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Abstract: In recent years, with the growing environmental concern regarding climate change, there
has been a search for efficient alternatives in indirect methods for the quantification of biomass
and forest carbon stock. In this article, we seek to obtain pioneering results of biomass and carbon
estimates from forest inventory data and LiDAR technology in a dry tropical forest in Brazil. We use
forest inventory data in two areas together with data from the LiDAR flyby, generating estimates of
local biomass and carbon levels obtained from local species. We approach three types of models for
data analysis: Multiple linear regression with principal components (PCA), conventional multiple
linear regression and stepwise multiple linear regression. The best fit total above ground biomass
(TAGB) and total above ground carbon (TAGC) model was the stepwise multiple linear regression,
concluding, then, that LiDAR data can be used to estimate biomass and total carbon in dry tropical
forest, proven by an adjustment considered in the models employed, with a significant correlation
between the LiDAR metrics. Our finding provides important information about the spatial distri-
bution of TAGB and TAGC in the study area, which can be used to manage the reserve for optimal
carbon sequestration.

Keywords: Caatinga vegetation; aboveground biomass; carbon stocks; allometry; statistical models

1. Introduction

The increase in the carbon dioxide concentration (CO2) in the atmosphere in recent
decades and its consequences for the environment have been attracting the attention of
society and are being addressed as a matter of global concern [1]. The high CO2 concen-
tration in the atmosphere is worrying, as it generates an increase in the greenhouse effect,
and consequently causes global warming [2–4]. In this scenario, dry tropical forest areas
play an important role, and the Caatinga vegetation in northeastern Brazil significantly
contribute to the global carbon cycle through aboveground biomass and carbon stock [5,6].

There is currently a rich ongoing discussion among scientists around the world about
the main tools and methods for generating measures to mitigate climate change. The first
guiding question to be answered is “how do we measure the impacts of global climate
change and how can we slow its progress?” The second key question is “what tools and
methods should be used to ensure a reliable estimate?” In many cases, the variables best
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known for generating rapid responses for dry tropical forest ecosystems are aboveground
biomass and carbon.

However, the destructive sampling of trees is a limiting factor for calibrating statistical
models, mainly due to the high cost involved in field work [7]. These methods are currently
based on forest inventory data using carbon factors and equations which transform the
biometric parameters of the forest, such as diameter at breast height (DBH) and total
height (Ht) of individuals, in estimating the carbon stock contained in aboveground forest
biomass [8].

Remote sensing techniques combined with optical sensors have recently been pre-
sented as a viable alternative for estimating the biomass and carbon stock in planted and
natural forests [9,10]. Among the current remote sensing techniques, laser tillering, also
known as light detection and ranging (LiDAR), has prominently emerged in the forest
scenario [11], by which biomass and carbon stock estimates can be systematically and
efficiently obtained in the field [7].

LiDAR is an active system, and its principle consists of emitting a laser pulse which
interacts with an object on the Earth’s surface and subsequently returns to the sensor in
a given time interval. The technology makes it possible to accurately reproduce digital
terrain models (DTMs, models which enable describing the elevation of land free of objects),
digital surface models (DSMs, models which enable describing the elevation of the terrain
including the objects present), and digital height models (DHMs, models which describe
the height of all objects, with the cloud points referring to the ground normalized to zero).

Although LiDAR technology is an efficient alternative and widely applied in forest
inventory in countries like the United States, Finland, and Sweden, there are still obstacles
to its use in other countries such as Brazil. The limitations are not due to the functioning of
the technology itself, but mainly because it is still an emerging technology in Brazil [9]. The
elaboration of processing methodologies aimed at Brazilian needs is still recent, and in this
respect the execution of this work is mainly justified by the search for a scientific technical
advance which provides developing routines which can assist in LiDAR data acquisition
and processing, and in turn seeks to efficiently attain aboveground biomass and carbon
stock estimates in a Brazilian dry tropical forest.

In particular, LiDAR technology has the ability to directly measure the vegetation
attributes (metrics) on a vertical scale with high precision, and therefore a system can be
developed to sample the biomass and carbon stock of the trees in situ in environmental
gradients, providing a potential solution to outstanding problems related to forest biomass
and aboveground carbon stock [12,13]. Biomass and carbon estimates at local and regional
levels, as well as the spatialization of these variables using maps, can provide an overview
of biodiversity and forest structure [14–16]. This information is extremely important for
the Caatinga vegetation domain in Pernambuco for possible payments for environmental
services and other projects aimed at reducing emissions from deforestation and forest
degradation (REDD+).

