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Abstract: The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of
two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of
arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N
and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization
efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1)
and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A
significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N
uptake was observed between the legume species. Salt stress inhibited the shoot and root growth,
and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate
the effects of salt stress with an average increase of shoot and root growth responses by 35% and
32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and
root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated
treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66%
and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal
inoculated treatments consistently maintained lower PUE in the roots. The results provide insights
for further investigations on the AMF conferred mechanisms to salt stress tolerance response by
A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable
afforestation and reforestation programs in the Atlantic coast of Morocco.

Keywords: arbuscular mycorrhizal fungi (AMF) consortium; Atlantic dunes forest; growth and
uptake responses; leguminous species; reforestation program

1. Introduction

Acacia gummifera and Retama monosperma are two important legume species considered
for afforestation and reforestation programs in the Atlantic coast of Morocco [1]. Due to
their exhibited differences in water stress tolerance, rapid adaptation to poor available nu-
trient soil conditions, in particular nitrogen and phosphorus, these two leguminous species
are gradually integrated in the afforestation and reforestation activities in replacement of
Juniperus phoenicea with increasing tree mortality during transplantation stages [1]. How-
ever, successful plant establishment and growth development are hampered by various
abiotic stresses, particularly drought and salinity, and therefore reduce the effectiveness of
efforts by local authorities towards sustainable forest management [1,2].

Salt stress is among the major environmental problems affecting global agricultural
production and sustainable utilization of land resources, particularly in arid and semiarid
regions. About 7% of the Earth’s land surface area is estimated to be affected by salt
stress [3,4]. Excess of Na+ and Cl− ions in the soil above the concentration of 12 g/L
is considered as highly saline, and depresses the growth of plants via osmotic stress,
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ionic toxicity, nutritional imbalance, and induces oxidative damages [5,6]. At the cellular
level, the physiological and biochemical processes involved in plant growth, such as
photosynthesis, protein synthesis, energy transfer, and lipid metabolism are negatively
impacted by osmotic stress [4,6,7]. Salt stress impairs the seedling development and affects
uptake of nutrients, in particular phosphorus, leading to a loss in crop productivity [8,9].
In response to a particular stress, plants develop several tolerance mechanisms that involve
the overexpression of defense genes, root-to-shoot ratio modification, over salt extrusion
and/or osmotic regulation process [10–12], allowing them, on one hand, to modify their
morphological, physiological, and molecular behaviors to adapt a response [11–13].

On the other hand, plant roots’ association with beneficial microorganisms such as
plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF)
improve their growth, mineral nutrition, health, and help to cope with adverse abiotic
stresses [2,14,15]. The role of AMF in the mitigation of excessive salt stress has been
reviewed [2,8,9]. AMF induces the expression of genes involved in the extrusion of Na+
from cell to the soil, by improving the plant K+ acquisition, release into the xylem, and
maintenance of a favorable Na+: K+ ratio under salt stress [16–18]. Mycorrhized plants also
differentially modulate the transcriptional levels of chloroplast genes encoding antenna
proteins involved in the transfer of energy excitation to maintain sufficient photosystem-
II (PSII) system, and boosts quantum efficiency of PSII under salt stress more than the
non-mycorrhizal plants [12,13]. Furthermore, mycorrhiza fungi induce the interplay of
phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and
jasmonic acid associated with the salt tolerance mechanism [19]. Mycorrhizal represents
an integral component of soil ecosystems that is increasingly recognized as essential for
sustainable forest ecology and management [20,21].

Due to increasing mortality from Juniperus phoenicea, establishment at the field stage,
A. gummifera and R. monosperma are being considered for the afforestation and reforestation
programs [1,22], because of their important ecosystem services, in particular biological
nitrogen fixation, carbon sequestration [23,24], soil protection against erosion [25], woods,
and food provision to rural communities [26]. Furthermore, they offer a large plasticity to
adapt to harsh climatic conditions. Despite their numerous above-mentioned beneficial
contributions, the effect of salinity on growth development, phosphorus utilization effi-
ciency (PUE), and physiological adjustments have not been adequately investigated [1,22].
For various crops such as maize (Zea mays L), sorghum (Sorghum bicolor), rice (Oryza sativa),
and alfalfa (Medicago sativa) grown under salt stress conditions, the PUE was inhibited at a
high salt concentration [2,17,18,27].

