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Abstract: The rheological properties of wood–plastic composites (WPCs) with different wood fiber
contents were investigated using a rotational rheometer under low shear rates. The flow field
information was analyzed and simulated by Ansys Polyflow software. The results showed that
the WPCs with different wood fiber contents behaved as typical power-law fluids. A higher wood
fiber content increased the shear thinning ability and pseudoplasticity of the WPCs. The pressure,
velocity, shear rate, and viscosity distributions of the WPC during extrusion could be predicted by
computational fluid dynamics (CFD) Ansys Polyflow software to explore the effects of different
components on the flow field of WPCs.

Keywords: rheological properties; wood–plastic composites; flow field; power-law fluids; An-
sys Polyflow

1. Introduction

Wood–plastic composites (WPCs) are made of wood fiber and thermoplastics and
are used in many fields, including decoration, construction, and transport fields, due to
their easy processability, relatively high mechanical strength, and weather resistance [1–3].
Polymeric materials are typically processed using injection, compression, and extrusion
molding. Extrusion molding is one of the main processing methods for preparing WPCs
because of its stable product quality and low cost [4,5]. To reduce the cost of WPC products,
the fiber content in commercial WPCs is usually between 50 and 70 wt% [6]; however, such
high wood fiber content increases the melt flow instability and surface defects during WPC
extrusion, which great limit the extrusion speed profile [7,8].

Rheological properties are the most important properties during the extrusion of
WPCs [9,10]. Many experimental studies have been conducted in recent years. Laufer et al. [11]
combined the volume fraction of wood fibers with the rheological properties of WPCs
to explore the relationship between the power law and the shear-thinning behavior of
WPC melts. The viscosity of WPCs typically increases upon increasing the wood fiber
content, while the non-Newton index (n) decreases [12,13]. The higher the wood fiber
content, the more sensitive a WPC is to changes in the shear rate. Mazzanti et al. [12]
also investigated the influence of the wood powder content and compatibilizer on the
rheological properties and were the first to consider both temperature and natural fibers
percentage. Mazzanti et al. [14] also investigated the influence of temperature and filler
concentration on the rheology of wood fiber filled poly(lactic acid) to validate the program
for predicting the complex viscosity of the composites at any temperature and filler amount.
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Altug et al. [15] investigated the rheological and mechanical properties of poly-propylene
reinforced with wood fiber. Studies have shown that the flow property reduces depending on
the reinforcement wood fiber content added to the reinforced plastics. The amount of wood
fiber added is an important factor affecting the rheological properties of WPCs [7,15,16]. The
rheological phenomenon caused by high fiber contents, such as a high viscosity, and strong
shear thinning behavior, must be understood to properly formulate WPCs.

With the development of polymer extrusion molding, simulation methods of slit die
have been extensively used to better understand the factors that influence the extrusion of
polymers [17–19]. Sun et al. [18] used computational fluid dynamics (CFD) Ansys Polyflow
software to analyze the effects of the screw rotating speed, stagger angle of kneading
blocks, inlet flow rate, and initial temperature of the barrel on the mixing and reaction
process in a twin-screw extruder. Liu et al. [20] used Polyflow to calculate the velocity,
local shear rate, viscosity, and pressure distributions of materials during extrusion and the
relationships among the rheological properties and flow field distribution of the materials
were obtained. The effects of the die structure including expansion-die and dam-expansion-
die on the extrusion flow field of short fiber and rubber composite during extrusion
were also investigated using Polyflow [21]. The non-isothermal extrusion of hollow-
profile viscoelastic fluids was simulated and the influence of processing conditions and die
structure parameters on the polymer melt flow was studied [22]. Based on the residence
time distribution (RTD) method, the die structure during the extrusion of polyolefin control
products was optimized by the finite element method, which greatly improved the melt
hysteresis and reflux. However, researchers have not extensively performed numerical
simulations of WPC extrusion molding, such as the flow field analysis of WPCs with
different components in the slit die.

Many recent experiments and numerical simulations have investigated the effects
of polymer melt transport and polymer extrusion molding equipment on the extrusion
process [23]; however, there are few studies on the extrusion of WPCs using numerical
simulations based on computational fluid dynamics (CFD). Polyflow software based on the
finite element method (FEM) has powerful functions for solving non-Newtonian fluids and
nonlinear flow problems [24]. This software has been widely used for simulating/modeling
plastics processing, screw-based extrusion, and pipe flow simulations [23]. For the ex-
trusion of WPCs with different components, the effect of different fiber contents on the
rheological properties of WPCs were studied. Numerical simulations were used to reveal
the distribution of the flow field during the extrusion of power-law fluid and the effect of
WPC with different components on the pressure, velocity, shear rate and viscosity distribu-
tion were reported in this article. This work provide a theoretical basis for the extrusion of
WPCs with different wood fiber contents.