Due to the great importance of Caatinga forest resources, quantifying and mapping
biomass and carbon stock using LiDAR metrics are key factors to meet the legal aspects
concerning sustainable management, mainly reconciling sustainable wood production
and stock maintenance of carbon in the area. This task is one of the main long-term
planning tools, because in addition to dimensioning the forest’s stock and productivity,
it generates information which will direct ecosystem maintenance through conservation
and/or preservation [17].

In this sense, this work was developed with the intention of generating information
on biomass and carbon stock using LiDAR metrics in different dry tropical forest areas
in the municipality of Floresta, Pernambuco. Specifically, it is intended to: (a) Estimate
the total biomass and carbon stock for the parcels inventoried in two areas using a local
allometric model; (b) use the aerial LiDAR system to generate attributes in plots in the
different dry forest areas inventoried in Pernambuco; (c) develop an allometric model for
estimating biomass and carbon stock using LiDAR metrics for the different dry forest areas
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inventoried in Pernambuco; (d) generate biomass and carbon stock maps for the different
dry forest areas inventoried in Pernambuco.

2. Materials and Methods
2.1. Study Area

The work was carried out in two semiarid areas of Itapemirim Farm. Its extension
is approximately 60 km2 (Figure 1D), located in the municipality of Floresta in the São
Francisco mesoregion in Pernambuco, northeast Brazil (8◦30′37′′ S and 37◦59′07′′ W).
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Figure 1. Coverage of the study area: (A,B,D), and profile photo in Floresta (C), in the hinterland of
Pernambuco, Brazil. Source: [18].

The two areas make up different structures due to the history of use. The first area
is called “Transposição” (considered preserved with 55 years of small anthropogenic
disturbances) and had 40 permanent plots systematically arranged in a square (20 × 20 m).
The second area is called “Correntão” and followed the same protocol as the previous area.
However, this area has been in regeneration for 29 years and is considered to have a high
degree of disturbance due to the history of land use with eucalyptus plantations (Figure 2).

The vegetation in these areas is predominantly Caatinga (dry tropical forest), meaning
savanna–steppe characterized by shrub–tree vegetation along with the presence of cacti
and herbaceous strata [19]. The climate is BSh according to the Köppen classification, a
hot semiarid region with an average annual precipitation of approximately 400 to 500 mm,
with a rainy period from January to April, and an average annual temperature of 26.1 ◦C.
Its distributions of temperature and precipitation throughout the year studied (2014) in the
municipalities belonging to the study area are shown in Figure 3. The municipality has an
area of 3643.97 Km2 and an average altitude of 323 m [20].
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Pernambuco. Source: [18].

In this study area, at least five main species occur, such as catingueira (Poincianella
bracteosa (Tul.) LP Queiroz), jurema-de-embira (Mimosa ophthalmocentra Mart. Ex Benth.),
pereiro (Aspidosperma pyrifolium Mart.), aroeira (Myracrodum urundeuva (Engl.) Fr. All.) and
mororó (Bauhinia cheilanta (Bong). Steud.).
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Figure 3. Distribution of air temperature and precipitation over the year 2014 in the study area by
the nearest weather station. Source: Agritempo adjusted. Source: [21].

2.2. Estimation of the Biomass/Carbon Stock in the Field

Plots, which had already been inventoried, were used to facilitate logistics and data
collection in each area (Figure 2). A total of 40 plots in each area have been monitored
since 2008. They are systematically distributed and each is 20 × 20 m (400 m2). They are
80 m apart, 50 m from the edge. All arboreous individuals with their diameter measured at
1.30 m above the ground (DBH) ≥ 6.0 cm were identified, labeled and measured, and the
total heights (Ht) were measured by a clinometer.

Local biomass estimates in each plot in the different areas were generated from a
previously developed local equation [18], with subsequent conversion to carbon stock
(Mg·ha−1). Thus, we were able to perform local estimates of the biomass logarithm using
DBH and Ht logarithms as independent variables, as shown in the equation below:

TAGB = exp(−3.5336 + 1.9126 × ln(DBH) + 1.2438 × ln(Ht)) (1)

where: DBH is the diameter of the tree at breast height (1.30 m) in cm; Ht is the total
height of the tree (m). This equation was developed for the site and reported an Akaike
information criterion (AIC) value of 573.77; an adjusted determination coefficient (R2Adj)
of 0.90; root mean square error (RMSE) of 18.2%; and bias of 0.20%.

