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Abstract: Ponderosa pine is an integral part of the forested landscape in the western US; it is the
dominant tree species on landscapes that provide critical ecosystem services. Moderate drought
tolerance allows it to occupy the transition zone between forests, open woodlands, and grasslands.
Increases in stand density resulting from wildfire suppression, combined with lengthening, inten-
sifying, and more frequent droughts have resulted in reduced tree vigor and stand health in dry
ponderosa pine throughout its range. To address a management need for efficient landscape-level
surveys of forest health, we used Random Forests to develop an object-oriented classification of
individual tree crowns (ITCs) into vigor classes using existing, agency-acquired four-band aerial
imagery. Classes of tree vigor were based on quantitative physiological and morphological attributes
established in a previous study. We applied our model across a landscape dominated by ponderosa
pine with a variety of forest treatments to assess their impacts on tree vigor and stand health. We
found that stands that were both thinned and burned had the lowest proportion of low-vigor ITCs,
and that stands treated before the 2014–2016 drought had lower proportions of low-vigor ITCs than
stands treated more recently (2016). Upland stands had significantly higher proportions of low-vigor
trees than lowland stands. Maps identifying the low-vigor ITCs would assist managers in identifying
priority stands for treatment and marking trees for harvest or retention. These maps can be created
using already available imagery and GIS software.

Keywords: tree vigor; ponderosa pine; remote sensing; aerial imagery; dry pine forest; fuel treat-
ments; forest restoration

1. Introduction

Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson et C. Lawson; PP) grows in
both moist and dry forest types; dry forest types are those plant associations where annual
precipitation is approximately 50 cm or less [1,2]. Dry ponderosa pine forests occur on
nearly 10 million hectares across the western United States [3] and are an important com-
ponent in maintaining ecosystem services such as ground and surface water provisioning,
air quality, carbon sequestration, wildlife habitat, and recreational opportunities (USDA
Forest Service, 2014). Moderate drought tolerance enables PP to occupy the transition
between forests, open woodlands, and grasslands. Chronic drought stress coupled with an
increase in susceptibility to insects and disease may accelerate a functional type shift from
closed forests to woodlands and woodlands to grasslands; stand-replacing wildfire and
subsequent regeneration failure can also trigger this type shift [4]. At the individual tree
level, access to water resources and resiliency to drought conditions vary within a stand
and across the landscape. Some trees can access deep, underground water sources or have
genetic adaptations to withstand periods of water stress [5]. While differences in tree vigor
can readily be seen during a field inspection of a stand, scaling to the landscape level is not
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practical due to the high cost of extensive field campaigns. Knowledge of the location of
stressed trees could help foresters mark trees for retention, prioritize stands for treatment,
develop silvicultural prescriptions within the landscape context, and efficiently and quan-
titatively monitor stand health through time. PP is sufficiently sensitive to droughts and
hot droughts that it can be used as an indicator species for monitoring short- to long-term
changes in environmental conditions.

1.1. Disturbance History and Management Response

Dry PP forests have historically had low or mixed intensity fires every 2–47 years [6,7].
Effective wildfire suppression since the mid-20th century has resulted in a buildup of fuels
composed of forest floor litter, shrubs, and regenerating trees that greatly increases the
chance of stand-replacing wildfire. High tree-to-tree competition increases susceptibility to
physiological drought stress, especially during severe or extended droughts. To alleviate
this risk, the approach has been to reduce stand density via thinning followed by fuels
treatments (mastication and or prescribed fire), with the goals of reducing tree drought
stress, insect and pathogen susceptibility, tree mortality, and stand-replacing wildfire [8].
Selection of the residual or “leave” trees when marking forest treatments influences the
resulting stand and forest health. Except for wildlife trees, leave trees should be of high
vigor. High-vigor trees are well adapted to the site, which will reduce future tree loss due
to further environmental stresses [9–11].

The predominant method of field assessment of tree vigor employs qualitative esti-
mates of tree age, live crown ratio, and tree structural class attributes [12]. This method
was developed for quick field assessment of susceptibility to bark beetle attack [13] and em-
phasizes crown shape, density, and position relative to the canopy (dominant, co-dominant,
suppressed). Although it was developed over 50 years ago, Keen’s classification system is
still widely used today in western US dry pine ecosystems.

1.2. Remote Sensing Methods

Remote sensing offers the potential for consistent and efficient mapping of forest
health at several scales. Satellite-based imagery has been frequently employed to assess
stand health but is not suitable for tree-level management, nor is it likely to continue
to be applicable if closed stands become more open as a result of treatment, leading to
an increase of mixed pixels with the reflectance of both ground cover and tree crowns.
However, imagery that can evaluate individual tree crowns (ITCs) could be scalable to
stands and landscapes. Managers could benefit from maps of low-vigor trees, which could
aid in prioritizing areas for treatment (landscape scale), identifying trees for removal or
retention (stand scale) as wildlife trees, and monitoring stand health through time.

Remote-sensing scientists have a long history of using spectral band combinations,
or indices, to interpret imagery [14]. Indices distill the information from two or more
spectral bands into a single value and can reduce the spurious effects of topography and
atmospheric interference in characterizing a target. The normalized differential vegetation
index (NDVI) has a storied history in vegetation remote sensing, such that any spectral
assessment of vegetation condition should include it, if only for comparison purposes.
The strength of NDVI lies in leveraging the inverse relationship between the chlorophyll-
absorbing red band (R), and the water-content-detecting capabilities of the near-infrared
band (NIR) [15,16]. Longer wavelength bands (NIR) are less prone to the atmospheric
scattering inherent in airborne and spaceborne data. This basic formula has been adjusted
to create several specialized vegetation indices (VIs), including the enhanced vegetation
index (EVI) ([17], the soil-adjusted vegetation index (SAVI) [18], and the atmospherically
resistant vegetation index (ARVI) [19], to name just a few. Many VIs were developed in
parallel with the new data coming from Landsat (1972–present) and AVHRR (the Advanced
Very High-Resolution Radiometer (1978–present). Landsat and AVHRR data are coarse
by today’s standards, where sub-meter spaceborne data (i.e., WorldView) are common.
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Airborne platforms provide even higher spatial resolution, as true multispectral digital
sensor arrays replace film photography.

Near-surface remote sensing using fixed-view digital cameras has been successful
in tracking vegetation phenology by using simple chromatic coordinate indices across
several vegetation types [20]. Chromatic coordinates may complement VIs when used
with high-resolution images and have been used to assess lodgepole pine (Pinus contorta
Douglas ex Loud) vigor from large-scale aerial images [21]. For example, Filippa et al.
(2018) found that the green chromatic coordinate (GCC) more accurately tracked seasonal
foliage color changes, while NDVI was superior at detecting new needle formation in
eastern white pine (Pinus strobus L. Small).