2. Materials and Methods
2.1. Materials

Poplar wood fiber was supplied by Lingshou Junyi Mineral Processing Factory. HDPE
was supplied by China National Petroleum Corporation and had a melt flow index (MFI)
of 20 g/10 min (at 190 ◦C and 2.16 kg according to ASTM D1238) and density of 0.95 g/cm3.
Maleic anhydride grafted polyethylene (MAPE) with a grafting ratio of ca. 1% and a melt
flow rate of 1.7 g/10 min (190 ◦C, 2.16 kg) was provided by Guangzhou Hecheng Chemical
Co., Ltd., (Guangzhou, China). Lubricant (grade 530D, sodium stearate) was obtained from
Guangzhou Hecheng Chemical Co., Ltd.

2.2. Preparation of Composites

The wood fiber (WF), HDPE, MAPE, and the lubricant were mixed in a high-speed
mixer (100 rpm, HRS-10, Dongguan Huanxin Machinery Co., Ltd., Dongguan, China) for
10 min at 80 ◦C. All samples shown in Table 1 were manufactured using a twin-screw
extruder (CTW100, Seymour Schir Technologies, Germany) with a screw speed of 30 rpm
to fabricate a profile with dimensions of 25 mm × 4 mm (width × thickness).
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Table 1. Sample formulation of wood–plastic composites (WPCs).

WF/wt% HDPE/wt% MAPE/wt% Lubricant/wt%

40 55 3 2
45 50 3 2
50 45 3 2
55 40 3 2
60 35 3 2
65 30 3 2
70 25 3 2
75 20 3 2
80 15 3 2

2.3. Rheological Parameters

Rheological measurements of samples were performed by a hybrid rheometer (Dis-
covery HR-2, DHR, TA Instruments, USA) using a 25 mm anti-slip parallel plate. Before
experiments, excess materials outside the plate were scraped out and the samples were
rested for 2 min to reach a steady state. Experiments were performed at 160 ◦C, 170 ◦C,
and 180 ◦C, and the viscosity parameters were obtained at shear rates ranging from 0.01 to
1 s−1. For frequency sweeps, strain sweeps were performed first at the desired temperature
to define a strain within the linear viscoelastic range. The dynamic viscoelastic properties
were characterized at frequencies from 0.01 to 100 rad/s, and all measurements were
performed within the identified linear viscoelastic region and at 0.02% strain. Experiments
were conducted using seven replicates for each type of sample.

2.4. Polyflow Software Numerical Analysis
2.4.1. Finite Element Model

According to the slit die used in extrusion processing, a 3D flow domain physical
model created by Space Claim software (Hot-World GmbH & Co. KG, Willich, Germany)
is shown in Figure 1. Considering the symmetry of the geometry, 3D 1/4 axisymmetric
graphics were used to simplify the model. The dimensions of the model are shown in
Figure 1. The slit die model of the flow channel consisted of 3700 cells and 8888 nodes.
The mesh was generated by the sweep mode. The source surface selected by the sweep
was the inlet, the sweep bias was 3. For the slit die model, tetrahedral cells were used for
partitioning, and the grids were arranged so that the denser grids were located near the die
exit singularity while larger grids were used in other flow regions.
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Figure 1. Schematic diagram of the 3D flow domain in and out of the slit die.

2.4.2. Simulation Condition

As a result of the complexity of the material flow state, it is difficult to accurately de-
scribe the flow characteristics, so some assumptions were used to simplify the flow behavior.
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(1) The material used for extrusion was an incompressible, highly viscous, non- Newto-
nian fluid.

(2) The material fully filled the mold and underwent isothermal, steady, and laminar
flow in the flow channel.

(3) Inertia and gravity were neglected due to the slow flow velocity and high viscosity.
(4) There was no slip between the material and the channel wall during extrusion [25].