Next, the estimated biomass was converted using the average carbon fraction (CF ≈ 48%)
of the Caatinga woody species [22] for carbon stock estimates (Mg·ha−1). In addition, it
has traditionally been assumed that the carbon content of a tree’s dry biomass is 50% for
estimating carbon stocks for sites [23–25], but it should be emphasized that the carbon
fraction of the wood may exhibit some small variations between species [26]. Thus, the
carbon stock is assumed as follows:

TAGC = TAGB × CF (2)

where: TAGC is the estimated total aboveground carbon stock (Mg·ha−1); TAGB is the
total estimated aboveground biomass (Mg·ha−1); CF is the carbon fraction (48%).

In summary, the forest inventory data analyzed for this study as well as the biomass
and carbon predictions were for 2014 and are summarized in Table 1. The choice of this
measurement period was defined according to the same LiDAR flyover year in the areas.
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Table 1. Descriptive values (mean and standard deviation) and number of individuals and total scheme 2014. Please define
abbreviations in the table. DBH (cm) is diameter breast height (1.30 m above the ground); Ht (m) is the total height of the
tree or shrub; AGB (Mg·ha−1) and AGC (Mg·ha−1) are above-ground biomass and above-ground carbon respectively.

Areas
DBH (cm) Ht (m) AGB (Mg·ha−1) AGC (Mg·ha−1) N◦

Plots
N◦
Ind.

N◦
StemMin Max ¯

x σ Min Max ¯
x σ Min Max ¯

x σ Min Max ¯
x σ

Transposição 1.91 29.92 3.85 2.37 1.3 9.0 3.97 0.95 0.162 206.49 9.327 5.442 0.077 99.11 4.66 27 40 1728 4576
Correntão 2.06 52.20 11.44 5.4 1.7 7.5 3.64 0.92 0.330 554.81 24.94 24.95 0.1584 266.3 12.47 12.47 40 996 2903

2.3. Estimation of the Biomass/Carbon Stock by LiDAR Data

The LiDAR data used in this study were made available by the Pernambuco Three-
Dimensional Program (PE3D) as part of the Pernambuco Water Sustainability Program
(PSHPE) with the objective of mapping the entire territory of the state of Pernambuco
using its services covering aerophotogrammetric and laser profiling. They were collected in
August 2014 using a Leica ALS50 system coupled to a BEM-810 C-Seneca II-Prefix PT-RQA
aircraft, and their characteristics are shown below (Table 2).

Table 2. Details of acquisition of LiDAR data.

Attribute Values

LiDAR system ALS-50 Leica
Flight altitude (m) 3.068
Data acquisition 10 August 2014

Opening angle (◦) 34.5
Scanner frequency (Kz; kHz) 36.8 kHz

Pulse density (pulses·m2) 0.5
Datum Sirgas 2000

After acquiring the point clouds of the areas to be analyzed on the Pernambuco
Tridimensional Program website (http://www.pe3d.pe.gov.br/mapa.php, accessed on
5 August 2016), it was necessary to change the format from “.xyzi” to “.las ”using the
LAS Utility software. Thus, a descriptive report with several important characteristics
of the LiDAR data set was produced with the Fusion3.8 software program using the
“Catalog” tool.

Therefore, the returns which were on the soil surface (points on the soil surface) were
filtered from the LiDAR point cloud using the “Ground Filter” tool. The next step for both
areas was to obtain the digital terrain model (DTM) using the “Grid Surface Create” tool
and the digital surface model (DSM) using the “Canopy Model” tool.

It was first necessary to normalize the data in order to carry out the subsequent
analyses with the metrics of only the trees. This task was performed by subtracting the
DSM data from the DTM data using the “Clipdata” tool. The next step was to obtain the
canopy height digital model (CHM) with the aid of the “Canopy Model” tool to obtain
the metric value for each plot of the two areas, for which it was necessary to perform
clipping by plot using the shape file of the plots with the point cloud using the “Polyclip
DATA” tool.