1.3. Individual Tree Crowns (ITCs) as Objects

As spatial resolution increases, there is a commensurate increase in spectral variability
of a target object [22]. Pixel-based classifiers are not suited to classifying high-resolution im-
agery because they are prone to errors resulting from shadows, bark and branch reflectance,
and variations in leaf angle and illumination [19,23].

Object-based image analysis (OBIA) groups pixels as collections that represent objects—
usually things that are interpretable, such as houses, fields, lakes, and tree crowns [24].
Image segmentation techniques, which are used to define objects, initially group pixels by
spectra and other attributes (for example slope, aspect), then iteratively pass through the
defined image segments and refine them based on characteristics such as shape, size, and
texture. Most image processing software packages have a suite of image segmentation tools.

Mapping ITCs is a relatively new field and one that is dependent on high-resolution
imagery. This approach has been used for species delineation in the tropics [25,26], temper-
ate deciduous forests [27], and temperate evergreen and mixed (deciduous and evergreen)
forests [28]. However, isolating ITCs in a dense forest landscape is problematic as seg-
mentation routines have difficulty in distinguishing tightly spaced ITCs. Techniques for
ITC delineation have included region-growing, valley-following, and watershed segmen-
tation [29]. Light detection and ranging (Lidar) can be used as a segmentation input to
help in ITC isolation [30]. However, this approach can be foiled by rounded, spherical, and
irregular-shaped tree canopies [31] and dense patches of trees or stands.

1.4. Study Goals

Our goals in this study were to (1) determine whether trees morphologically identified
as low, average, and above-average vigor [32] could be spectrally identified; (2) develop
an operational workflow for classifying ITCs across a dry pine forest landscape using
high-resolution four-band imagery; and (3) apply the classification to remotely assess
the proportions of low vs. ‘not low’ vigor-classified ITCs in several silvicultural and fuel
treatments, in two topographic positions. This approach is intended to be a proof-of-
concept model for linking ground-level observed tree vigor with remotely detected tree
vigor and applying this model at the landscape scale to assess relative effectiveness of
various treatments in improving stand health.

2. Materials and Methods
2.1. Study Area

The 8824-ha study area is in south-central Oregon on lands under Nature Conservancy,
USDA Forest Service, DOI Bureau of Land Management, and private ownership (Figure 1).
It is within the East Cascades ecoregion and receives an average of 48 cm of precipitation
per year, most of that occurring between October and May. Soils are primarily deep
deposits of pumice and volcanic ash, which are highly permeable and drought-prone. The
western part of the study area is comprised of east- and-south facing slopes dominated by
PP, with a minor component of western juniper (Juniperus occidentalis Hook.). The western
slopes transition abruptly into the Sycan Marsh wetland/meadow complex to the east.
Lodgepole pine is co-dominant in the stand in the northern part of the study area. Historic
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fire return interval is 3–47 years, with a median of 11 years based on analysis of tree fire
scars (Bienz, unpublished data). All vegetation is naturally occurring, and no planting or
cultivation has been done on either the managed or unmanaged (no silvicultural treatment
history) sites.
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Figure 1. Map of our study area (8824 ha) in south–central Oregon. Elevations ranged from 1520 m to 1719 m. Locations of
stands in the study area where trees were sampled are presented in the large-scale map on the right. Key to stand codes:
L = lowland, U = upland, HE = harvest, even spacing, HP = harvest, patchy (clumps and openings), Rx = prescribed fire,
NM = no management, no harvest or fire.

Annual precipitation totals averaged 15% below the 1998–2018 mean for 5 years
(2001, 2002, 2014, 2015, 2018), and 15% above average for 3 years (2006, 2011, 2016) [33].
Although precipitation was greater in 2016, most of that precipitation fell in May so that by
August severe physiological tree drought stress had also developed [32]. Overall, the PP
in the study area showed visible signs of severe drought stress—lower needle elongation,
low leaf cell turgor at noon, low retention of older needles, and chlorosis by August [32].
US-Drought-Monitor-archived data classified the study area into the moderate or greater
drought-intensity class for most of the years 2001–2016, with the exceptions of 2006, 2008,
2009, and 2011 [34]. Overall, PP at this site showed visible signs of severe drought stress—
low leaf-cell turgor at noon, lower needle elongation, low retention of older needles, and
chlorosis suggesting drought-induced oxidative stress [32].

The historic pre-European settlement (ca. 1900) stand structure was more open
(68 trees per ha; TPH) and contained fewer, larger trees (average diameter at breast height
[1.37 m]; DBH) than current unmanaged stand conditions. Stands were spatially het-
erogeneous with tight groupings of trees (clumps) interspersed with open areas (Bienz,
unpublished data). Unmanaged stands in the study area are higher in density (600 TPH)
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and smaller overall (average DBH approximately 37 cm), which is likely to be due to fire
suppression over the past 100 years, resulting in dense stands of mature sized PP and
lodgepole pine.

2.2. Stand Treatments

Typical of most low-elevation PP-dominated stands in the western US, the Sycan
study area is composed of a mosaic of uneven-aged managed and unmanaged stands.
Prior to the 2005 and 2006 treatments, 5–6% of the intensively measured trees each decade
from 1950–1990 were affected by neighboring tree removal or loss as evident in the basal
area increment (Grulke, unpublished data).

Within the study area, six different forest treatments were conducted between 2004
and 2016 (Table 1). Treatments were conducted in both upland (U; >1500 m) or lowland
(L; <1500 m) topographic positions and were primarily within the Pinus ponderosa/Purshia
tridentata Pursh/Festuca idahoensis Elmer and Pinus ponderosa/Purshia tridentata plant associ-
ations ([35]; also see [2] for species composition of associations).

Table 1. Description of stands in the study area where trees were sampled. Key to stand codes: L = lowland, U = upland,
HE = harvest, even spacing, HP = harvest, patchy (clumps and openings), Rx = prescribed fire, NM = no management, no
harvest or fire. Diameter at breast height (1.37 m above ground, DBH), BA (basal area), and trees per hectare (TPH) data
from [32]. These data are based on the DBH and species of each tree in three 30 m radius plots in each site. Values are the
mean ± SD. PP = ponderosa pine. N/A indicates that no belt transects were conducted in these stands.