2.4.3. Details of the Finite Element Calculations

The boundary of the model is shown in Figure 1. The flow boundary condition is
defined as follows: The volume flow rate at the inlet was set to the actual extrusion flow
rate. The volume flow rate was 3.2 × 10−7 m3/s. On the die walls, non-slip condition was
assumed for the calculation to converge: vn = vs = 0 (mm/s), where vn and vs are the
normal and tangential flow velocities of the melt, respectively. On the symmetry planes,
usual symmetry conditions were applied: vn = 0 (mm/s), fs = 0 (N), where fs is the
tangential stress of melt. On the free surface, the surface tension of the melt was ignored
when the melt was extruded from the outlet of slit die, which is defined as fs = f n = 0 (n)
and vn = 0 where fn is the normal stress of melt. At the flow domain outlet, it was assumed
that no tangential velocity or normal forces were imposed on the exit boundary of the melt,
and the force conditions are set as fs = f n = 0 (N).

The governing equations used in this paper are as follows:

∇·V = 0 (1)

∇p − ∇·τ = 0 (2)

where ∇ is differential operator, V is the velocity, p is the pressure, and τ is the extra stress
tension of the melt [26,27].

The shear rate has a significant effect on the viscosity of wood–plastic composites,
the greater the shear rate, the lower the shear viscosity. In addition, the shear viscosity of
the WPCs increased upon decreasing the temperature. All the shear viscosity curves of
WPCs showed typical shear-thinning behavior. Thus, the shear viscosity of the WPCs can
be described by the power law [9,28].

For the power law model, the viscosity, η, can be written as:

η = K(λ
.
γ)n−1 (3)

where η is the viscosity, K is the viscosity coefficient, λ is the relaxation time,
.
γ is the shear

rate, n is the non-Newtonian index. The viscosity consistency index (K), non-Newton
index (n), and relaxation time (λ) were calculated from the fitting curve of the rotational
rheological test results.

The power law has broad application scope and can accurately describe the rheological
curve of fluids at low and moderate shear rates.

2.4.4. Simulation Scheme

To ensure numerical accuracy, several interpolation methods of linear coordinates,
linear velocities, pressure constants, and Picard iterations on viscosity were used [29,30].
An evolutionary scheme is applied on the moving boundaries to gradually solve the highly
non-linear problems of the calculations [31].

The viscosity of the material, the shear rate, and the inlet flow rate are all important
factors that affect the flow channel parameters. By changing a certain parameter, while
keeping the other parameter constant, the effects of the rheological parameters of WPCs
with different formulations on the flow field of gap molds were studied.
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3. Results
3.1. Rheological Behavior of Materials

Rheological property tests were conducted to investigate the performance of the
composites during extrusion. By analyzing the experimental data obtained from a rotational
rheometer, the flow curve was obtained, which visually represents the shear viscosity
distribution at different shear rates.

Figure 2a shows the complex viscosity versus frequency for samples with different
percentages of the wood fiber. Although the complex viscosity versus shear rate is reported,
the shape of the curve was similar to that the shear viscosity versus shear rate. The complex
viscosity increased upon increasing the wood content and decreased with frequency. The
complex viscosity continuously increased at very low-shear rate but showed a smaller
increase at high-shear rates [31].
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Figure 2. Rheological curves showing: (a) the effect of wood fiber content on the complex viscosity of the WPCs at 160 ◦C,
170 ◦C, and 180 ◦C; (b) effect of wood fiber on the shear viscosity of the WPCs at 160 ◦C, 170 ◦C, and 180 ◦C; (c) Polymat
fitting curve and experimental data for 40 wt% WPC; (d) the correlation coefficient between the power-law model and
experimental data.

The changes in the shear viscosity with the shear rate for nine different wood fiber
concentrations are illustrated in Figure 2b. In all shear rate ranges, the shear rate signifi-
cantly affected the viscosity of the WPCs. Generally, the shear viscosity decreases when the
temperature increases. The WPC with 40% wood fiber showed the lowest shear viscosity
compared with other samples over the entire shear rate range. The greater the shear rate,
the lower the shear viscosity. In addition, the shear viscosities of the WPCs increased upon
decreasing the temperature. All shear viscosity curves of the WPCs showed typical shear
thinning behavior, as expected.