The LiDAR metrics calculate a series of estimates of descriptive statistical parameters
of the LiDAR point cloud and in this study were generated from the “Cloud Metrics”
tool. Thus, a total of 26 metrics were generated at the end of the data processing by the
point clouds in each sample unit in the different areas. These metrics are the most used in
biomass and carbon estimation studies, categorized according to their origin and calculated
symbology (Table 3).

http://www.pe3d.pe.gov.br/mapa.php
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Table 3. List of LiDAR metrics evaluated in the study, obtained from the “Cloud Metrics” tool of
Fusion v. 3.8.

Category LiDAR Metrics Symbology

Height

Maximum height Elev.maximum
Minimum height Elev.minimum

Mean height Elev.mean
Modal height Elev.mode

Standard deviation of heights Elev.stddev
Height variation coefficient Elev.CV

Height asymmetry Elev.skewness
Kurtosis of height Elev.kurtosis

Median of absolute deviations from the
general mean Elev.MAD.median

1st percentile of height Elev.P01
5th percentile of height Elev.P05

10th percentile of height Elev.P10
20th percentile of height Elev.P20
25th percentile of height Elev.P25
30th percentile of height Elev.P30
40th percentile of height Elev.P40
50th percentile of height Elev.P50
60th percentile of height Elev.P60
70th percentile of height Elev.P70
75th percentile of height Elev.P75
80th percentile of height Elev.P80
90th percentile of height Elev.P90
95th percentile of height Elev.P95
99th percentile of height Elev.P99

Canopy density Canopy relief ratio 1 Canopy.relief.ratio

Percentage of all returns above 1.30 Percentage.all.returns.above.1.30
1 Canopy relief ratio = ((Hmean − Hmin)/(Hmax − Hmin)).

Some of the main metrics used in predicting biomass and carbon are described below:
Elev.maximum = maximum height: This is the highest value found in the measurement

range in meters within each sample unit, considering variations at each meter along the
walking axis.

Elev.mean = mean height: This is the mean value of the highest points, considering
variations every meter in the measurement range in meters within each sample unit
(Equation (3)).

Elev.mean =
1
n
×

n

∑
i=1

hi (3)

Elev.stddev = Standard deviation of height in the LiDAR point cloud:

Elev.stddev =

√
1

n− 1
×

n

∑
i=1

(hi − hmed)
2 (4)

where: hmean = mean height of the point cloud.
Elev.CV = height variation coefficient in the LiDAR point cloud:

hcv =
hdesv
hmed

(5)
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Height percentiles in the LiDAR point cloud (hpi): The i-th percentile of n points
traditionally represented in the LiDAR point cloud, ordered in height values corresponding
to the value which occupies the K position of the data set, as in the following equation:

K =
hpi(n + 1)

100
(6)

where: K = value that occupies the i-th percentile in height in the point cloud; hpi = i-th

percentile in height in the point cloud.

2.4. Modeling the Biomass/Carbon Stock Using LiDAR Data

The “R Project for Statistical Computing” Lidar Data_Analysis [27] and ArcGIS 10®

software programs were used to construct, validate and apply predictive models and
generate representative biomass and forest carbon maps in the different areas.

The LidarData_Analysis Tools software program was developed by the USDA Forest
Service—Remote Sensing Applications Center, written in the Python language, and works
as an interface of R. Lidar Data_Analysis Tools was designed to streamline the statistical
regression analysis process involving LiDAR metrics generated by the North American
Forest Service, and in fact works as a graphical interface to access the statistical modeling
packages available in R which simplify processing large volumes of data [9].

Next, three data analysis approaches were used to construct the biomass allometric
models per hectare according to the LiDAR metrics for the two areas: Multiple linear
regression, stepwise multiple linear regression and multiple linear regression with principal
components—PCA.

First, traditional modeling was used employing multiple linear regression. Thus, it
is assumed that there is a linear relationship between a Y variable (biomass; carbon) and
k independent variables, xj(j =, . . . , k = LiDAR point cloud metrics). The mathematical
model which expresses the equation of multiple linear regression has the following form:

Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε (7)

where: Y = TAGB (Mg·ha−1); β0 = intercept on the Y axis; βi = slope of the i-th explanatory
variable; k = number of explanatory variables; ε = random error.

Regression analysis was used with an emphasis on solving most of the forest problems,
especially when it is intended to obtain estimates of forest parameters through biometric
relationships. A careful analysis was performed in selecting the best metrics from the
LiDAR point cloud candidates for modeling among the metrics generated by the LiDAR
data processing for the construction the models. According to [9], Pearson’s linear correla-
tion test (r2) should first be applied for this selection to obtain the correlation between the
predictive variables and to evaluate the possible existence of collinearity between them.
Variables with R2 > 0.9 were excluded from the analysis to avoid the presence of collinearity.