The objectives of the present study were: (1) to assess the effects of salt stress on the
growth and nutrient uptake behavior of two legume species, and (2) to evaluate the effect
of AMFs in the mitigation of salt stress of A. gummifera and R. monosperma trees. Through
rapid root colonization by AMF and their accessibility to nutrients, we hypothesize that
AMF can help A. gummifera and R. monosperma seedlings to mitigate the salt stress and
reduce their mortality to enable and promote rapid afforestation and reforestation activities
in the Atlantic coast of Morocco region.

2. Materials and Methods
2.1. Biological Materials
2.1.1. Seeds

Seeds of R. monospermic and A. gummifera were obtained from the Centre Régional de
la Recherche Forestière (CRRF), Marrakesh. Seeds of R. monospermic and A. gummifera were
floated in tap water and 40% sucrose solution to remove dead seeds and other organic
particles, then surface sterilized using 1% sodium hypochlorite for 5 min, before rinsing
repeatedly with distilled water before germination.
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2.1.2. Mycorrhizal Inoculum

A collection of mycorrhizal isolates belonging to Acaulospora and Entrophospora and
Claroideoglomus genera was used. The AMF species were obtained from the Laboratory of
Microbial Biotechnologies, Agrosciences and Environment, Marrakesh, Morocco. These in-
ocula were previously tested for the beneficial effect to alleviate drought and salt stress [28].
To reach the required concentration of AMF spores in the inoculum, a trap culture using
maize plants after 90 days of culture was established. The spores from AMF were isolated
and maintained in sterile substrate formed by a mixture of sand and vermiculite (1:1, v:v)
using maize host plants before their inoculation. The final inoculum contained a spore
density of 1, 9, and 15 spores/g of soil Acaulospora sp., Entrophospora sp. and Claroideoglomus
sp., in addition to the mycelial fragments of AMF tested as recommended by [28].

2.2. Experimental Soil and Design

The soils used to establish the experiment were collected under the forest plantation
of J. phoenicea located in the southeast region of Essaouira (31.2946 N, 9.4228 W). These
soils were chosen as representative habitat under which A. gummifera and R. monosperma
trees are being established. In the sampled site, 20 random sites were selected, and 15 kg of
sampled soils collected at 5–50 cm depth at each site, bulked to a composite soil sample
and transferred to the greenhouse. The soil was air-dried and sterilized, and 3 kg of dried
and bulk soil was filled in 4 L plastic pots and placed in the greenhouse.

The experiment was setup in a randomized complete block design with three factors
tested: Factor 1: leguminous (L) species at 2 levels (R. monosperma and A. gummifera); factor
2: mycorrhiza (M) inoculation at 2 levels [in the absence or presence of AMF], and factor
3: salt (S) treatments at 4 concentration levels (0-, 25-, 50- and 100- mM L−1 NaCl) Five
replicates were used for each treatment. Five seeds of approximately 1 cm size of the
R. monosperma and A. gummifera were germinated and seedlings between 4–5 cm length
were transplanted per pot and later thinned to two plants per pot until harvest at 180 days
after transplanting. Plants were watered and maintained at 75% field capacity at daily
intervals and randomly arranged and kept under greenhouse, with the following growing
conditions: day/night temperatures set at 25.5 ◦C /17 ◦C, a relative humidity of 68.5% and
16/8 h light/dark photoperiod. The positions of pots in the greenhouse were randomly
re-arranged at weekly intervals to ensure homogeneity in received light and radiation.
Shoot and root fresh matter, total shoot-N and -P concentrations, and root colonization
levels by AMF were measured at harvest.

2.3. Salt Stress Treatment

Sodium chloride (NaCl) was used for the salinity treatment. Four concentrations of
NaCl were applied: 0-, 25-, 50-, and 100- mM L−1. After transplanting of R. monosperma
and A. gummifera seedlings, exogenous NaCl was supplied to the nutrient solution at the
different 25-, 50- and 100- mM L−1 concentrations and added in the respective pots. To
avoid percolation and osmotic shock, the nutrient solution was supplied in 4 subdivided
applications and supplied at 10-day interval periods.

2.4. Mycorrhizal Treatment

The AMF treatments received the native mycorrhizal consortia of Acaulospora sp.,
Entrophospora sp. and Claroideoglomus sp. Inoculation was performed by adding 10 g of
fresh inoculum containing root fragments and spores as close as possible to the roots during
seedling transplantation.