Stand Harvest Rx Burn Mean DBH
(cm)

PP BA
(m2/ha)

All Species BA
(m2/ha) PP TPH All Species TPH

U-NM N/A N/A 35.2 ± 4.0 61.4 ± 80.4 61.4 ± 80.4 559 ± 361 559 ± 361

U-HP 2016 N/A 34.6 ± 3.5 34.8 ± 15.0 34.8 ± 15.0 307 ± 50 307 ± 50

L-NM N/A N/A 21.2 ± 1.7 27.6 ± 12.8 30.0 ± 13.8 605 ± 237 722 ± 289

L-HP 2016 N/A 41.2 ± 2.8 18.6 ± 4.9 18.6 ± 4.9 160 ± 36 160 ± 36

L-HE 2005 N/A 37.5 ± 0.8 8.8 ± 3.8 8.8 ± 3.8 137 ± 57 137 ± 57

L-HE-2Rx 2005 2006,
2013 38.5 ± 1.8 17.3 ± 5.7 17.3 ± 5.7 146 ± 16 146 ± 16

L-Rx N/A 2008 23.9 ± 1.6 5.51 ± 1.0 16.0 ± 1.2 434 ± 22 566 ± 14

L-2Rx N/A 2006, 2013 41.4 ± 1.9 28 ± 8.0 28 ± 8.0 160 ± 36 160 ± 36

Lowland stands are acclimated to a high, dependable water table and are adjacent to
the Sycan Marsh wetland/meadow complex. Trees in upland stands rely on underground
springs or water trapped in interstices of weathered bedrock in late summer when most
soil moisture has been depleted. The field distinction between upland and lowland is a
combination of geomorphology, elevation, soils, and water availability (amount, timing).
Treatments were focused on reducing stand density by thinning and reducing stand-
replacing wildfire risk by prescribed burning. Thinnings were either uniform removal
of co-dominant PP to reduce stand density, resulting an evenly spaced residual stand of
approximately 130 to 140 trees per ha (HE), or in groups that created openings and clumps
of remnant trees of various ages that mimicked the historically patchy within-stand spatial
aggregation (HP) [36,37]. PP stands were also thinned from below (removal of sapling and
pole sized trees in the understory) in areas outside of the retained clumps. In both HP
and HE treatments residual post-harvest slash was either masticated or piled and burned.
Prescribed fire treatments (Rx) were autumn understory broadcast burns that targeted
reduction of fine fuels (grass and brush) but also consumed some saplings and pole-sized
trees. Rx treatments were applied as a stand-alone treatment or in conjunction with a
thinning treatment. Stands are identified by a combination of site (U or L), harvest (HP,
HE), or prescribed fire (Rx) treatment with the number of burns indicated numerically,
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or both. NM designates that a stand has had no active management. Stand metrics
post-treatment are presented in Table 1.

2.3. Field Data Collection
2.3.1. Stand Characterization

All foliage collection and qualitative assessments occurred in late July–August 2018.
We determined stand density (basal area [BA], TPH), composition, and tree–tree com-
petition (competitive zone density—CZD) [38] by establishing 3 to 5 30-m-radius plots.
The centers of the circular plots were determined by using Google Earth software and
imagery to identify points that best represented the vegetation conditions in the stand. In
the 30-m-radius circular plots the DBH and species of all trees >10 cm DBH were recorded.

2.3.2. Tree-Vigor Characterization

Tree-vigor attributes (described below) were collected from intensively measured PP
within a belt transect in each stand. Representative areas to be sampled in each treatment or
unmanaged stand was identified in aerial imagery in Google Earth software. The starting
point of each belt transect was randomly determined, and the transect ran along a north–
south axis, where mature PP within 10 m on each side of the transect line were selected
until a sample size of 30 trees was attained, thus the length of the transect was variable. For
HP treatment stands we increased the number of accumulated trees to 60, as these stands
were scheduled for a 2016 harvest and we wanted to maintain enough trees for future
monitoring. This sampling protocol was established by Grulke [32]. Tree-vigor attributes
were measured on the selected trees (30 or 60) in treated and unmanaged stands.

The selection of tree-vigor attributes is based on previous work that established the
relevance of the attributes in describing tree vigor [39–41]. The vigor attribute measure-
ments are summarized in the Appendix A [32,42]. Tree foliage was sampled by clipping
3–5 secondary branchlets proximal to the terminus in mid-crown with a 13 m pole pruner.
Nine foliage-vigor attributes were selected from a field of around 40 attributes, based
on correlation coefficients and principal components analysis (PCA), which reduced the
number of variables by identifying those that explain most of the variance in the data and
rejecting those that were collinear [32].

2.4. Vigor Classification

A qualitative field assessment of tree vigor (low (LOW), average (AVE), and above
average (AA)) was assigned to each tree during measurement of the tree-vigor attributes.
Since different combinations of the attributes could be used to categorize a tree as LOW,
AVE, or AA, the qualitative assessments were based on the following priority: (1) chlorosis
in four-year needles, (2) overall crown fading, or early needle senescence, (3) needle
retention (thinness of crown) and (4) needle elongation. Examples of these characteristics
are presented in Figure 2 and described in Table 2.

Table 2. Whole-tree and branch characteristics used in assigning qualitative-vigor classes to ponderosa pine individual tree
crowns (ITCs). DMR is the dwarf mistletoe rating.

LOW NOT LOW

Low number of whorls—low needle retention. Highest number of whorls—high needle retention.

High level of needle chlorosis, fading, yellowing. Low or no visible needle chlorosis, no visible fading.

Thinner branchlets. Thicker branchlets.

High frequency of early needle senescence (browning). Low frequency of early needle senescence (browning).

Low needle mass. High needle mass.

High DMR rank. Low DMR rank.
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Figure 2. Examples of qualitative visual characteristics used to assess trees to vigor classes. (A) The
tree on the right exhibits chlorosis and low needle retention, while the tree on the left has good needle
color and mass, (B) reduced needle elongation and fading, (C) needle senescence, and (D) low needle
retention (from [32]).

We tested for differences among the means of the vigor attributes between the three
qualitative-vigor classes using the Wilcoxon rank sum test. Qualitative-vigor classes (LOW,
AVE, AA) were assigned to a total of 406 trees in all 8 stands; 108 of which were in the belt
transects and additionally had their vigor attributes (Section 2.3.2 above) measured. All tree
locations and associated vigor classes were then transferred to a geographic information
system (GIS) point file for use in modeling and analysis.

2.5. Remote Sensing Data and Methods of Crown Delineation

Aerial imagery was acquired on 9 October 2017 from the USDA Forest Service Region
6 Data Resources Management (DRM) office, who contracted the acquisition. The contactor
used a Vexcel Imaging UltraCamX digital sensor and the target ground spatial resolution
in the request was 30 cm. Three north-to-south flightlines of 40 individual images were
collected; the contractors created an 8-bit mosaic from these original 16-bit images using
ERDAS Imagine software. All of the stands were captured on the middle flight line, so
artifacts resulting from the mosaicking process and vertical displacement were minimal.

All imagery and data processing was conducted with the Environmental Systems
Research Institute’s (ESRI’s) ArcGIS Pro version 2.1, Microsoft Excel for Office 365 and
R [43] software.

