in returning markers
that are not sequencing errors. The impact of depth on key indicators is a consequence of
loss of markers when an individual from a replicate pair has a lower number of reads. In
general, increasing depth distinctly decreased the number of filtered SNPs; however, GL
decreased slightly or remained unchanged. In most cases, the change of GL, along with
depth, was negatively correlated with ML (for details, see Tables S3.3 and S3.4).

The mapq parameter is also quality-related parameter, although it did not influence
the key indicators; rather, it had an impact on the number of markers generated (for details,
see Tables S3.3 and S3.4). Across the datasets, those from GBS were affected most when
increasing mapq. Using high mapq values is justified, especially when the Phred quality of
the delivered data is low, likely generating false-positive SNPs. Considering the ‘filtering’
nature of both parameters when high-quality genome and reduced representation data is
available, we recommend setting them to default values (depth = 3; mapq = 20).

3.3. Whole Datasets

In our analysis, we initially decided upon the threshold that an individual would
need to have at least 50% of the average number of SNP per individual to be included in
subsequent analyses. In beech, all 91 samples fulfilled this criterion; however, in oak, three
samples in GBS and one in RADseq did not pass the threshold, and these were discarded
from further analyses.

In general, there was a congruence between the replicated samples and the whole
datasets in the numbers of SNPs retained after filtering (Tables 3 and 4). The numbers of
SNPs obtained based on the whole datasets depended on the genome’s size, except in the
case of RADseq data. The filtering process increased the sample depth from 25.12 (unfiltered)
to 34.35 (filtered), which seems to be the level acceptable for most population analyses. The
Ts/Tv ratio was comparable across all datasets. However, after filtering, the average Ts/Tv
ratio increased by 0.18 for the de novo method and only 0.05 for the mapping method. The
increased Ts/Tv ratio in the filtered sets is the expected effect of higher SNP quality after
filtering [63].
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Table 4. Basic statistics of results generated with de novo (Stacks) and map (HEAP) approaches on the whole datasets. (MAF—minor allele frequency; LD—linkage disequilibrium;
TV/TS—transition to transversions ratio).

Fagus sylvatica Quercus robur

GBS RADseq ddRAD GBS RADseq ddRAD

de novo map de novo map de novo map de novo map de novo map de novo map

Number of samples 91 91 91 91 91 91 87 87 90 90 91 91

U
nfi

lt
er

ed
da

ta Number of SNPs 124,349 58,788 157,755 130,325 391,161 482,198 325,260 180,214 257,606 304,664 406,455 634,434
Transition 75,927 35,892 81,748 71,016 237,729 314,620 212,475 120,515 147,199 186,612 234,486 408,345

Transversion 48,422 23,708 76,007 60,689 153,432 174,191 112,785 63,543 110,407 122,927 170,346 233,228
TS/TV ratio 1.57 1.51 1.08 1.17 1.55 1.81 1.88 1.90 1.33 1.52 1.38 1.75

Avg. sample depth 34.1 30.7 28.5 24.4 16.7 15.9 22.6 22.4 28.7 26.5 25.9 25.0

Fi
lt

er
ed

da
ta

SN
Ps

>
80

%
+

M
A

F
>0

.0
5

+
re

m
ov

ed
LD Number of SNPs 16,816 8270 3071 1083 28,541 28,199 28,907 15,919 709 230 35,245 36,058

% of SNPs retained 13.52% 14.07% 1.95% 0.83% 7.30% 5.85% 8.89% 8.83% 0.28% 0.08% 8.67% 5.68%
Transition 10,092 4979 1792 665 17,629 17,917 19,835 11,064 435 129 21,479 22,104

Transversion 6724 3291 1279 418 10,912 10,282 9072 4855 274 101 13,766 13,954
TS/TV ratio 1.50 1.51 1.40 1.59 1.62 1.74 2.19 2.28 1.59 1.28 1.56 1.58

Avg. sample depth 40.5 35.4 38.2 40.8 21.9 21.4 26.3 29.4 47.7 46.4 32.8 31.4

A
lt

er
na

ti
ve

fil
te

rs
w

it
h

no
LD

fil
te

ri
ng SNPs >80% 39,953 24,214 11,658 2892 87,832 124,769 100,578 70,550 4033 926 132,158 172,450