2.5. Measurements
2.5.1. Levels of Mycorrhizal Root Colonization Frequencies and Intensities

The intensity and the frequency of root colonization by AMF were measured using
a procedure modified by [29] and [30]. Fragments of roots were macerated in 10% (w/v)
KOH at 90 ◦C for 1 h, then neutralized with 1% HCl for 20 min at room temperature,
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stained with Trypan and Methylene Blue (0.05% each in lactoglycerol) at 90 ◦C for 15 min,
and de-stained in water overnight. Root segments were mounted onto slides, and the
frequency and intensity of colonization by AMF observed under a microscope at 200×
magnification using an Olympus AX70 microscope (Olympus-Japan, Tokyo, Japan).

The level of mycorrhization colonization frequency (MCF) was determined follow-
ing [31] procedure’s (Equation (1)):

MCF (%) =
number of colonized root fragments

number of total root fragments analyzed
×100 (1)

The mycorrhization colonization intensity (MCI) was determined using the following
Equation (2):

MCI (%) =
(95n5 + 70n4 + 30n3 + 5n2 + n1)

Total roots segments
(2)

The mycorrhizal index was assigned from 0 to 5, where 0 represents no colonization,
“n1”: traces of colonization (0–1%), “n2”, colonization rate from 1–10%, “n3”, colonization
rate between 11–50%, “n4”: colonization rate from 51–90%, and “n5”: colonization rate
from 91 to 100%, respectively [32].

2.5.2. Shoot and Root Biomass Dry Matter (DM)

At 180 days after transplanting, shoots were collected, and their fresh matter (FM)
was recorded. Subsequently, the shoot samples were oven-dried at 70 ◦C for 72 h, and their
dry matter (DM) was recorded. The roots were gently washed to remove the soil and the
FM of roots was measured. Lastly, fresh roots were oven-dried at 70 ◦C for 72 h, and their
DM was measured.

2.5.3. Elemental Analyses

Subsamples of dry shoot and root matter were finely crushed and passed through a
1 mm mesh, and then 0.5 g of each sample was digested in concentrated H2SO4 at 500 ◦C.
The concentrations of N in the extracts were measured according to the method described
by [33]. The concentrations of P in the extracts were measured by the colorimetric procedure
of [34]. The total P accumulated in shoots (leaves plus stalks) and roots was calculated by
multiplying the P concentration and dry matter of each plant portion. The P utilization
efficiency (PUE) in shoots and roots was calculated as a ratio between the dry matter weight,
and P concentration in shoot or root, expressed g DM mg−1 P following the [35] procedures.
Mycorrhizal growth and uptake responses were calculated as suggested by [36].

2.6. Statistical Analysis

The statistical analysis was done after data were checked for normality and variance
homogeneity using Shapiro–Wilk and Levene’s tests from R software [37]. Multiple analysis
of variance (MANOVA) procedure was performed to test the main factor effects and their
interactions on the different measured parameters. Percentage data for the MCF and MCI
were square root-arcsin transformed before the ANOVA analyses. The boxplots of the
dataset distribution range represent the IQR (interquartile range), median, and means for
the measured parameters are presented.

3. Results
3.1. Chemical Properties of the Used Soils

The chemical properties analyzed for the composite soils were organic carbon (%),
1.15 ± 0.14; nitrogen content (%), 0.02 ± 0.01; electric conductivity (mS/cm), 0.86 ± 0.03;
pH (H2O), 8.8 ± 0.02; limestone content (%), 22.4 ± 4.01, and available phosphorus content
(mg P kg−1), 8.1 ± 2.01.
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3.2. Variance Analysis

Mycorrhiza colonization intensity, the root-to-shoot ratio, P and N uptakes, PUE in the
shoots, and P uptake in the roots were significantly different for the tested legume species
(Table 1). All the measured parameters for the two legume species, except the root-to-shoot
ratio, showed a significant difference under the salt (S) treatments (Table 1). Among the
tested interactions, the legume (L) species × S interaction was significant at p < 0.05 for
the shoot and root DMs, P uptake, and PUE in the shoot and roots. The shoot N uptake
also showed a significant L × S interaction (Table 1). The L × M and L × M interactions
were significant for the mycorrhizal colonization intensity (Table 1). We further observed a
significant L × M interaction for the mycorrhiza colonization frequency, P and N uptakes
in the shoots, and PUE in the root (Table 1). The triple interaction (L × S × M) effect was
significant for the P uptake in the shoots, and N uptake in the roots (Table 1).