The wavelengths of the four bands in the imagery were blue (B) 400–540 nm, green
(G) 480–640 um, red (R) 580–720 nm, and near-infrared (NIR) 680–960 nm [44]. Each band
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was delivered as a separate raster GIS layer. We calculated six spectral indices from the
four bands (Table 3).

Table 3. Spectral indices calculated from the four-band imagery and used in the vigor model and classification of Ponderosa
pine individual tree crowns (ITCs). NIR = near-infrared band, R = red band, B = blue band, G = green band.

Index Formula Citation

Normalized Differential Vegetation Index
(NDVI) (NIR-R)/(NIR ± R) Rouse et al., 1974; Tucker 1979

Enhanced Vegetation Index (EVI) 2.5(NIR-R)/(NIR ±(2.4R) ±1) Jiang et al., 2008.

Difference Vegetation Index (DVI) NIR-R Richardson and Wiegand 1977.

Blue Chromatic Coordinate (BCC) B/(R ± G ± B) Gillespie et al., 1987; Stafford 2015.

Red Chromatic Coordinate (RCC) R/(R ± G ± B) Gillespie et al. 1987; Stafford 2015.

Green Chromatic Coordinate (GCC) G/(R ± G ± B) Gillespie et al., 1987; Stafford 2015; Reid et al., 2016.

Indices were calculated using Python and the ArcGIS Geoprocessing API software
and the results were saved to individual raster files—one for each index. Indices were
selected based on their history of use in the remote sensing of vegetation health (DVI, NDVI,
EVI) [19]. Chromatic indices [45] were also calculated for the visible bands (RCC, GCC,
BCC) because they reduce the effects of inconsistent illumination and variations in soil
background characteristics that are common in near-surface high-resolution imagery [46].
The four bands and the six spectral indices constituted our suite of image attributes
extracted and analyzed for evaluating tree vigor.

A GIS layer of only ITCs was developed to extract spectral data. First, pixels of well-
illuminated PP ITCs were identified and the DVI and brightness spectral values extracted.
Applying the threshold values to the entire DVI and brightness image bands effectively
created a segmented image with two classes—ITC and not ITC (non-PP vegetation, ground
cover, roads, landings, shadows). We reviewed this draft ITC mask and iteratively adjusted
the threshold values to accurately isolate the PP tree crowns.

We experimented with several image segmentation tools, including eCognition (Trim-
ble) 1 and the ArcGIS Pro Segmentation tool (ESRI). These tools have multiple parameters
that interact on the input raster layers to produce the segmented polygon output. After
multiple iterations with both tools, we found that the outputs would still need extensive
editing to sufficiently segment out the ITCs on our study landscape. Our simple threshold
approach produced a satisfactory PP ITC mask without the need for specialized software.

Once finalized, the ITC mask was further refined by eliminating groups of pixels of
five or fewer, the assumption being that small areas do not represent full (mature) ITCs.
Polygons were created from the ITC pixels using the ArcGIS Pro Raster to Vector tool; this
process produced a database table with each row representing an ITC polygon.

2.6. Random Forest Modeling of Individual Tree Crown (ITC) Vigor

Statistics for the spectral bands and indices were calculated for the ITC polygons using
the ESRI ArcGIS Zonal Statistics Table Tool [47]. This tool produces a table with a record
for each of the ITCs containing the mean and standard deviation for each of the spectral
bands and indices. We added the qualitative tree vigor class (LOW, AVE, AA) to this table
for each ITC polygon (tree crown).

We ran the Shapiro–Wilk test of normality on the spectral data and found that we
could not assume a normal distribution, so we used the Mann–Whitney–Wilcoxon test for
differences in spectral means between the vigor groups. Unless otherwise noted, statistical
significance is reported at the p < 0.05 level.

Outliers were removed if they were lower than Q1–1.5 (Q3–Q1) and if they were
higher than Q3–1.5 (Q3–Q1) where Q1 = the first quartile of the data distribution and
Q3 = the third quartile of the data distribution (1.5*IQR rule, [48]. The 1.5* IQR rule was
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applied to the mean value of the spectral bands and indices, and if 4 or more bands/indices
were flagged as outliers, then the ITC was designated an outlier. From the original dataset
of 406 trees, we removed 35 ITCs as outliers.

We used random forests (R statistical software, version 4.6-14 of the Random Forests
package) to build a model to predict tree-vigor class from the ITC spectral attributes.
Random forests (RF) is an ensemble machine-learning algorithm that constructs multiple
classification and regression trees using recursive partitioning, i.e., binary splits at each
branch of a tree based on the reduction in uncertainty of the response variable. Each tree is
built with a randomly selected sub-set of the predictor variables and a randomly selected
(with replacement) subset of 2/3 of the training data points (bootstrap sample). This is
called bagging, short for bootstrap aggregating. Error is estimated by running each of the
withheld data points (1/3 of all the training points) through the tree and if the point is
classified correctly, that tree gets a vote as a correct classification. The prediction error of
the RF model is estimated as the number of times withheld points are run through the tree
and classified incorrectly; this is the out-of-bag (OOB) error estimate. A confusion or error
matrix is produced by comparing the predictions with the actual classes for the input data
points. It is unnecessary to withhold validation data and run a separate cross-validation
because error is estimated internally at each iteration using the 1/3 withheld sample.

The importance of a predictor (spectral attribute) in classifying the ITC vigor can be
estimated by randomly shuffling the value of the predictor while keeping all other predictor
values the same. The correctly classified OOB points are then run through this tree and
the mean decrease in accuracy that results from shuffling the predictor is calculated. This
is ‘variable importance,’ and is commonly expressed as the decrease in accuracy of the
model if the predictor is removed. Variable importance is also defined as the normalized
difference of the classification accuracy for the OOB data when the OOB data have been
randomly permuted (shuffled) [49]. User-specified parameters for RF include the number
of randomly selected predictors for each tree (mtry, which is typically the square root of the
number of predictors) and the total number of trees (nTrees) in the ensemble. Creating an
RF model is an iterative process with many combinations of the parameters (mTry, nTrees),
predictors, and training data.

We applied our finalized RF model to all ITCs in the study area and assessed the
proportion of LOW ITCs in each vigor class by stand. Significant differences between
the proportion of LOW ITCs in each stand were tested with the Z-score test. Finally,
we summarized the proportion of LOW ITCs determined by the three methods—the RF
spectral model, qualitative field assessment using only the transect trees, and qualitative
field assessment using all trees. Our goal here was to examine the differences between
these methods of assessing stand health.