SNPs > 80% + MAF > 0.05 20,043 11,760 3707 1451 41,177 56,288 33,530 22,094 847 402 45,841 59,475

SNPs 100% 10,237 9736 9 4 15,092 34,751 14,813 16,219 19 5 31,566 53,639

SNPs 100% + MAF > 0.05 4769 4639 0 1 6539 16,227 4052 4704 1 1 9192 17,284
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RADseq appeared to be the least efficient method for the identification and calling of
SNPs. Despite the large initial number of loci, data filtering resulted in a dramatic reduc-
tion of loci that fulfilled the criteria. It seems that the most critical problem in RADseq is
repeatability of loci identification. Many initial loci were filtered out due to their uniqueness
(MAF > 0.05) or a high level of missing data. This correlates the high proportions of MD
and MA observed in the replicated samples. We suspect that the poor RADseq performance
could have resulted from low quality of input DNA samples, which may have been at-
tributable to errors made during the construction of libraries where some samples may have
not been sufficiently cleaved with a restriction enzyme or fragmented by sonicators, thus
causing the dropout of many RAD sites. SNPs’ final outputs based on designed filtering
criteria exclude this type of library for population genomic analyses.

GBS provided reasonably large datasets for both beech and oak samples. A range of
~8000 to ~28,000 SNPs per genome (depending on species and genotyping method; Table 4)
seem to be sufficient for most types of published population genomic studies; however,
such density may not be adequate for in-depth association analyses. Assuming standard
filtering (SNPs observed in >80% of individuals; MAF > 0.05; no LD), GBS provided more
data using the de novo approach than the mapping method. This is likely related to the size
of the sequence reads of GBS data. Since some shorter reads could be mapped to multiple
genome positions, they were discarded as ambiguous and not considered for identification
of SNPs. However, the difference in numbers of SNPs between de novo and mapping
methods was minimized when SNP loci were required to be observed in all sampled
individuals (SNPs: 100%), which resulted in reduced numbers of SNPs. This suggests that,
for GBS, the mapping method is more conservative than the de novo approach when one
allows for some level of missing data to be acceptable for downstream analyses.

The ddRAD approach appeared to be the best choice for identification and calling of
SNPs in both beech and oak. After filtering, this method returned ~28,000 and ~35,000 SNPs
for beech and oak, respectively. Interestingly, the locus counts were similar for de novo
and mapping methods of SNP identification, which should be considered a reciprocal
confirmation of the data quality. Even when requiring that a SNP locus must be genotyped
among all sampled individuals (i.e., no missing data), and setting no MAF limits, there were
still ~34,000 and ~53,000 markers available for beech and oak, respectively (Table 4). Such
numbers of fairly repeatable SNP markers satisfy most types of population genomic studies,
and should be helpful even in some genomic association analyses.

Using the available reference genomes (beech—[46]; oak—[47]), we have annotated
the filtered SNPs obtained from the mapping approach to check their genomic position and
usefulness in future studies. In both species, a similar pattern was observed; however, some
differences between these species may result from differences in the genome annotation
methods. In both cases, the GBS markers were mostly (>75%) associated with non-gene
sites, while in RADseq and ddRAD a considerable proportion of SNPs was related to genes
(Table 5). However, about 26% of SNPs in beech and 22% in oak were located in introns
or were synonymous sites (Table 5). Considering the total number of SNPs in the filtered
data sets related to genes, but excluding intron and synonymous variants, we obtained the
best results with ddRAD, indicating 4105 and 3658 SNP loci in beech and oak, respectively
(Table 5).
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Table 5. Categories of filtered (SNPs > 80%, MAF > 0.05, LD removed) and annotated SNPs.

Fagus sylvatica Quercus robur Fagus sylvatica (%) Quercus robur (%)

Annotation Type GBS RAD ddRAD GBS RAD ddRAD GBS RAD ddRAD GBS RAD ddRAD

3 prime UTR variant 165 35 687 55 1 454 2.00% 3.23% 2.44% 0.35% 0.42% 1.26%
5 prime UTR premature start codon gain variant 11 5 49 - - 43 0.13% 0.46% 0.17% - - 0.12%

5 prime UTR variant 23 14 242 5 - 260 0.28% 1.29% 0.86% 0.03% - 0.72%
Initiator codon variant - - 3 - - - - - 0.01% - - -