Second, the stepwise technique was applied using the regsubsets function of the
“leaps” package in R to obtain subsets of independent variables which are candidates for
composing the definitive biomass and carbon models in the different areas. This method
performs an exhaustive search to select the best combinations of independent variables
by minimizing Akaike’s information criterion (AIC), and rearranging them into subsets
which may later give rise to the selected models. Regsubsets require the use of a maximum
number (represented by the nvmax argument) of independent variables for the growing
construction of these subsets.
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Third, the principal component technique (PCA) was applied to the selected LiDAR
metrics, and the metrics most likely to contribute to developing the model were identified
by inspecting the eigenvectors on each principal component. Then, the metrics with the
highest load on the PCs were used as input variables in multivariate linear regression
models that predicted biomass per hectare.

An example of using PCA including the equations used to obtain the eigenvalues,
eigenvectors and principal components (PC) can be found in [27]. PCA was applied in the
present study to the selected LiDAR metrics using the prcomp function of the statistics
package in R. A correlation matrix derived from the LiDAR metrics provided the basis
for calculating eigenvalues and eigenvectors and for the subsequent determination of PC
scores. Each score represented a transformed metric from the linear combination of LiDAR
metrics. Differences in the contribution of each LiDAR metric to the variability in the data
set, as well as the similarity in the calculated metrics [9], can be established by analyzing
the eigenvectors and the PC score.

2.5. Evaluation of Models

The model parameters were estimated using the ordinary least squares (OLS) method
in all the modeling methods described. The parameters were generally calculated using all
plots sampled in each area and will be assumed to be the true parameters that represent
the biomass and carbon stock at each location.

For each of the criteria established for the biomass estimation, the obtained equa-
tions were analyzed using comparisons of statistical criteria obtained according to the
following equations:

R2
aj= R2 −

[
k − 1
n − k

]
×
(

1 − R2
)

(8)

RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n
(9)

In which Yi is the replied variable (biomass and/or carbon) observed in the field (i);
Ŷi is the estimate (biomass and/or carbon); k is the number of parameters; and n is the
total number of observations.

2.6. Generation of Stock Maps Using LiDAR Data

After selecting the best model, the AsciiGrid Input function, available in yaInpute in
R package [28], was used to view the estimates generated by the model on a map. The map
expresses a grid where each cell represents a 5 × 5 m grid colored according to the biomass
and the estimated carbon content for that cell. The adopted methodology can be seen in
the organization chart below (Figure 4).
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Figure 4. Flowchart of the methodology adopted and the resulting products. DTM is the digital
terrain model; CHM is the digital canopy high model; and DSM is the digital surface model. CAP is
the circumference at breast height; PCA is the principal component analysis for selection of variables
in a regression model.

3. Results
Preliminary Results

The average minimum and maximum elevation values which correspond to the tree
heights obtained by the LiDAR metrics ranged from 1.49 to 4.77 m with an average of
3.06 m for the Correntão area. There is little difference in the minimum elevations per
plot (1.39 m) for the Transposição area, but this area had the lowest average elevation
(2.88 m) and the highest maximum elevation (5.05 m). The highest biomass and total
carbon concentration per hectare was observed in the Correntão area, with values ranging
from 0.61 to 129 Mg·ha−1, with an average of 24.93. Total above ground biomass (TAGB)
estimates for all plots in the Transposição area ranged from 1.22 to 29.37 Mg·ha−1, with an
average value of 9.32 Mg·ha−1.

The component loads (correlations between each variable and each principal com-
ponent), the eigenvalues and the variation percentage of the principal components for
the LiDAR metrics for the Transposição and Correntão areas are shown in Tables 4 and
5, respectively. The principal component analysis of the Transposição metrics produced
three principal components which synthesized 85.6% of the variability in the data. The
first principal component (PC1) of the metrics in this area had a high load of all variables
with maximum contribution from the average increase (0.996). The principal component
analysis for the metrics of the Correntão area also produced three principal components
which synthesized 82.8% of the variability in the data. The first principal component
(PC1) for the metrics in this area had maximum loads for maximum elevation and average
elevation. The principal components which only represented a small amount of variance
were not used in the regression analysis.
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Table 4. Component loads, eigenvalues and percentage of variation of the main principal components (PCs) for the LiDAR
metrics in the Transposição area.