3. Results
3.1. Treatment Areas

The unmanaged control areas (U-NM and L-NM) had the highest TPH for all species
(559 and 722, respectively) and the high standard deviation (SD) values reflect the patchy
nature of the stands prior to management (Table 1). L-HE, L-2Rx, L-HE-2Rx had a lower
basal area and TPH (PP and all species) compared with the unmanaged area (L-NM).
Where trees were harvested (L-HE, L-HE-2Rx), mean DBH for all trees was greater than
that of the unmanaged stand (L-NM) (Table 1).

3.2. Spectral Separation of Vigor Classes

The spectral signatures for the AVE and AA tree-vigor classes were not significantly
different and so were collapsed into a single vigor class—NOT LOW. The two classes
LOW and NOT LOW had significantly different means for 15 of the 20 spectral values
and indices (Table 4). Two of the vigor attributes were significantly different between the
two vigor classes (LOW and NOT LOW) (Table 5). Both attributes had a strong visual
component—needle discoloration and needle loss (and an associated increase in branch



Forests 2021, 12, 612 10 of 21

visibility)—that contributed to the spectral differences in the two vigor classes. 4CZDPP
(competitive zone density) was significantly (Kruskal–Wallis rank sum test) higher for
LOW trees, indicating that trees in tight groups express reduced vigor traits.

Table 4. Individual tree crown (ITC) spectra/index attribute values (MEAN and SE) for trees in the
two vigor classes. Marked (*) attributes are significantly different (p < 0.05) between the LOW and
NOT LOW vigor classes using the Mann–Whitney test for differences in means. Indices defined:
DVI = difference vegetation index; NDVI = normalized differential vegetation index; EVI=enhanced
vegetation index; RCC = red chromatic coordinate; BCC = blue chromatic coordinate; GCC = green
chromatic coordinate. SD indicates the standard deviation of the pixels within an ITC. For example,
GREEN SD is the standard deviation of the green value of all the pixels within an ITC.

SPECTRA/INDEX LOW NOT LOW p-Value

BLUE_MEAN 124 (0.27) 124 (0.24) 0.85
RED_MEAN 143 (0.45) 143 (0.35) 0.68

GREEN_MEAN 145 (0.37) 146 (0.29) 0.42
NIR MEAN * 221 (0.31) 222 (0.24) 0.0057
DVI MEAN * 77 (0.40) 78 (0.33) 0.0089

NDVI MEAN * 0.21 (0.0013) 0.21 (0.0010) 0.039
EVI MEAN * 0.34 (0.0023) 0.34 (0.0019) 0.036
RCC MEAN * 0.35 (0.00036) 0.35 (0.00026) 0.012
BCC MEAN 0.30 (0.00033) 0.30 (0.00022) 0.997
GCC MEAN 0.35 (0.00024) 0.35 (0.00017) 0.0011
BLUE SD * 2.7 (0.12) 3.4 (0.076) 0.0000088
RED SD * 4.2 (0.16) 5.1 (0.11) 0.000024

GREEN SD * 3.9 (0.15) 4.5 (0.092) 0.0097
NIR SD 5.0 (0.23) 5.4 (0.15) 0.14

NIRR SD * 4.1 (0.23) 5.0 (0.14) 0.00036
NDVI SD * 0.012 (0.00060) 0.015 (0.00038) 0.000018
EVI SD * 0.021 (0.0010) 0.026 (0.00066) 0.000014
RCC SD * 0.0026 (0.00010) 0.0032 (7.8 × 10−5) 0.0000076
BCC SD * 0.0027 (9.9 × 10−5) 0.0029 (6.1 × 10−5) 0.026
GCC SD * 0.0020 (6.8 × 10−5) 0.0023 (4.9 × 10−5) 0.0053

Table 5. Tree-vigor attribute values (MEANS and SE) for trees in the two vigor classes. Marked (*) attributes significantly
differed (p < 0.05) using the Wilcoxon rank sum test. Tree-vigor attribute attributes were defined as follows: WHL is the
number of years needles retained; BRDIA2 is the previous year branchlet diameter (±/− 0.01mm); BRLN1 is the current
year branchlet length (±/− 2.0 mm); %MxNL1 is the current-year needle length relative to the longest needles produced
on the branchlet; CHL4 is the level of chlorosis in 4-year-old needles; LF BI DF is a synthetic index of foliar (biotic) insect
defoliators (including summed frequency of weevil, unknown phloem feeders, and scale); LF A DF is the summed frequency
of needle tip dieback, dead needles, and early senescence; DMR is the dwarf mistletoe rating [32].

RANK WHL * BRDIA2 BRLN1 %MxNL1 CHL4 * LF BI DF LF A DF DMR

NOT LOW 6.3 (0.09) 6.1 (0.10) 14 (0.54) 89.9 (0.89) 8 (1.0) 2.7 (0.05) 0.67 (0.05) 0.0 (0.10)
LOW 6.0 (0.2) 5.7 (0.21) 13 (1.1) 89 (1.7) 13 (3.8) 2.3 (0.14) 1 (0.12) 0.0 (0.27)

3.3. Segmentation

Our simple thresholding method of isolating ITCs in ArcGIS Pro produced satisfactory
results, particularly in stands with open canopies (20–60% tree cover) (Figure 3). The
threshold values used in the ITC mask were DVI >55 and Brightness >380. These settings
effectively isolated PP tree ITCs from ground cover and shadows. After removal of crown
polygons of less than 5 pixels, there were a total of 1,542,001 ITCs in the study area.
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Figure 3. Aerial imagery collected in October 2017 (four (R, G, B, IR) bands, 30 cm resolution) with
classified individual tree crowns (red = low vigor, blue = not low vigor). This image contains four
different site treatments; on the upper right is L-NM, lower right L-HE-2Rx, left of the main road is
L-HP, and between the two spur roads on the right is L-HE.

3.4. Random Forest (RF) Classification

The RF classification model using the predictor variables (Table 4) and with the
parameters mTry = 5 and nTrees = 500 produced an OOB error of 23.4% (76.6% accuracy)
(Table 6). The KAPPA statistic of 0.30 indicated that the predicted vigor was in fair
agreement with our field assessments. Our RF model tended to over-predict LOW trees
(high Type II error (0.68), and low user accuracy (0.32)); the proportion of LOW to NOT
LOW trees predicted by the model was 0.27 in contrast to a field proportion of 0.13. The
RF model performed well in classifying NOT LOW ITCs (93%) but mis-classified nearly
2/3 of the LOW ITCs as NOT LOW.

The variable importance in the RF model indicated that six of the highest-ranking
variables were derivatives of the NIR band and seven contained the R band, indicating the
importance of NIR and R in detecting tree vigor (Figure 4). Also ranking high in importance
were standard deviations of the ITCs, which highlighted the importance of within-crown
variability of crown color (structural patchiness) and transparency (thinness; proportion of
visibility of branches).
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Table 6. OOB (out of bag) error matrix for the Random Forest model vigor predictions for all ITCs (individual tree crowns,
outliers removed). The columns are the crowns as predicted by the model and the rows are the vigor assessments made in
the field (reference data). The overall accuracy of 0.78 is calculated as the number of correctly classified crowns divided by
the total number of crowns. The KAPPA statistic is the overall accuracy adjusted for random correct classification.

