Impact of Climate Change on Potential Distribution of Chinese White Pine Beetle Dendroctonus armandi in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Data
2.2. Environmental Variables
2.3. Species Distribution Modelling
3. Results
3.1. Model Performance and Variables Selection
3.2. Current Potential Distribution of D. armandi
3.3. Future Potential Distribution of D. armandi
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Tang, M. Spatial and temporal dynamics of bark beetles in Chinese white pine in Qinling mountains of Shaanxi Province, China. Environ. Entomol. 2007, 36, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Chen, H. Effect of symbiotic fungi of Dendroctonus armandi on host trees. Scientia Silvae Sinicae 1999, 35, 63–66. [Google Scholar]
- Chen, H.; Tang, M.; Ye, H.M.; Yuan, F. Niche of bark beetles within Pinus armandii ecosystem in inner Qinling mountains. Scientia Silvae Sinicae 1999, 35, 40–44. [Google Scholar]
- Dai, L.; Ma, M.; Wang, C.; Shi, Q.; Zhang, R.R.; Chen, H. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profiles of different stages and responses to host allelochemicals. Insect Biochem. Mol. Biol. 2015, 65, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Ma, C.; Li, Z. Chinese white pine beetle, Dendroctonus armandi (Coleoptera: Scolytinae), population density and dispersal estimated by mark-release-recapture in Qinling mountains, Shaanxi, China. Appl. Entomol. Zool. 2010, 45, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lin, J.T. Responses of insects to global warming. J. Environ. Entomol. 2015, 37, 1280–1286. [Google Scholar]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Tang, Y.M.; Hong, M.F. The risk analysis of Chinese white pine beetle in Chang’an forest area, Shaanxi. Shaanxi For. Sci. Technol. 2018, 46, 36–38. [Google Scholar]
- Feng, S.Y.; Li, T.; Chen, Y.; Liu, H.C. Investigation and control of in Chinese white pine beetle in Foping Nature Reserve, Shaanxi. Shaanxi For. Sci. Technol. 2018, 46, 80–81. [Google Scholar]
- Zi, S.L.; Xiong, P.; Ma, L. Preliminary study on the prevention and control of the Chinese white pine beetle in Qinling Mountains and Ta-pa Mountains. J. Green Sci. Technol. 2016, 5, 41–42. [Google Scholar]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Heads, M. The relationship between biogeography and ecology: Envelopes, models, predictions: Biogeography and ecology. Biol. J. Linn. Soc. 2015, 115, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current Maxent studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Stockwell, D.; Peters, D.P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Hirzel, A.; Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 2002, 157, 331–341. [Google Scholar] [CrossRef]
- Carpentar, G.; Gillison, A.N.; Winter, J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 1993, 2, 667–680. [Google Scholar] [CrossRef]
- Yee, T.W.; Mitchell, N.D. Generalized additive models in plant ecology. J. Veg. Sci. 1991, 2, 287–602. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Leathwick, J.R. GRASP: Generalized regression analysis and spatial prediction. Ecol. Model. 2002, 160, 189–207. [Google Scholar] [CrossRef]
- Kriticos, D.J.; de Barro, P.J.; Yonow, T.; Ota, N.; Sutherst, R.W. The potential geographical distribution and phenology of Bemisia tabaci Middle East/Asia Minor 1, considering irrigation and glasshouse production. Bull. Entomol. Res. 2020, 110, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Q.; Liu, C.C.; Liu, Y.G.; Yang, J.; Zhang, X.S.; Guo, K. Advances in theoretical issues of species distribution models. Sheng Tai Xue Bao 2013, 33, 4827–4835. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2010, 17, 43–57. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- IPCC. Climate change 2014: Fifth Assessment Synthesis Report. Available online: http://www.ipcc/report/ar5/syr/ (accessed on 13 April 2015).