Forests 2021, 12, 417 6 of 15

In this section, the power-law model was used to fit the viscosity-shear rate curves
of the rheological data of WPCs, as shown in Figure 3c. The R2 values varied between
0.977 and 0.996 (Table 2), and the correlation coefficient between the Polymat curve fitting
and experimental data was high (Figure 2d). Simultaneously, the viscosity consistency
index (K) increased, and the non-Newton index (n) decreased upon increasing the wood
fiber content. The K and n values both affect the rheological properties of WPCs, which
obey the power-law model. The shear-thinning ability of the material increased when
the n value decreased. A higher wood fiber content increased the shear-thinning ability
and pseudoplasticity of the materials. The high R2 proved that the constitutive model
better described the rheological properties of the WPCs, while the power-law model better
characterized the pseudoplasticity of the WPC melt [32].

Table 2. Power law parameters of different WPC of the content of wood fiber.

WF/wt% K/Pa·s n λ/s R2

40 53,087 0.440 0.312 0.977
45 97,483 0.411 0.275 0.981
50 127,732 0.401 0.293 0.981
55 169,396 0.356 0.308 0.987
60 498,320 0.246 0.327 0.996
65 957,822 0.186 0.320 0.988
70 1,076,080 0.171 0.322 0.981
75 1,569,410 0.143 0.295 0.981
80 1,918,580 0.131 0.284 0.985

3.2. Pressure Distribution Field Analysis

The flow field distribution used the WPC with 40% wood fiber as an example. The
pressure distribution in the flow field during extrusion and changes in the pressure on the
central axis along the extrusion direction are illustrated in Figure 3. From the entrance to
the exit of the slit die, the overall pressure field on the same horizontal section noticeably
changed, but it basically remained the same downstream of the die exit (20–60 mm from
the entrance). Upstream at the slit die (0–20 mm from the entrance), the pressure field
at the center of melt flow gradually decreased, while the pressure field of WPCs showed
no obvious change at the inlet (Figure 3a). At the plane of symmetry 1, the pressure
gradually decreased along the y-axis, and the pressure field rapidly decreased at the
entrance downstream of the die, while it quickly stabilized on the plane of symmetry 2
(Figure 3c,d). This phenomenon indicated that the slit die required a large pressure during
the extrusion of WPCs. The pressure field downstream of die exit remained at a low level
with no significant changes, but the pressure level at the die exit was higher than that
downstream of the die (Figure 3b).
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3.3. Velocity Distribution Field Analysis

As shown in Figure 4a, from the entrance to the exit of the slit die, there were no
significant changes in the velocity field, but a sudden drop in velocity occurred at the die
junction. Upstream of the slit die, the velocity field remained unchanged along the central
axis in the extrusion direction, while the velocity field along the same horizontal section
changed obviously (Figure 4b). At the plane of symmetry 1, the maximum velocity was
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found at the center of the melt flow, while nearer the wall, the velocity of the WPC melt
was the smallest (Figure 4c). The velocity on the plane of symmetry 2 decreased first and
then remained constant (Figure 4d). The simulation results show that the velocity field of
the slit die at the outlet was uniform, which ensured stable extrusion.
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3.4. Shear Rate Distribution Field Analysis

Figure 5 shows the shear rate distribution in the flow field during extrusion. From
the entrance to the exit of the slit die, changes in the shear rate along the same horizontal
section were observed (Figure 5a,b). Upstream of the slit die, the shear rate field at the
center of melt flow was found to be the minimum, while the shear rate of the WPCs melt
was larger nearer the wall (Figure 5b). At the plane of symmetry 1, the shear rate was low,
which was the minimum at the center of the melt flow, while the shear rate of the material
was higher nearer the wall (Figure 5c). The shear rate field suddenly decreased near the
die exit, while it remained stable on the symmetry plane 2 (Figure 5d). This phenomenon
indicated that the WPCs were subjected to a larger shear force at the wall. Meanwhile,
due to the high shear rates at the exit of the slit die, the viscosity of the WPCs decreased,
indicating that the WPCs were easily extruded.
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3.5. Viscosity Distribution Field Analysis

From the above sections, the viscosity of the materials belonging to pseudoplastic
fluids changed with the shear rates and the viscosity of WPCs at different wood fiber
contents, which affected the rheological parameters in the flow channel during extrusion.