LOW NOT LOW ROW TOTAL USERS
ACCURACY

Error of Commission
(Type II)

LOW 33 69 102 0.32 0.68
NOT LOW 18 251 269 0.93 0.07

COLUMN TOTAL 51 320 371

PRODUCERS
ACCURACY 0.65 0.78

Error of Omission
(Type I) 0.35 0.22

ACCURACY: 0.77
KAPPA STATISTIC: 0.30
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Figure 4. Graph of variable importance produced by the Random Forest model. Vertical axis values
are the predictor variables and the horizontal axis shows the decrease in model accuracy if the
variable is removed.

3.5. Predicted Tree Vigor in the Forest Treatments

When we applied the RF model to the ITCs across the study area, several patterns
emerged. Four of the five stands with the lowest proportions of LOW-vigor trees were
harvested and two of the four were also burned. Stands with the highest proportion of
LOW-vigor trees were U-NM and L-Rx, while the lowest proportion of LOW-vigor trees
were in L-HE-2Rx (Figure 5). Overall, there was a significantly higher proportion of LOW-
vigor trees in upland vs. lowland stands (Table 7). However, this was not the case with the
HP treated stands. The L-HP stands had a higher proportion of LOW-vigor trees than its
upland counterparts (U-HP). L-HE-2Rx was harvested (2005) and burned (2006, 2013), and
had a lower proportion of low-vigor trees than adjacent stands. Half of the stands had no
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LOW trees in their belt transects (U-HP, L-HE-2Rx, L-Rx, L-2Rx), increasing the difficulty
in comparing the ‘RF model’ and ‘All trees’ assessments of the proportion of LOW ITCs
(Table 8). L-HE-2Rx had the lowest proportion of LOW trees, and L-Rx was the second
highest in both the ‘RF model’ and ‘All trees’ assessments. The ‘All trees’ assessment
ranked L-HP as the highest in proportion of LOW trees, while the RF model ranked U-NM
as the highest. Otherwise, there was no consistency between the two methods.
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Figure 5. Graph of the proportion of LOW tree crowns (ITCs) in the eight stands with standard error. Stands that are not
significantly different (two tailed Z-score tests of a proportion, p > 0.01) have the same italicized letter (a–e). For example,
U-NM and L-Rx, are not significantly different; U-HP, L-2Rx and L-HE are not significantly different. Stand treatment
descriptions are as follows: U-NM is upland, no management; L-Rx is lowland prescribed fire (2008); L-HP is lowland,
harvest in 2016, retention of trees in groups; L-NM is lowland, no management; U-HP is upland, harvest in 2016, retention
of trees in groups; L-2Rx is lowland, prescribed fire in 2006 and 2013; L-HE is lowland, harvest even spacing; and L-HE-2Rx
is lowland, harvest even spacing, prescribed fire in 2006 and 2013.

Table 7. Proportion of LOW RF-modeled individual tree crowns (ITCs) in upland and lowland sites.
The proportion of LOW crowns was significantly different (two tailed Z-score tests of a proportion,
p = 0.023) for the two site types.

LOW NOT LOW TOTAL LOW/All
Crowns

Lowland 5096 19855 24951 0.20
Upland 1768 6419 8187 0.22
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Table 8. Proportion of LOW trees in each stand type as determined by the Random Forest model
using spectral data (RF model), field qualitative assessment of the belt transect trees (n = 108) and
298 additional trees (All trees), and field qualitative assessment of 30 trees in a belt transect (Belt
transect trees). Stand codes are L = lowland; U = upland; HP = harvested, patchy; HE = harvested,
even spacing; NM = no management, Rx = prescribed burn. N/A indicates that no belt transects
were conducted in this stand.

STAND RF Model All Trees Belt Transect Trees

U-NM 0.32 0.20 0.18
U-HP 0.18 0.24 0.18
L-NM 0.26 0.35 0.40
L-HP 0.22 0.61 0.05
L-HE 0.16 0.28 0.13

L-HE-2Rx 0.14 0.04 0.07
L-Rx 0.34 0.35 N/A

L-2Rx 0.2 0.14 0.07

4. Discussion
4.1. Classification of Low-Vigor Trees

Our classification approach and the resulting model were successfully applied to
a dry pine landscape. The classification was in large part dependent on within-crown
(ITC) variability (standard deviation), using 30 cm resolution imagery. There was good
correlation between the qualitative classification of tree vigor from the ground, and the
spectral composition and its degree of variability of both bands and indices of the ITC. We
were able to classify NOT LOW ITCs with 93% user’s accuracy (Table 6), indicating that
a mapped NOT LOW ITC would likely be identified as NOT LOW by field qualitative
methods. Logically applying this classification, a forester could select the remaining LOW
trees for removal to improve stand health, or in calculating the proportion of LOW to NOT
LOW trees in an area to help prioritize treatments in the landscape. A remote-sensing-based
approach as described here is complementary to establishing and periodically evaluating
plots in that it provides an individual tree-level vigor assessment of the whole stand or
treatment, as well as across the landscape.

Ponderosa pine is responsive to near-term heat and water stress and so the gap
between the imagery (October 2017) and field data collection (mid-July to mid-August 2018)
is concerning. 2018 was a drought year (82.3% of average (1998–2018) precipitation) so we
would expect that the trees would decline in vigor between 2017 and 2018. Our model
used 2017 spectral data to predict 2018 field vigor classes, so potentially this would mean
that some ITCs would be assessed in the field (2018) as LOW but presented spectrally
(2017) as NOT LOW. However, most trees (90%) assessed as NOT LOW in 2017 were also
NOT LOW in 2018 and only 10% degraded to LOW. Of the LOW-vigor trees assessed
in 2017, 50% remained LOW, and 50% improved in vigor to NOT LOW. This explains
some of the error in our RF model—68% error in predicting LOW-vigor ITCs due to many
NOT LOW ITCs being classified by the model as LOW. Up to 50% of this error may be
due to the 10-month gap between the imagery collect and field assessments. LOW-vigor
trees as observed in the 2017 imagery may have ‘improved’ in vigor due to greater loss of
(chlorotic) needles, and retained needles had a lower proportion of insect defoliators. To
avoid these complications, imagery should be acquired as close as possible to the desired
date of the stand health assessment because a flush water year could mask differences in
tree vigor that would help guide tree selection. However, classifying imagery collected
during drought years highlights the trees that are susceptible to drought stress and thus
are candidates for removal: identifying trees ‘at risk’ should be conducted in a period of
the environmental stress of interest, in this case, physiological drought stress [32].