Missense variant 298 205 2690 180 27 2521 3.60% 18.93% 9.54% 1.13% 11.44% 6.99%
Missense variant&splice region variant 9 3 41 7 - 40 0.11% 0.28% 0.15% 0.04% - 0.11%
Splice acceptor variant&intron variant 3 1 27 1 - 4 0.04% 0.09% 0.10% 0.01% - 0.01%

Splice donor variant&intron variant 3 - 15 1 - 4 0.04% - 0.05% 0.01% - 0.01%
Splice region variant 3 1 12 - - 5 0.04% 0.09% 0.04% - - 0.01%

Splice region variant&intron variant 37 13 177 21 - 243 0.45% 1.20% 0.63% 0.13% - 0.67%
Splice region variant&synonymous variant 6 1 31 4 - 37 0.07% 0.09% 0.11% 0.03% - 0.10%

Start lost - - 4 1 - 4 - - 0.01% 0.01% - 0.01%
Stop gained 8 7 114 8 1 36 0.10% 0.65% 0.40% 0.05% 0.42% 0.10%

Stop gained&splice region variant - - 4 - - 1 - - 0.01% - - 0.00%
Stop lost 1 - 8 - - 1 0.01% - 0.03% - - 0.00%

Stop lost&splice region variant - - - - - 2 - - - - - 0.01%
Stop retained variant 1 - 1 - - 3 0.01% - 0.00% - - 0.01%
Synonymous variant 253 201 1963 145 25 2653 3.06% 18.56% 6.96% 0.91% 10.59% 7.36%

Intron variant 1204 125 3418 1234 27 6066 14.56% 11.54% 12.12% 7.75% 11.44% 16.82%
Intergenic region 830 73 2597 10,015 83 12,212 10.04% 6.74% 9.21% 62.91% 35.17% 33.87%

Downstream gene variant 2033 178 6249 2046 37 6343 24.58% 16.44% 22.16% 12.85% 15.68% 17.59%
Upstream gene variant 3382 221 9867 2196 35 5126 40.89% 20.41% 34.99% 13.79% 14.83% 14.22%

Total 8270 1083 28,199 15,919 236 36,058

Non genes 6245 472 18,713 14,257 155 23,681 75.51% 43.58% 66.36% 89.56% 65.68% 65.67%
Genes 2025 611 9486 1662 81 12377 24.49% 56.42% 33.64% 10.44% 34.32% 34.33%

Genes—excluding intron and synonymous 568 285 4105 283 29 3658 6.87% 26.32% 14.56% 1.78% 12.29% 10.14%
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4. Discussion

In recent years, a growing interest in reduced-representation genomic approaches
and their applications proved their usefulness in numerous studies [8,64,65]. However,
the variety of available library types and analytical pipelines to process this data can be
confusing, especially for researchers with limited experience, despite the broad support of
research community. The use of technical replicates in the optimization of SNP identifica-
tion and calling is described in many studies [19,66–68] and it appears to be a good practice
to tune the pipeline parameters to the species and scope of the study, and to monitor the
quality of SNP identification. Our results confirm these findings and provide additional
information in the discussion on how different types of libraries from the same species can
be influenced by distinct genotyping strategies.

Testing of technical replicates is inexpensive, and it should be the initial requirement
when using RAD-based genomic libraries for marker discovery. The optimization step
can provide initial insights into the expected range of results in a larger study, and reduce
risk of project failure. The analytical process after data delivery is fast, and evaluation of
a few samples on a standard computer (e.g., four-thread CPU with 8 GB of RAM) takes
from 24 to 72 h. Due to the rapid development of out-of-the-box solutions, both offline
(e.g., dDocent [61]) and online (e.g., Galaxy [69]), the data analysis process can be performed
by staff even only moderately involved in the field of bioinformatics. However, to obtain
informative SNPs, specific requirements for the isolated DNA must be met [70].

NGS is particularly sensitive to low DNA quality, and vulnerable to errors which
can emerge during the library preparation [71,72]. Our results suggest that laboratory
errors can lead to genomic region/marker dropout, as in the case of our RADseq dataset,
despite a satisfying number of reads per sample. However, RADseq is known to suffer
from large proportions of missing data [73]. When outsourcing the construction of libraries
and subsequent sequencing, research teams should be focused on providing good quality
DNA or fresh raw material to avoid potential data errors [74].