Principal
Component

Components (Eigenvectors)

Elev.
Minimum

Elev.
Maximum

Elev.
Mean

Elev.
Mode

Elev.
Stddev

Elev.
CV

Elev.
Skewness

Elev.
Kurtosis

Elev.
MAD.

Median

Elev.
P01

Auto
Valores Var (%)

PC1 0.285 0.678 0.996 0.759 0.719 0.333 −0.231 −0.192 0.689 0.420 12.463 51.929
PC2 −0.395 0.621 0.070 −0.020 0.675 0.902 0.738 0.151 0.590 −0.508 5.841 76.266
PC3 0.622 0.281 −0.009 −0.070 −0.027 0.016 0.597 0.672 −0.203 0.602 2.255 85.663

Table 5. Component loads, eigenvalues and percentage of variation of the main components (PCs) for the LiDAR metrics in
the Correntão area.

Principal
Component

Components (Eigenvectors)

Elev.
Minimum

Elev. Max-
imum

Elev.
Mean

Elev.
Mode

Elev.
Stddev

Elev.
CV

Elev.
Skewness

Elev.
Kurtosis

Elev.
MAD.

Median

Elev.
P01

Auto
Valores Var (%)

PC1 0.019 0.825 0.999 0.709 0.708 0.158 −0.192 0.170 0.557 0.305 13.233 55.136
PC2 −0.130 0.423 0.018 −0.302 0.675 0.943 0.708 −0.179 0.633 −0.234 4.119 72.299
PC3 0.765 −0.283 0.016 −0.106 0.074 0.110 −0.103 −0.805 0.359 0.636 2.524 82.815

The results of the step-by-step regression analysis for each area are shown in Table 6.
The variables which did not significantly contribute to the TAGB prediction for each area
were simultaneously eliminated during the analysis. The determination coefficient (R2aj)
of the models for the Transposição area varied from 0.17 to 0.42 and the RMSE varied from
3.18 to 5.99 Mg·ha−1. Models with higher R2 values and lower RMSE indicate better TAGB
prediction. Models developed using the principal component technique of the LiDAR
metrics for each area generally had an unsatisfactory performance.

Table 6. Multiple linear regression models adjusted for the biomass estimate, obtained by LiDAR data. The definition of the
variables is described in Table 3.

Area Biomass Predictive Models R2ajd RMSE

Transposição

Multiple
regression

TAGB = −86.809 − 33.295 (Elev.minimum) + 5.446
(Elev.maximum) + 195.226 (Elev.mean) + 3.774 (Elev.mode)
− 92.658 (Elev.stddev) + 206.851 (Elev.CV) + 13.627

(Elev.skewness) − 1.734 (Elev.kurtosis) + 24.360
(Elev.MAD.median) + 29.676 (Elev.P01) − 25.707 (Elev.P10)
− 64.704 (Elev.P20) + 49.118 (Elev.P25) − 26.958 (Elev.P30) −

44.133 (Elev.P50) − 21.226 (Elev.P60) −11.419 (Elev.P75)
2.295 (Elev.P80) − 27.855 (Elev.P90) − 15.740 (Elev.P95) +

98.142 (Canopy.relief.ratio) + 0.024
(Percentage.all.returns.above.1.30)

0.1924 3.18

Stepwise
regression

TAGB = −21.08 − 35.756 (Elev.minimum) + 119.784
(Elev.mean) + 4.582 (Elev.mode) − 63.752 (Elev.stddev) +

101.103 (Elev.CV) + 27.823 (Elev.P01) − 17.626 (Elev.P10) −
29.152 (Elev.P20) − 44.745 (Elev.P50) − 18.032 (Elev.P90)

0.4239 3.51

PCA regression TAGB = 9.145 + 0.607 (Dim.1) + 1 (Dim.3) 0.1723 5.99

Correntão
Multiple

regression

TAGB = 341.760 + 0.932 (Elev.minimum) + 123.520
(Elev.maximum) − 298.028 (Elev.mean) + 1.734 (Elev.mode)
− 14.288 (Elev.stddev) + 712.426 (Elev.CV) − 8.027
(Elev.skewness)− 36.267 (Elev.kurtosis) + 103.257

(Elev.MAD.median) +114.736 (Elev.P01) + 79.665 (Elev.P10) +
54.843 (Elev.P20) + 39.873 (Elev.P25) + 90.032 (Elev.P30) +

20.564 (Elev.P50) + 5.063 (Elev.P60) − 129.573 (Elev.P75) −
33.779 (Elev.P80) + 57.286 (Elev.P90) 53.403 (Elev.P95) +

519.378 (Canopy.relief.ratio) − 0.103
(Percentage.all.returns.above.1.30)

0.4239 13.61
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Table 6. Cont.