Using an object-oriented approach allowed us to examine the degree of within-ITC
variability and use those as predictors in the RF model. Undoubtedly our predictor
variables, which are all derivatives of the four bands in the imagery, are collinear—which
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can be an issue in multiple regression and other parametric methods. However, RF
minimizes the effect of collinearity on prediction accuracy with recursive partitioning
and bagging [50].

4.2. Within Indiviual Tree Crown (ITC) Spectral Variance

The variable importance graph (Figure 4) produced by the RF model shows that
within-ITC spectral variance is as critical as the mean spectral values when classifying
PP vigor. This was expected. An unhealthy, low-vigor ITC will be patchy with some
branches retaining healthy needle clusters and others with chlorotic or no needles. In
the field, low-vigor trees visually present in multiple ways. Needle senescence, chlorosis
and fading, and low needle retention have distinct characteristics (Figure 2); any one
characteristic at a severe level or a combination of them at moderate levels can result in an
assessment of low vigor. From a remote-sensing standpoint this means that the low-vigor
spectral signature will be diverse. Our results support this: within-ITC spectral variance is
significantly different for 9 of the 10 spectra/indices analyzed (Table 4). The strong link
between the field tree-vigor attributes and the LOW vs. NOT LOW qualitative classes
is that both of the significantly different field attributes (WHL and CHL4) have a visual
component—something that you can see in the field and is detectable in the ITCs in the
imagery (Table 5). Conversely, high-vigor ITCs tend to be uniformly composed of healthy
needle foliage with lower spectral variance.

4.3. Stand Treatments

The treatments in our study area were designed to reduce susceptibility to stand-
replacing fire and to improve overall stand health, which we interpret as a decrease in the
proportion of LOW-vigor trees. This was accomplished with overstory thinning (removal
of select co-dominants) and thinning from below (removal of pole and sapling sized
trees). Although we do not have pre-treatment stand data, there is an increase in mean
DBH, reductions in TPH, BA (PP and all species), and in the proportion of LOW trees
between the control (L-NM) and the harvest treatments (L-HE, L-HE-2Rx). The fire-only
treatments resulted in reduced BA and TPH for PP, but not for BA-all species, suggesting
that prescribed burning removed a substantial number of sapling and pole-sized PP.

Despite the tendency of our model to overestimate the proportion of low-vigor trees,
it does provide insight into the effects of the treatments on tree vigor. The proportion
of LOW trees varies among the stands and it is a consistent, repeatable measure that
can be used across the landscape and through time. Our landscape assessment of the
proportion of LOW-vigor trees is in step with the idea that reductions in stand density
lead to improvements in stand health in dry PP forests [51–53] as the stands with the
lowest TPH and BA also had the lowest proportion of LOW-vigor trees. Thinning and
burning prior to drought has been shown to reduce mortality [54]. Our results confirm
this finding: Stands that were harvested or burned prior to the 2014–2015 drought (L-HE,
L-HE-2Rx, L-2Rx) had lower proportions of LOW tree vigor than proximal stands that were
harvested in 2016 (L-HP) or unmanaged (L-NM). The harvest and burning treatments that
occurred pre-drought (L-HE-2Rx, 2005 and 2006, 2013) had among the lowest proportions
of LOW-vigor trees, and four of the five lowest stands were harvest and prescribed fire
treatments, suggesting that both are components in improving overall stand vigor.

The U-NM stand contained a high proportion of old-growth trees which had highly
variable spectral signatures due to dead branches, exposed sloughing bark, and other
aberrations (high DMR) that may cause them to be classified as LOW, using a classification
system that was trained with mature tree crowns. In fact, many of the old-growth trees
in this stand are in decline. Similarly, L-Rx had a significant lodgepole pine component
which experienced severe beetle attack and standing (leaning) mortality, which also may
be classed as LOW. Our methods here were developed for PP and we made no effort to
filter out the ITCs of other species, which would contribute to error in the proportion of
LOW-vigor trees in mixed stands such as L-Rx.
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Thinning and prescribed burning are the common tools used to reduce density and
competition in overstocked PP stands and there is ample evidence that these treatments
decrease mortality [51,54,55], reduce the risk of catastrophic fire (see [7]), and maintain or
increase stand productivity [51,56,57]. Thinning in 80-year-old second-growth PP stands
increased radial growth, increased vigor, and decreased mortality in central Oregon [51].
However, in none of the above studies was the level of physiological drought stress
quantified. Here, in conjunction with [32] we establish a link between physiological
measures of tree drought stress and remotely sensed tree vigor. Like the above studies,
we also found increased overall stand vigor in stands that were thinned and burned,
particularly those that were thinned and burned pre-drought. Most importantly, we were
able to detect this pattern using remote sensing.

The proportion of LOW trees is a metric for stand health. Segmentation and spectral
modeling predict the vigor of all trees in the stand, while plots and transects are a sample
of trees in the stand, which may not fully represent the stand. A sample of 30 randomly
selected trees in a stand is considered appropriate and is commonly used in forestry.
However, LOW-vigor trees might not be evenly dispersed within a stand: this is the norm
rather than the exception. Individual trees vary in their access to deep underground
water sources and in their susceptibility to insects and pathogens. These trees may not be
dispersed evenly in the stand and thus might not be sampled in a plot or transect, whereas
they are likely to be detected in an image of the entire stand. Our results indicate that a
sample of this size collected in a belt transect substantially underestimates the proportion
of low-vigor trees when compared to expanded field assessments and RF model estimates
(Table 8). The multispectral image modeling approach is probably a more accurate measure
of stand health than belt transects, and this remote-sensing tool permits assessment of the
whole stand or treatment.

4.4. Site Type—Upland and Lowland

Analysis of upland and lowland topographic positions permitted exploration of
assumed differences in water availability. Across all treatments, upland stands had signifi-
cantly greater proportions of LOW trees (p = 0.023) than in lowland stands. PP in uplands
expressed reduced vigor due to increased physiological drought stress with hydrological
drought, as was found for a related species, Jeffrey pine (Pinus jeffreyi Balf.) in the Sierra
Nevada [42]. However, trees in ‘marginal’ microsites may be pre-adapted to environmental
stress including drought and may not decline as much with stress as trees unacclimated
to drought [58].