Overrepresentation in de novo SNP data, as observed in GBS datasets, can result from
differences in genome size among individuals within the species [75,76], especially when
using a restriction enzyme that cuts frequently, as illustrated in our GBS data. When the
mapping approach is used, sequencing errors may decrease SNP numbers after unfitting
bases are discarded. Nonetheless, this reference-based strategy would provide data that may
be more comparable with that of other studies, and it can also deliver additional information
e.g., annotation of SNPs [8]. This genotyping strategy should always be the first choice when
a reference genome is available [77]. On the other hand, although the availability of plant
genomes is increasing on a daily basis, they are still scarce. In the absence of a reference
genome, de novo genotyping is a reliable alternative, as demonstrated in other studies [78].

It should be noted that in this study, we used an initial filtering of SNP data (SNPs
biallelic; present in 75–80% of samples; indels removed), which generally alleviates some
common genotyping problems, including missing loci. In particular, the choice to filter
out those loci present in less than a specified fraction of samples (e.g., 80%) appears to
be an efficient way of pre-selecting reliable loci [8,79]. Therefore, our variation of Stacks
or Heap parameters had only a moderate effect on the size and quality of resulting SNP
datasets. After the initial optimization, based on replicated samples, the choice of the
correct parameters to genotype the whole sample set is always the trickiest part of the
study. Here, we would not like to provide unequivocal information on what exact values
should be chosen, because these depend on the scope of analysis, the species’ biology,
and even sampling strategy (local or wide sampling). However, we intend to share some
observations and guidelines on how to perform the optimization process.

• The assessment of the raw and filtered numbers of markers (i.e., biallelic SNPs, present
in at least 6 out of 8 samples, indels removed) helps to detect library/data errors. For
example, significant loss of markers in a filtered set will usually be a signal of uneven
genome coverage by reads, regardless of the genotyping method.
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• When assessing the number of markers reported based on parameters associated with
more restrictive genotyping (e.g., m, depth, mapq), first check the number of SNPs after
filtering (with the abovementioned criteria). In some sets, more stringent filtering did
not cause the expected improvement but rather the possible loss of SNPs.

• Pairs of replicated samples from the same individuals will always share a significantly
higher proportion of good loci (GL) with each other than with any other sample. This
observation can be used as a quality control tool to determine whether a swap of
samples occurred.

• To overcome a threat of false positive SNPs, which can occur with highly elevated
numbers of markers, we suggest focusing on the proportion of good loci as the most
important key indicator.

• Increasing the minimum number of reads necessary to create a stack (m) will always
decrease read number and cause dropout of underrepresented makers leading to the
decreased levels of GL and a higher proportion of ML (as in the case of GBS and ddRAD)
and, in cases of problems with data uniformity throughout the whole genome, shifted
MA values (as in the case of RADseq).

• If a reference genome for the species under analysis is available, optimization should
be conducted using the reference-based approach. It can be expected to deliver results
that are more reliable, and more comparable to those of other studies.

• The influence of SNP-calling procedure has a profound effect on the number and
quality of markers. Both depth and mapq should be treated as filtering tools; high values
for these parameters will significantly decrease the number of markers returned. If
more stringent filtering is necessary, using elevated mapq is a preferable option due to
having no effect on key indicators. These symptoms are usually a sign of increased
detection of false positive SNPs [19].

• Shifted mismatch both on an individual level and in the joint catalog should be
adjusted with respect to species biology and the sampling strategy applied [66].

5. Conclusions

Genotyping by next-generation sequencing (NGS) of reduced-representation genomic
libraries associated with restriction enzymes became a common approach to identify
large numbers of genetic markers (mostly SNPs) uniformly distributed across genomes.
However, the number and quality of RAD-based markers obtained in particular studies
depends on many aspects, including the quality of DNA isolation, the choice of RRL, the
type of restriction enzymes, the design of sequencing (resulting in sequencing depth), and
the bioinformatics pipelines used for identification and calling of SNPs [8,22]. Testing all
of the possible variables is beyond the scope of a single study. In this paper, we briefly
evaluated the three RRL approaches (GBS, RADseq, ddRAD) and different methods of SNP
identification (de novo or by reference genome mapping) to find the best toolset for future
population genomics studies in two broadleaved tree species: F. sylvatica and Q. robur.