Table 1. Results of 2- and 3-way analysis of variance testing the effects of legume species (L) (2 levels: Acacia gummifera
and Retama monosperma), mycorrhizal (M) inoculation (absence or presence of AMF) and salt (S) treatments (0-, 25-, 50- and
100 mM L−1 NaCl concentrations), and interactions on the measured plants’ parameters at 180 days after transplanting.

Source of
Variation

F Value

DF MCF MCI SDM RDM R-S SPU RPU PUEshoot PUEroot SNU RNU

Legume (L)
species 1 1.4 (ns) 10.7 (**) 1.5 (ns) 2.9 (ns) 6.5 (*) 0.7 (ns) 32.5

(***) 3.8 (*) 6.4 (*) 12.9 (**) 0.05
(ns)

Salinity (S)
treatment 3 46.6

(***)
109.7
(***) 5.7 (**) 11.7

(***) 0.5 (ns) 30.1
(***)

71.8
(***)

37.6
(***)

25.7
(***) 7.9 (***) 20.3

(***)
Mycorrhizal

(M) inoculation 1 463.0
(***)

582.0
(***)

37.8
(***)

70.4
(***)

0.01
(ns)

20.0
(***)

111.7
(***) 0.4 (ns) 20.6

(***)
67.3
(***)

68.7
(***)

L × S 3 0.5 (ns) 0.7 (ns) 4.1 (*) 3.9 (*) 2.3 (ns) 10.6
(***)

10.4
(***) 7.6 (***) 16.6

(***) 8.5 (***) 2.4 (ns)

L × M 1 1.4 (ns) 10.7 (**) 0.1 (ns) 0.8 (ns) 0.3 (ns) 0.6 (ns) 0.2 (ns) 0.01
(ns)

0.01
(ns) 1.9 (ns) 0.5 (ns)

S × M 3 43.6
(***)

109.7
(***) 0.1 (ns) 1.8 (ns) 1.1 (ns) 3.3 (*) 1.5 (ns) 0.7 (ns) 5.1 (**) 6.5 (***) 0.6 (ns)

L × S × M 3 0.5 (ns) 0.5 (ns) 0.9 (ns) 0.7 (ns) 1.1 (ns) 3.0 (*) 5.0 (**) 0.6 (ns) 0.4 (ns) 2.3 (ns) 5.4 (**)
Coefficient of
variation (%) 10.2 9.0 17.2 12.8 17.3 32.0 18.5 20.7 33.0 15.0 20.7

Mycorrhizal colonization frequency (MCF); mycorrhizal colonization intensity (MCI); shoot dry mass (SDM); root dry mass (RDM);
root-shoot ratio (R-S); shoot-P uptake (SPU); root-P uptake (RPU); P use efficiency in shoots (PUEshoot); P use efficiency in root (PUEroot);
shoot-N uptake (SNU); root-N uptake (RNU); numbers followed by *, **, and *** were significant at p < 0.05, p < 0.01, and p < 0.001 by t-test,
respectively.

3.3. Mycorrhizal Root Colonization Frequencies and Intensities

Only values of the mycorrhizal root colonization frequencies and intensities of the in-
oculated treatments are presented, as the no-inoculated treatments had no colonization due
to the sterile conditions of the soil (Figure 1a,b). Mycorrhizal root colonization frequencies
and intensities were inhibited by the S treatments with plants under 50- and 100-mM L−1

NaCl treatments highly damaged (Figure 1a,b). Mycorrhizal root colonization intensity
was consistently lower under A. gummifera than R. monosperma species at the different salt
concentrations used (Figure 1b).