Area Biomass Predictive Models R2ajd RMSE

Stepwise
regression

TAGB = −269.86 + 145.44 (Elev. maximum) − 402.19
(Elev.mean) + 440.13 (Elev.CV) − 53.26 (Elev.kurtosis) + 88.49

(Elev.P01) + 93.09 (Elev.P10) + 165.73 (Elev.P30) − 67.6
(Elev.P75) + 673.35 (Canopy.relief.ratio)

0.533 14.76

PCA regression TAGB = 30.270 – 6.465 (Dim.3) 0.09621 28.45

The models which combined the step-by-step selection of the metrics showed better
results in both areas compared to models which use the traditional multiple regression
modeling, although the prediction error of the multiple model was slightly lower. Based on
the adjustment statistics, the stepwise regression model was considered the most suitable
for predicting TAGB for both areas and this is illustrated in Figure 5.
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The most significant predictor variables for the model for the Transposição area, and
therefore the most suitable for predicting local TAGB, were Elev.minimum, Elev.maximum,
Elev.mean and Elev.P01; the last two were found in all tested models. The final model for
the Correntão area predicts that the total biomass stock may be more significant with the
metrics of Elev.maximum, Elev.mean, Elev.CV, Elev.kurtosis, Elev.P01, Elev.P10, Elev.P30,
Elev.P75 and Canopy.relief.ratio.

The stepwise regression model was applied to map the density of TAGB in the study
areas (Figure 6). The TAGB map was converted to carbon stock/Mg·ha−1 (TAGC) maps to
predict the total stock in the areas using the average carbon fraction (0.48), as estimated
in this study. The estimated average density of TAGB and TAGC for the Transposição area
was 9.2 ± 6.1 Mg·ha−1 and 4.4 ± 14 Mg·ha−1, respectively. Most plots in both areas had
a low density of TAGB above 30 Mg·ha−1 (85.8%), storing approximately 44.1% of the
TAGC stock. About 1.2% of the forest stand in the area in both locations had a TAGB
density greater than 50 Mg·ha−1. Areas with TAGB below 100 Mg·ha−1 cover about 99%
of the forest stand. Low-density areas of TAGB and TAGC, as shown in the maps, are
potential areas for assisted regeneration and enrichment planting to increase the carbon
sequestration capacity of the forest stand.
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When comparing the areas, it is noted that the most preserved area (Transposição)
presented a lower carbon stock than the most degraded area (Correntão) (Figure 6). This can
be explained in the inventories carried out in the degraded area, which showed individuals
with greater dominance than in the preserved area, strongly influencing the predicted
biomass and carbon values.

These results are not only absolute numbers of the inventoried variables, but also
other variables obtained from the LiDAR technology and should be considered for better
interpretation of the results obtained in this work, namely: the density of pulses emitted by
LiDAR, the characteristics of the vegetation trunks/stems studied and the effect of water
stress on leaves.

4. Discussion

The preliminary results of this study indicate that the LiDAR metrics provided reliable
estimates of TAGB and TAGC for the two study areas. The results show a good statistical
relationship between field biomass data and height (elevation) metrics, suggesting that they
are an important predictor of local biomass, especially when selected using the stepwise
method. However, the relationship was weaker in both areas when all metrics were
incorporated into the traditional modeling process or when using regression with principal
components. Only the individual categories of the height metrics (minimum, average and
maximum) explained more than 40% of the variance. This suggests that the incorporation
of height data may be necessary to improve the prediction of TAGB and TAGC.

The R2 and RMSE values of the best-fit models vary in similar studies which used
LiDAR data and metrics to estimate and map the aboveground biomass of trees in dry
forests. The authors of [29] reported R2 values ranging from 0.36 to 0.71 and RMSE values
from 99 to 175 Mg·ha−1 in Idaho (USA) based on machine learning data. In a dry tropical
forest in Mexico, [30] reported R2 of 0.77 and RMSE from 21.6 to 25.7 Mg·ha−1 based on
linear regression and LiDAR data. Additionally, in Idaho (USA), [11] reported R2 of 0.87
and RMSE of 3.59 kg based on linear regression and data on percentage plant cover derived
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from ALS (airborne laser scanning). The authors of [31] reported R2 ranging from 0.38
to 0.64 in the Amazon based on mixed-effect models and LiDAR data from agroforestry
systems. The biomass estimates by the tested methodologies showed satisfactory and
promising results in all of these cases.