- Xin, X.G.; Gao, F.; Wei, M.; Wu, T.W.; Fang, Y.J.; Zhang, J. Decadal prediction skill of BCC-CSM1.1 climate model in East Asia. Int. J. Climatol. 2018, 38, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Duque-Lazo, J.; van Gils, H.; Groen, T.A.; Navarro-Cerrillo, R.M. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model. 2016, 320, 62–70. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the LASSO. J. R. Statist. Soc. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Kukreja, S.L.; Löfberg, J.; Brenner, M.J. A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification. IPV 2006, 39, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.A.; McNeil, B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Zhu, G.P.; Liu, Q.; Gao, Y.B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodivers. Sci. 2014, 22, 223–230. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.P.; Bu, W.J.; Gao, Y.B.; Liu, G.Q. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS ONE 2012, 7, e31246. [Google Scholar] [CrossRef] [PubMed]
- Nunez, M.A.; Medley, K.A. Pine invasions: Climate predicts invasion success; something else predicts failure. Divers. Distrib. 2011, 17, 703–713. [Google Scholar] [CrossRef]
- Rangel, T.F.; Diniz-Filho, J.A.F.; Bini, L.M. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob. Ecol. Biogeogr. 2006, 15, 321–327. [Google Scholar] [CrossRef]
- Bean, W.T.; Stafford, R.; Brashares, J.S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 2012, 35, 250–258. [Google Scholar] [CrossRef]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. Bioscience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Chen, X.P.; Wang, X.W.; Li, T.; Li, Q.; Li, F. Advance in researches on Dendroctonus armandi. Sichuan For. Sci. Technol. 2008, 29, 56–58. [Google Scholar]
- Régnière, J.; Powell, J.; Bentz, B.; Nealis, V. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect. Physiol. 2012, 58, 634–647. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.R.; Gao, G.Q.; Ma, M.Y.; Chen, H. Cold tolerance and silencing of three cold-tolerance genes of overwintering Chinese white pine larvae. Sci. Rep. 2016, 6, 34698. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, G.Q.; Zhang, R.R.; Dai, L.L.; Chen, H. Metabolism and cold tolerance of Chinese white pine beetle Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae) during the overwintering period. Agric. For. Entomol. 2017, 19, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Ning, H.; Dai, L.L.; Fu, D.Y.; Liu, B.; Wang, H.L.; Chen, H. Factors influencing the geographical distribution of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) in China. Forests 2019, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.A.; Bentz, B.J. Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environ. Entomol. 1999, 28, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, T.; Hilszczański, J. The effect of temperature and humidity changes on insect development their impact on forest ecosystems in the expected climate change. For. Res. Pap. 2013, 74, 345–355. [Google Scholar] [CrossRef]
- Ungerer, M.J.; Ayres, M.P.; Lombardero, M.J. Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). J. Biogeogr. 1999, 26, 1133–1145. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.L.; Taylor, S.W.; Régnière, J.; Safranyik, L. Effect of climate change on range expansion by the mountain pine beetle in British Columbia. In Mountain Pine Beetle Symposium: Challenges and Solutions, Information Report BC-X.-399; Natural Resources Canada: Victoria, BC, Canada, 2003; p. 298. [Google Scholar]
- Mendoza, M.G.; Salinas-Moreno, Y.; Olivo-Martínez, A.; Zúñiga, G. Factors influencing the geographical distribution of Dendroctonus rhizophagus (Coleoptera: Curculionidae: Scolytinae) in the Sierra Madre Occidental, Mexico. Environ. Entomol. 2011, 40, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.L.; McLane, S.C. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Gao, P.; Zhang, S.X. The distribution shifts of Pinus armandii and its response to temperature and precipitation in China. PeerJ 2017, 5, e3807. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; He, J.; Xie, L.; Cui, G.F. Prediction of the suitable area of the Chinese white pines (Pinus subsect. Strobus) under climate changes and implications for their conservation. Forests 2020, 11, 996. [Google Scholar] [CrossRef]