3.4. Shoot and Root Dry Matter (DM)

The boxplots of the shoot and root DMs and root-to-shoot ratio of the non-inoculated
and inoculated-treated plants of A. gummifera and R. monosperma species exposed to different
salt concentrations are presented in Figure 2a–c. Shoot and root DMs were inhibited by
the S stress, and the salt-treated plants showed lower DMs compared to no-salt ones for
A. gummifera (Figure 2a,b). For R. monosperma, shoot and root DMs were also reduced
significantly under the 25 and 100 mM L−1 only, compared to the no-salt treatment.
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As shown in Figure 2a,b, unexpectedly, there was no significant difference between
the 50 mM L−1 and the no-salt salt treatments about the shoot and root DMs (Figure 2a,b).
Shoot and root DMs were always higher in the mycorrhiza inoculated than in the non-
inoculated treatments under the 0, 25, 50, and 100 mM L−1 of NaCl treatment, respectively
(Figure 2a,b). The average value of mycorrhizal shoot and root growth response was
by 35%, and 37% in the A. gummifera and R. monosperma plants about the shoot DM,
respectively (Figure 2a). Similarly, the average value of mycorrhizal shoot and root growth
response were 32% and 45% in the A. gummifera and R. monosperma species, respectively
(Figure 2b). The root-to-shoot ratio significantly differed between the two legume species
with no observed difference due to the M inoculation and imposed S treatments (Figure 2c).
The root-to-shoot ratio values ranged from 0.8 to 1.7, and the mycorrhizal inoculated
A. gummifera plants under the 100 mM L−1 NaCl treatment displayed the lowest value,
while the non-inoculated treatment under 50 mM L−1 of NaCl treatment for the same
species showed the highest value (Figure 2c).

3.5. Tissue-P Concentration and PUE

Tissue-P concentration was calculated by multiplying the P concentration by the dry
weight of shoot, and roots of mycorrhizal inoculated plants was higher than in the non-
inoculated under the different S treatments, whereas there was no significant difference
in shoot P uptake between the two legume species (Figure 3a,b). The salt stress highly
inhibited the P uptake in the shoots and the roots for both legume species (Figure 3a,b).
The average value of mycorrhizal shoot and root P uptake responses were 66% and 68%
for A. gummifera plants (Figure 3a,b). For the R. monosperma species, the average values of
mycorrhizal shoot and root P uptake response were 40% and 95% higher in the inoculated
than in the non-inoculated plants (Figure 3a,b).

The PUE in the shoots and the roots was significantly different for the two legume
species (Figure 4a,b). Phosphorus utilization in the shoots and the roots was lower in the no-
salt than in the salt-treated plants for both legumes (Figure 4a,b). Mycorrhizal inoculated
plants maintained a lower PUE in the roots under the different S treatments, whereas the
M effect was less pronounced in the shoots for the A. gummifera and R. monosperma plants
(Figure 4a,b).

3.6. Nitrogen Uptake in the Shoots and the Roots

Nitrogen uptake in the shoots and the roots of A. gummifera and R. monosperma trees
are presented in Figure 5a,b. The two legume species had highly different N uptake values
in the shoots, but not the roots (Figure 5a,b). The salt stress inhibited the N uptake in the
shoots and the roots, and the highest inhibition effects were observed under the 50 and
100 mM L−1 treatments for the N uptake in the roots of A. gummifera and R. monosperma
species (Figure 5a,b). Mycorrhizal inoculation increased the N uptake in the shoots and
the roots under the different S treatments. Nitrogen uptake in the shoots and the roots
was higher in the inoculated than in the non-inoculated treatments under the different salt
concentrations, except the 50 mM L−1 about N uptake in the shoots for A. gummifera species
(Figure 5a,b). The average values of mycorrhizal shoot and root M uptake response were
75% and 59% higher in the inoculated than in the non-inoculated A. gummifera species
(Figure 3a,b). Similarly, the average value of mycorrhizal M uptake response was 74.1%,
and 74% in the shoots and the roots, respectively, for R. monosperma species (Figure 5a,b).
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Figure 3. Boxplots of P uptake in the shoot (a) and root (b) of the non-inoculated and inoculated
Acacia gummifera and Retama monosperma plants under different salinity levels (0, 25, 50 and 100 mM
NaCl). The average values of mycorrhizal shoot and root P uptake response for A. gummifera and
R. monosperma species are shown by the percentage of increased response. Mycorrhizal inoculated
plants are represented by dashed boxplots for both A. gummifera and R. monosperms species. At the
different salinity concentration, A. gummifera species are represented by antiwhite and brown colors,
and R. monosperma species are shown by tea-green, and green colors, respectively.
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Figure 4. Boxplots of P utilization efficiency (PUE) in the shoot (a) and root (b) of the non-inoculated
and inoculated (a) Acacia gummifera and (b) Retama monosperma plants grown under different salinity
levels (0, 25, 50 and 100 mM NaCl). Mycorrhizal inoculated plants are represented by dashed
boxplots. Mycorrhizal inoculated plants are represented by dashed boxplots for both A. gummifera and
R. monosperma species. At the different salinity concentration, A. gummifera species are represented
by antiwhite and brown colors, and R. monosperma species are shown by tea-green, and green colors,
respectively.
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Figure 5. Boxplots of N uptake in the shoot (a) and in the root (b) of the non-inoculated and
mycorrhizal inoculated Acacia gummifera and Retama monosperma plants grown under different
salinity levels (0, 25, 50 and 100 mM NaCl). The average values of mycorrhizal shoot and root N
uptake response for A. gummifera and R. monosperma species are shown by the percentage of increased
value. Mycorrhizal inoculated plants are represented by dashed boxplots for both A. gummifera and
R. monosperms species. At the different salinity concentration, A. gummifera species are represented by
antiwhite and brown colors, and R. monosperma species are shown by tea-green, and green colors,
respectively.