We found that the most promising approach—providing relatively large numbers of
reliable SNPs—is to employ the ddRAD technique and a calling approach based on mapping
sequence reads to a reference genome. Based on about 90 individuals within species, we
found ~28,000 and ~36,000 loci for beech and oak, respectively, given typical filtering
criteria (MAF > 0.05; SNPs present in >80% samples; LD r2 < 0.5). However, when relaxing
LD filtering limitations, these numbers increased up to ~56,000 and ~59,000 respectively
(Table 4). Based on technical replicates, we estimated that in ddRAD more than 80% of SNP
loci should be considered reliable. Additionally, according to annotations on the reference
genomes, we found that in both species more than 30% of the identified loci could be related
to genes. These findings provide a solid support for the use of ddRAD-based SNPs for
future population genomics, or even for genomics selection studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-490
7/12/2/222/s1, DNA isolation protocol, Table S1.1.—European beech (Fagus sylvatica L.) sample basic
information; Table S1.2.—Pedunculate oak (Quercus robur L.) sample basic information; Table S2. Basic

https://www.mdpi.com/1999-4907/12/2/222/s1
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replicate samples information; Table S3.1. Results of parameters (m, M, n) altering for genotyping
with stacks (de novo method) of European beech (Fagus sylvatica L.) replicated samples; Table S3.2.
Results of parameters (m, M, n) altering for genotyping with stacks (de novo method) of pedunculate
oak (Quercus robur L.) replicated samples; Table S3.3. Results of parameters (depth, mapq) altering for
genotyping with Heap (mapping method) of European beech (Fagus sylvatica L.) replicated samples;
Table S3.4. Results of parameters (depth, mapq) altering for genotyping with Heap (mapping method)
of pedunculate oak (Quercus robur L.) replicated samples.
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50. Healey, A.; Furtado, A.; Cooper, T.; Henry, R.J. Protocol: A simple method for extracting next-generation sequencing quality
genomic DNA from recalcitrant plant species. Plant Methods 2014, 10, 21. [CrossRef] [PubMed]

51. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 16 November 2020).

52. Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single
report. Bioinformatics 2016, 32, 3047–3048. [CrossRef]

53. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef] [PubMed]

54. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595.
[CrossRef] [PubMed]

55. Kobayashi, M.; Ohyanagi, H.; Takanashi, H.; Asano, S.; Kudo, T.; Kajiya-Kanegae, H.; Nagano, A.J.; Tainaka, H.; Tokunaga, T.;
Sazuka, T.; et al. Heap: A highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data.
DNA Res. 2017, 24, 397–405. [CrossRef]

56. DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.;
Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet.
2011, 43, 491–498. [CrossRef]

57. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.;
et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [CrossRef]

58. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The
Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]

59. Team, R.C. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on
24 January 2020).

60. Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating
and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [CrossRef]

61. Puritz, J.B.; Hollenbeck, C.M.; Gold, J.R. dDocent: A RADseq, variant-calling pipeline designed for population genomics of
non-model organisms. PeerJ 2014, 2, e431. [CrossRef]

62. Kececioglu, J.; DeBlasio, D. Accuracy estimation and parameter advising for protein multiple sequence alignment. J. Comput. Biol.
2013, 20, 259–279.

63. Wang, J.; Raskin, L.; Samuels, D.C.; Shyr, Y.; Guo, Y. Genome measures used for quality control are dependent on gene function
and ancestry. Bioinformatics 2014, 31, 318–323. [CrossRef]

64. Nagamitsu, T.; Uchiyama, K.; Izuno, A.; Shimizu, H.; Nakanishi, A. Environment-dependent introgression from Quercus dentata
to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. New Phytol. 2020, 226, 1018–1028. [CrossRef]

65. Schley, R.J.; Pennington, R.T.; Pérez-Escobar, O.A.; Helmstetter, A.J.; de la Estrella, M.; Larridon, I.; Sabino Kikuchi, I.A.B.;
Barraclough, T.G.; Forest, F.; Klitgård, B. Introgression across evolutionary scales suggests reticulation contributes to Amazonian
tree diversity. Mol. Ecol. 2020, 29, 4170–4185. [CrossRef] [PubMed]

66. Aguirre, N.C.; Filippi, C.V.; Zaina, G.; Rivas, J.G.; Acuña, C.V.; Villalba, P.V.; García, M.N.; González, S.; Rivarola, M.; Martínez,
M.C.; et al. Optimizing ddRADseq in Non-Model Species: A Case Study in Eucalyptus dunnii Maiden. Agronomy 2019, 9, 484.
[CrossRef]
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