- Yu, F.; Wang, D.X.; Yi, X.F.; Shi, X.X.; Huang, Y.K.; Zhang, H.W.; Zhang, X.P. Does animal-mediated seed dispersal facilitate the formation of Pinus armandii-Quercus aliena var. acuteserrata forests? PLoS ONE 2014, 9, e89886. [Google Scholar] [CrossRef]
- Forrest, J.R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54. [Google Scholar] [CrossRef]
- Burkett, V.R.; Wilcox, D.A.; Stottlemyer, R.; Barrowa, W.; Fagre, D. Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications. Ecol. Complex. 2005, 2, 357–394. [Google Scholar] [CrossRef] [Green Version]
- Bentz, B.J.; Jönsson, A.M. Modeling bark beetle responses to climate change. In Bark Beetles; Elsevier: Amsterdam, The Netherlands, 2015; pp. 533–553. [Google Scholar]
- Sømme, L. Effect of glycerol on cold-hardiness in insect. Can. J. Zool. 1964, 42, 87–101. [Google Scholar] [CrossRef]
- Saunders, D.S. Insect photoperiodism: Effects of temperature on the induction of insect diapause and diverse roles for the circadian system in the photoperiodic response. Entomol. Sci. 2014, 17, 25–40. [Google Scholar] [CrossRef]
- Davis, C.C.; Willis, C.G.; Primack, R.B.; Miller-Rushing, A.J. The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. R Soc. Lond. B Biol. Sci. 2010, 365, 3201–3213. [Google Scholar] [CrossRef] [Green Version]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Araujo, M.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
Data Source | Category | Environmental Variables (Unit) | Abbreviation |
---|---|---|---|
WorldClim | Bioclimatic | Annual mean temperature (°C) | Bio1 |
Mean diurnal range (Mean of monthly (max temp-min temp)) (°C) | Bio2 | ||
Isothermality (Bio2/Bio7) (%) | Bio3 | ||
Temperature seasonality (Standard deviation × 100) (°C) | Bio4 | ||
Maximum temperature of warmest month (°C) | Bio5 | ||
Minimum temperature of coldest month (°C) | Bio6 | ||
Temperature annual range (Bio5-Bio6) (°C) | Bio7 | ||
Mean temperature of wettest quarter (°C) | Bio8 | ||
Mean temperature of driest quarter (°C) | Bio9 | ||
Mean temperature of warmest quarter (°C) | Bio10 | ||
Mean temperature of coldest quarter (°C) | Bio11 | ||
Annual precipitation (mm) | Bio12 | ||
Precipitation of wettest month (mm) | Bio13 | ||
Precipitation of driest month (mm) | Bio14 | ||
Precipitation seasonality (Coefficient of variation) (%) | Bio15 | ||
Precipitation of wettest quarter (mm) | Bio16 | ||
Precipitation of driest quarter (mm) | Bio17 | ||
Precipitation of warmest quarter (mm) | Bio18 | ||
Precipitation of coldest quarter (mm) | Bio19 | ||
Terrain | Altitude (m) | Alt. | |
USGS | Aspect (degree) | Asp. | |
Slope (degree) | Slop. | ||
GBIF, CVH, Field investigations | Host | Pinus armandii distribution | H |
Rank | Environmental Variables | Regression Coefficients in LASSO | Contribution (%) | Probability of Selection * |
---|---|---|---|---|
1 | Minimum temperature of coldest month (Bio6) | 1.4832 | 29.9 | 1.00 |
2 | Precipitation seasonality (Bio15) | −0.8965 | 19.3 | 0.98 |
3 | Mean temperature of driest quarter (Bio9) | 0.7865 | 16.8 | 0.96 |
4 | Annual mean temperature (Bio1) | −0.4614 | 11.4 | 0.93 |
5 | Precipitation of driest quarter (Bio17) | −0.2488 | 9.8 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, H.; Tang, M.; Chen, H. Impact of Climate Change on Potential Distribution of Chinese White Pine Beetle Dendroctonus armandi in China. Forests 2021, 12, 544. https://doi.org/10.3390/f12050544
Ning H, Tang M, Chen H. Impact of Climate Change on Potential Distribution of Chinese White Pine Beetle Dendroctonus armandi in China. Forests. 2021; 12(5):544. https://doi.org/10.3390/f12050544
Chicago/Turabian StyleNing, Hang, Ming Tang, and Hui Chen. 2021. "Impact of Climate Change on Potential Distribution of Chinese White Pine Beetle Dendroctonus armandi in China" Forests 12, no. 5: 544. https://doi.org/10.3390/f12050544
APA StyleNing, H., Tang, M., & Chen, H. (2021). Impact of Climate Change on Potential Distribution of Chinese White Pine Beetle Dendroctonus armandi in China. Forests, 12(5), 544. https://doi.org/10.3390/f12050544