4. Discussion

Salinity stress is rapidly increasing by an estimated 0.3–1.5 million ha−1 of farmland
yearly, thereby decreasing crop productivity by more than 20% [8]. Deposition from seawa-
ter, poor water drainage facilities, and improper irrigation practices from underground are
the primary causes of high salinity encountered in the Atlantic forest coast of Morocco [38].
The present study was conducted to explore interventions that exploit the soil ecological
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processes and functions conferred by beneficial soil microbes such as PGPRs and AMF to
promote rapid reforestation/afforestation programs of the Atlantic Coastal forest of the
Essaouira region. The results from the present study showed a salt inhibitory effect on the
mycorrhizal root colonization frequencies and intensities (Figure 1a,b). The tested legume
species showed different tolerance responses to salt stress in relation to the intensity of
mycorrhizal root colonization (Figure 1b). The inhibitory effect of salt stress on the intensity
of mycorrhizal root colonization of R. monosperma was lower than A. gummifera plants.
Previous studies investigating salinity effects on the mycorrhizal root colonization intensity
also showed salt detrimental effects on spore germination, hyphal growth, and root colo-
nization rate and intensity of plants [39,40]. A decrease in root colonization of Gi. margarita
and G. etunicatum with increasing levels of salinity (100 mM L−1 NaCl) was also reported
(Yang et al. 2020). The mycorrhizal inhibition effect under high salinity concentrations are
caused by high NaCl concentration that represses hyphal growth, spore germination, and
inhibits the root colonization intensity of inoculated plants [41].

The growth and development of all tested legume species were reduced by salt stress.
A. gummifera was more susceptible to high salinity level than R. monosperma. Inoculation
with mycorrhizal aided the used species to mitigate damages from salt stress on dry
biomass production (Figure 2a,b). Furthermore, the average values of mycorrhizal shoot
and root growth responses were higher in the R. monosperma than in the A. gummifera
plants (Figure 2a,b). In various plants including lettuce (Lactuca sativa), sorghum, and olive
(Olea europaea) trees, the benefit of AMF inoculation to mitigate salt stress were previously
reported [9,18,42]. On lettuce plants, the use of Glomus species increased root and shoot
dry weights than in the non-mycorrhizal inoculated plants due to an enhancement of
proline accumulation from host plants under salt conditions [9]. On sorghum, mycorrhizal
inoculation with Acaulospora mellea species improved the plant’s biomass production by
enhancing superoxide dismutase, peroxidase, and catalase activities, and increase of soluble
sugar uptake in the leaves of the inoculated than in the non-inoculated plants under high
NaCl supply [18]. Although we lack comparable data for A. gummifera and R. monosperma
trees under saline soil conditions of Morocco, shoot and root growth increases of 239%
and 468% were seen using locally isolated Glomus mosseae, G. intraradices or G. claroideum
species on olive trees [42]. The mycorrhizal growth enhancement was attributed to the
ability of inoculated plants to boost the N, P, and K uptakes under high salt conditions and
their translocation into the shoots and leaves [42].