4.5. Image Resolution

Most vegetation mapping projects at medium-to-small map scales (large landscapes)
use imagery that is coarser in resolution than we used in this study. With coarser resolution,
spectral variation decreases and correspondingly the land-cover classes mapped become
coarser. For example, classifications that use moderate resolution imaging spectroradiome-
ter (MODIS) data (250 m pixels) tend to use broad classes such as cool temperate forest and
woodland, whereas Landsat (30 m pixels) classifications can describe species mixes, for
example Cascadian Oregon white oak and Douglas fir woodland. Large pixels consolidate
the spectral signal from many different individual plants and or vegetation types. Mixed
pixel composition makes subtle spectral signals for detecting tree-crown vigor difficult
to impossible to map with moderate resolution (10–20 m) image data, particularly in dry
forest types where the canopies are open and ground cover can confound the spectral
signal. Focusing on ITCs is an emerging solution to this issue, especially with the increased
availability of high-resolution multispectral imagery [59]. Object-oriented methods require
multiple pixels per target object, so the object size and its characteristics drive the spatial
resolution of the imagery. In this study we estimated the average ITC diameter to be 7.5 m
and an ITC of this size would contain nearly five hundred 30-cm pixels.
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4.6. Segmentation Challenges

ITC delineation and classification from imagery is challenging—trees are complex,
three-dimensional objects where canopies are frequently in proximity and usually incon-
sistently illuminated. High spectral variance at the edges of ITCs is typically caused by
contamination of edge pixels with ground cover or neighboring trees [60]. To address
these issues, researchers have used a variety of data including hyperspectral [25,61–63],
lidar [27,63], and temporal image stacks [64] to segment tree ITCs (also see [29]). Where
there are no gaps between ITCs, most segmentation routines cannot separate them using
spectral data alone. Region-growing is a relatively simple segmentation technique where
segments are created around seed points that are within a user-defined spectral threshold.
If a neighboring pixel meets the threshold criteria, then it is added to the region. They
function well with objects that are distinct from neighboring objects, but do not perform
well in separating clustered tree crowns. Lidar can be used to generate a contour surface
of the forest canopy; techniques such as valley following are then used to approximately
delineate ITCs [65]. Applying the classification model to the stand at large, our simple
thresholding approach may have lumped together multiple ITCs, especially in the NM,
HP, and Rx treatments where patches of trees were prevalent (Figure 3). Large polygons
representing multiple trees would dilute the spectral signal from any one tree that might
have low vigor. Patches containing multiple tree ITCs are prevalent in the unmanaged
stands but are also present in the clump retention (HP) treatments. Within 0.1 to 0.2 ha
patches, LOW-vigor trees are more likely to have small ITCs and their spectral ‘signal’
masked by other trees in the clump that are dominant, resulting in an underestimation of
LOW-vigor trees.

Many of the stands in our study area were relatively open and the understory con-
trasted with the ITCs, thus the ITCs could be segmented with simple thresholding. Also,
our stands were dominated by ponderosa pine and so we did not have to segment over-
story ITCs by species prior to assessing vigor. More complex and dense forest landscapes
will require a more sophisticated approach to segmentation employing lidar [27] and hy-
perspectral imagery [25,61]. These approaches would likely improve our model, but we
chose methods that utilized readily available imagery within the USFS and western states,
and techniques that are available to most forest managers. Lidar can be used to identify
the tops of trees, enhancing the ability to identify ITCs in tight clumps. However, data at
the appropriate density is not always available and lidar acquisition is expensive. Using
more sophisticated, data-heavy approaches may have allowed us to map more classes
than just LOW and NOT LOW, but we have shown that this simpler approach does yield
valuable information on the vigor of individual trees across the landscape: identifying
NOT LOW crowns with 90% accuracy is useful to managers for planning, prioritizing,
in differentiating ‘harvest’ and ‘leave’ trees, and monitoring stand health and treatment
effects through time.

Remote-sensing data options continue to advance at a rapid rate and more bands will
be available as a standard product from airborne data collection vendors. The red-edge
band which straddles the spectrum between the R and IR bands may be particularly useful
in classifying ITC vigor as this portion of the spectrum is very sensitive to foliage health [66].
Thermal bands also can play an important role as vegetation under drought stress has
higher temperature. On the platform side, unmanned aerial systems (UAS, ‘drones’) are
being used to collect data at the plot or small stand level. The capabilities of UAS will
continue to expand and this in concert with changes in the regulatory environment will
bring an expanded role for them in collection missions across larger extents.

5. Conclusions

In this study we established a relationship between an on-the-ground assessment of
tree vigor and one developed with remote sensing imagery. We designed our approach
and workflow to delineate and classify the vigor of individual ponderosa pine tree crowns
from readily available four-band airborne imagery, using standard software and analysis
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techniques commonly available to land management agency staff. Spectral data metrics
were significantly different between two vigor classes, LOW and ‘NOT LOW’. Spectral
signatures of ITCs of the two vigor classes were used to train a random forests model, which
was then applied to the ITCs across a landscape which contained common dry pine forest
treatments. Despite the modest overall accuracy of our model (78%) we were able to able
to map high-vigor (NOT LOW) trees with 93% accuracy. With regard to stand treatments,
we generally confirmed the results of others: that thinned, dry PP stands have fewer
low-vigor trees than unmanaged stands; treatments conducted pre-drought have fewer
low-vigor trees than those treated during or post-drought; and prescribed fire alone does
not necessarily restore or maintain tree vigor in overstocked PP stands. In this south–central
OR study area, trees in upland sites had significantly lower vigor than in the lowland sites.
When used to evaluate stand health, our remote sensing approach differed from methods
using a field sample of trees as the health of the whole stand or entire treatment area could
be evaluated vs. stand health assessed from a subset of trees. Although these methods will
be challenged in more diverse and closed-canopy forest landscapes, we have shown that
monitoring vigor in dry ponderosa pine forests– an extensive community type providing
critical ecosystem services in the northern hemisphere—can be accomplished with readily
available four-band aerial imagery and standard GIS and image processing software.
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Appendix A

Needle whorls (WHL)—The number of needle ages retained on the branchlet.
Branchlet diameter (BRDIA2)—Diameter measured in mm (±0.01 mm) at the base of

the previous year branchlet.
Branchlet elongation (BRLN1)—Measured length of the current year branchlet (±2.0 mm)
Relative needle length (%MxNL1)—Current-year needle length expressed as a percent

of the average needle length of the whorl with the longest needles (±5.0 mm).
Chlorosis in 4-year needles (CHL4)—Chlorosis level of 4-year-old needles expressed

as a percent of healthy, green needles in the same age class by ocular estimation.
Insect defoliators (LF BI DF)—The summed frequency of foliar (biotic) insect defolia-

tors (weevils, phloem feeders, and scale).
Abiotic defoliators (LF A DF)—The summed frequency of needle tip dieback, dead

needles, and early senescence (related to drought stress).
Tree–tree competition (4CZDPP)—average diameter/distance to the nearest four

conspecific neighboring trees.
Dwarf mistletoe rank (DMR)—dwarf mistletoe infection ranking (Hawksworth, 1977).
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