The best-fit TAGB model consisted of 10 LiDAR predictor variables for the Transposição
area and nine LiDAR predictor variables for the Correntão area. These variables indicate that
the vertical profile of vegetation at different elevations (minimum, medium and maximum
heights) are potential predictors for TAGB. TAGB estimation and mapping for the studied
forest was based on the best-fit model.

The spatial distribution pattern of TAGB is related to the structure and composition of
the forest landscape, where low-TAGB areas correspond to low-forest cover areas, while
high-biomass areas correspond to densely forested areas. The overall average TAGB of
32 Mg·ha−1 for two areas is comparable and is within the range of values reported for
mature dry tropical forests in previous studies, indicating that the modeling approach used
in this study provides reasonable predictions of TAGB [15,32,33].

Uncertainties in the TAGB estimates in this study could result from errors associated
with field measurements, however, plot TAGB estimates are based on a location-specific
allometric equation with the breadth of data covering a wide sample in the model develop-
ment, showing an accurate TAGB estimate. Any errors associated with the TAGB estimate
at the plot level using a pantropical equation would propagate to the TAGB regression
model, and therefore to the TAGB estimates [34,35]. However, another possible source of
error in biomass predictions may be the density of points adopted, as 0.5 pulses/m2 were
adopted in the data used, while carbon quantification works generally work with 4 to 25
points [4,16,36,37]. Through tests with point density, [9] found that its reduction can result
in a decrease in R2 and an increase in RMSE, in addition to increasing the variance of AGB
estimates. The authors of [38] obtained bias in height estimates which translated into errors
of 80–125 Mg·ha−1 when the operator worked with the pulse density below 4 m2.

Pulse densities from moderate to high changes are invariant and affect results relatively
little; however, once the pulse drops to 1/m2, it makes metrics related to coverage (canopy
coverage, tree density and shrub coverage) more sensitive to changes in this density [39].
Thus, the increase in RMSE can be explained by the less accurate classification of soil
returns [9]. However, it is worth noting that the low density of points can also be related
to good results, depending on the variable to be studied, such as canopy metrics [40] or
volume [41]. In addition, the TAGC for the study area was estimated based on the TAGB
and the average carbon fraction of the trees; any errors in the TAGB estimate would extend
to the TAGC estimates. However, the results of this study indicate that the TAGB model
provided reliable TAGB estimates for the study area.

5. Conclusions

According to the results found in this work, we concluded that LiDAR data can
be used for estimating biomass and total carbon in dry tropical forest, as confirmed by
an adjustment considered in the models used, with good correlation between the LiDAR
metrics and the biomass data observed in the field. More specifically, we have the following
conclusions and recommendations for future work:

• Using a stepwise method to reduce the metrics proved to be more effective for better
adjustment of the models;

• The LiDAR metrics which were most present in the models were: Elev.minimum,
Elev.maximum, Elev.mean and Elev.P01, with the last two being found in all models;

• The most preserved area had less carbon stock than the most degraded area, this
occurrence can be explained in the inventories carried out in the area that presented
the largest number of bole measured at ground level (DGL: diameter at ground level)
in the area degraded than in the preserved area, strongly influencing the estimated
carbon values in the areas;
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• The pulse density, even though it is not a variable within the models, indirectly
influenced the accuracy of the models, therefore, it is recommended that data be tested
with a higher pulse density in future works.

• The model is limited to the TAGB estimate in the study area and may not be suit-
able for application in other forests. This is due to differences in forest structure,
species composition, vegetation vigor and impacts of atmospheric conditions and soil
moisture and precipitation.

• New studies are recommended to assess the transferability of the model to other pro-
tected forests with same forest structure and species composition. Other studies that
will test the ability of non-parametric algorithms (such as random forest) to develop
TAGB estimation models for the study area, in comparison with linear regression
analysis, are also recommended.

• Our preliminary results provided important information on the spatial distribution
of TAGB and TAGC in the study area, which can be used to manage the reserve for
optimal carbon sequestration.
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