In the present study, P uptake in the shoot and roots was reduced by salt stress.
Phosphorus availability to plants under saline conditions is proven to greatly decrease
around the root zones due to P ions precipitation, concomitantly with Ca2+, Mg2+, and Zn2+

ions [8]. The reduction in P uptake under saline soil conditions was reported by [42]. The
fact that the two species expressed different tolerance response to salt regarding P uptake
in the roots could be exploited in the selection of choice of plant targeting the reforestation
program with better root adaptation to salt and increased uptake efficiency.

Phosphorus utilization in the shoots and roots was strongly affected by salt stress
treatments and the lowest PUE values were in the 0 mM compared to the 25, 50 and
100 mM L−1 of NaCl treatments for both legume species (Figure 4a,b). Mycorrhizal
inoculation maintained a lower PUE in the roots than in the shoots. Plants exposed to
high salinity often suffer from osmotic stress, which leads to nutritional disorders and
inhibition of plant growth. The results are consistent with previous studies that showed the
negative impact of salt stress on the PUE in the roots [27]. To evaluate the combined effects
of phosphorus deficiency and salt tolerance in maize plants, [27] it was also observed that
salinity predominantly affected root growth and reduced plant P uptake. The adverse
impact of salt stress on PUE in the roots could be due to possible root adjustment strategies
that enable plants to increase their P uptake and reduce their translocations into the shoot
parts. Mycorrhiza enabled the plants to increase P uptake and favored root expansion as a
mechanism to build salt stress tolerance. We lack comparable data investigating the PUE of
the two test species under salt stress. The results call for further investigations to elucidate
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the mechanism by which AMF alters PUE under salt stress. Other possible roles of AMF to
alter the PUE of host plants could be due to the increase of hyphae extension out of the
rhizosphere, accessing P to facilitate their translocation to mimic the salt stress [15]. Other
possible mechanisms may involve the overexpression of genes involved in Na+ extrusion
to the soil solution, favoring better K+ acquisition to maintain favorable Na+: K+ ratio
under salt stress [16–18].

In the present investigation, N accumulation in the shoots and the roots decreased due
to the imposed salt stress, and mycorrhizal inoculation significantly reduced salt damaging
effects on the shoot and root N accumulation of both tested species (Figure 5a,b). Salinity
hinders N assimilation by perturbing NO3

− assimilation and impairing protein synthe-
sis [43]. In rice plants, N accumulation in the shoots and the roots was also reduced due
to imposed salt stress [43]. Mycorrhizal fungal’s role is in supporting plants to assimilate
N under various stress conditions via the hyphae that obtain nitrate from the soil and
transform it using nitrate reductase; this is an emerging area of the fungal studies [44].
Recent work showed that plant root’s associations with AMF reduce not only the number
of plant nutrients leached from the soil but also the amount of N2O emitted from the soil
through denitrification [21,45]. Given that N is a severely limiting nutrient in dunes, the
roles of mycorrhizal could be pivotal in the transformation of non-available forms of N to
forms that can be assimilated by R. monosperma and A. gummifera for a rapid afforestation
program in the region.

5. Conclusions

The present investigation evaluated the growth and phosphorus uptake responses of
two legume species to salt stress and the effectiveness of mycorrhizal to mitigate the salt
stress. The two test legume species differed in the pattern of the mycorrhizal colonization
frequency and intensity levels, root-to-shoot ratio, N and P tissue concentrations, PUE
in the shoot, and the roots under different S treatments. Salt stress inhibited most of the
measured legumes’ growth and uptake parameters. Mycorrhizal inoculation helped the
two legume species to mitigate the effects of salt stress, with better P uptake response
found in the roots than in the shoots at high salt concentration. The adverse impacts of
salt stress on PUE efficiency in roots was more pronounced for A. gummifera than in the
R. monosperma under high salinity concentration, and the two species expressed different
tolerance responses to salt regarding PUE in roots. Recognizing that the PUE of plants is
a very complex plant trait, future research targeting PUE improvements under salt stress
will be investigated in the frame of the present project. The PUE in the roots of mycorrhizal
inoculated treatments was always lower than in the non-inoculated treatments, indicating
the role of AMF in the alteration of the PUE. The result calls for future investigations of
physiological, biochemical, and molecular mechanisms for tolerance response to salinity
stress by A. gummifera and R. monosperma conferred by the AMF for a sustainable and
ecological management of the forest in the Atlantic coast regions.
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