Figure 6 shows the distribution of the viscosity field at the slit die. The WPCs exhibited
shear-thinning properties, in which the higher the local shear rate was, the lower the
viscosity. From the entrance to the exit of the slit die, the viscosity on the centerline first
decreased and then increased along the extrusion direction (Figure 6a,b). Upstream of the
slit die, the viscosity at the center of the melt flow was found to be the maximum, while
the viscosity of the WPCs melt was the smallest nearer the wall (Figure 6c). On the plane
of symmetry 2, the viscosity reached its maximum as the WPCs were extruded (Figure 6d).
Meanwhile, due to low viscosity at the die exit, the viscosity of the WPCs decreased,
indicating that the WPCs were more easily extruded.
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4. Discussion
4.1. Effect of Different Components on Pressure Field Distribution

For the pressure field, all samples had the same law of change on the center axis in the
extrusion direction. Figure 7 compares the centerline pressure distribution along the flow
direction, y-axis, and at the cross-sections of flow from the die inlet. From Figure 7a, it can
be seen that the pressure level of the WPC with 80% wood fiber was the highest and that
of the WPC with 40% wood fiber was the lowest in the flow field. The pressure levels of
the WPCs with 50% and 55% fiber were basically the same. As can be seen in Figure 7, the
pressure increased upon increasing the wood fiber content in the WPCs. When the wood
fiber content in the WPCs increased, the viscosity consistency index (K) increased, and
the non-newton index (n) decreased (Table 2). Compared with the other materials, the
viscosity consistency index (K) of the WPC with 80% wood fiber was larger than other
WPC formulations, which indicated the highest pressure level in the flow field [33]. The
K value of the WPC with 55% fiber was larger than that of the WPC with 50% wood fiber
content, but the n value of the WPC with 55% fiber was smaller than that of the WPC
with 50% wood fiber; thus, the pressure level of the WPC with 55% wood fiber remained
basically consistent with that of the WPC with 50% wood fiber.
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4.2. Effect of Different Components on Viscosity Field Distribution

For the viscosity field, all WPC samples showed the same trend along the centerline,
in which the viscosity in the flow field increased upon increasing the wood fiber content
(Figure 8). When the wood fiber content in the materials increased, the viscosity consistency
index (K) increased, and the non-newton index (n) decreased. From the above study, both
the increase in the K value and the decrease in the n value increased the viscosity of the
WPCs [34,35].
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4.3. Effect of Different Components on Velocity and Shear Rate Field Distribution

The viscosity and pressure distributions changed as the wood fiber content increased,
and the velocity and shear rate distributions should also be investigated. Figure 9, shows
that the velocity profiles are quite different. The volumetric flow rate of the inflow was
set to the same value in the simulation, which produced the same velocity as long as the
die geometry was fixed. In reality, the volumetric flow rate may be different depending
on the WPC formulation due to the leakage flow in the slit die caused by high pressures;
therefore, the velocity at the same centerline decreased slightly upon increasing the wood
fiber content. As shown, the velocity remained constant until the flow was close to the
die exit [28,36]. Figure 9b shows that the velocity rearrangement began upstream of the
die exit because the velocity distribution and normal stress are two important factors that
influence the swelling behavior. For the shear rate fields, the local shear rate distribution
of the flow field was related to the shear force distribution [37]. From the wall to the flow
center, the higher the wood fiber content, the higher the shear rate because the WPC with a
higher wood fiber content was subjected to a larger shear force at the wall (Figure 10).
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5. Conclusions

The rheological properties of wood–plastic composites with different components
and temperatures were studied by 3D numerical simulations. The flow curves of WPCs
with different wood fiber contents were fitted using the power-law model, and the wood
fiber content was the key factor that affected the rheological properties of the WPCs. The
shear-thinning ability of the WPCs increased when the non-Newton index (n) decreased.
As the wood fiber content increased, the shear-thinning ability and pseudoplasticity of
the materials. The pressure, velocity, shear rate, and viscosity distributions of the WPCs
during extrusion could be predicted through numerical simulations. The viscosity and
pressure distributions changed greatly as the wood fiber content increased. The pressure
field and viscosity field in the flow field increased as the wood fiber content increased, and
the extrusion of WPCs became more difficult as the viscosity increased. The higher the
wood fiber content, the greater the shearing force of the WPCs and the greater the shear
rate. The temperature greatly increased due to the increased shear force, which can cause
the extruder to dangerously overheat. The velocity distribution in the flow channel was
relevant to the volumetric flow rate and die geometry, but it was not significantly affected
by the wood fiber content; however, the experimental velocity at the same centerline
decreased slightly upon increasing the wood fiber content, which verified the accuracy of
the simulation results. This work provides an easy method and valuable reference for the
extrusion of different WPC formulations.
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