Theoretical Development of Plant Root Diameter Estimation Based on GprMax Data and Neural Network Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Theoretical Basis of GprMax Forward Modeling
2.2. Time Interval Parameter
2.3. Forward Modeling Experiment Design
2.4. Assessment of Model Input Parameters
2.4.1. Model Training Data
2.4.2. Model Test Data
2.5. Estimation Model of Root Diameter Parameters
2.5.1. Least Square Regression Model
2.5.2. BP Neural Network Model
2.6. Performance Assessment and Comparison
3. Results
3.1. The Correlation between Root Diameter and
3.2. Root Diameter Parameter Estimation Model
3.2.1. Establishment of Least Square Model
3.2.2. Back Propagation (BP) Neural Network Model
3.3. Estimation of Root Diameter Parameters and Comparison of Prediction Effects of Models
3.3.1. Comparison of Prediction Results under the Condition of Known Dielectric Constants of Root and Soil
3.3.2. Comparison of Prediction Results under the Condition of Unknown Dielectric Constants of Root and Soil
4. Discussion
5. Conclusions
- (1)
- Under the condition that the dielectric constants of root and soil are known, the average prediction error percentage of the least square model is 3.81%, and that of the neural network model is 3.62%. Under the condition of unknown dielectric constants of root and soil, the average prediction error percentage of the least square model is 11.32%, and that of the neural network model is 10.19%.
- (2)
- The prediction stability of the neural network model is better than that of the least square model with known and unknown dielectric constants of root and soil, so it is considered that the prediction effect of the neural network model is better and it is more suitable for estimating root diameter parameters. However, with unknown dielectric constants of root and soil, the prediction error of the neural network model is between [−5.3 mm, 5.0 mm], which is about 3 times that with known dielectric constants of root and soil, and the prediction accuracy drops seriously.
- (3)
- Comparing the prediction results of the neural network model under the known and unknown dielectric constants of root and soil, we recommend sampling and measuring the dielectric constants of root and soil in field exploration, so that the estimation accuracy of root diameter parameters can be effectively improved when the dielectric constants of root and soil are known.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Geometric Model Constructed by GprMax
Appendix B. The imaging Principle of Root Scanning Hyperbola
Appendix C. The Definition of Time Interval Parameters
Appendix D. Least Square Method
Appendix E. Indicators of Model Evaluation
References
- Wang, W.J.; Mo, Q.F.; Han, X.G.; Hui, D.F.; Shen, W.J. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biol. Fertil. Soils 2019, 55, 723–736. [Google Scholar] [CrossRef]
- Ng, C.W.-W. Atmosphere-plant-soil interactions: Theories and mechanisms. Chin. J. Geotech. Eng. 2017, 39, 1–47. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Das, B.; Manivannan, S.; Manjunath, B.L.; Verma, R.R.; Desai, S.; Kulkarni, R.M.; Latare, A.M.; Sale, R.; Murgaonkar, D.; et al. Soil and water conservation measures improve soil carbon sequestration and soil quality under cashews. Int. J. Sediment. Res. 2020, 36, 190–206. [Google Scholar] [CrossRef]
- Yu, G.R.; Li, W.H.; Shao, M.A.; Zhang, Y.J.; Wang, S.Q.; Niu, S.L.; He, H.Q.; Dai, E.F.; Li, F.D.; Ma, Z.Q. Ecosystem science research and ecosystem management. Acta Geogr. Sin. 2020, 75, 2620–2635. [Google Scholar] [CrossRef]
- Huang, G.; Zheng, M.X.; Dong, X.; Peng, J.; Yang, J.K. Study on the reinforcement effect of herb and shrub root system on coal-bearing soil. J. Beijing Jiaotong Univ. 2020, 44, 49–56. [Google Scholar] [CrossRef]
- Liu, L.B.; Zhong, Q.L.; Ni, J. Allometric function-based root biomass estimate of woody plants in a karst evergreen and deciduous broadleaf and mixed forest in central Guizhou Province, southwestern China. Acta Ecol. Sin. 2018, 38, 8726–8732. [Google Scholar] [CrossRef]
- Riedell, W.E.; Osborne, S.L. Monolith Root Sampling Elucidates Western Corn Rootworm Larval Feeding Injury in Maize. Crop. Sci. 2017, 57, 3170–3178. [Google Scholar] [CrossRef]
- Cui, X.H.; Guo, L.; Chen, J.; Chen, X.H.; Zhu, X.L. Estimating Tree-Root Biomass in Different Depths Using Ground-Penetrating Radar: Evidence from a Controlled Experiment. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3410–3423. [Google Scholar] [CrossRef]
- Li, Z.J.; Chen, X.; Shu, J.H.; Sun, H.Y.; Cong, R.C. Research Methods for Tree Root System Distribution and Structure: A Review. World For. Res. 2015, 28, 13–18. [Google Scholar] [CrossRef]
- Chen, W.L.; Jin, M.G.; Liu, Y.F.; Xian, Y.; Huang, J.O. Monitoring cotton root growth dynamics under mulched drip irrigation using monirhizotron technique. Trans. Chin. Soc. Agric. Eng. 2017, 33, 87–93. [Google Scholar] [CrossRef]
- Chirol, C.; Carr, S.J.; Spencer, K.L.; Moeller, L. Pore, live root and necromass quantification in complex heterogeneous wetland soils using X-ray computed tomography. Geoderma 2020, 387, 114898. [Google Scholar] [CrossRef]
- Pflugfelder, D.; Metzner, R.; van Dusschoten, D.; Reichel, R.; Jahnke, S.; Koller, R. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods 2017, 13, 102. [Google Scholar] [CrossRef]
- Delgado, A.; Hays, D.B.; Bruton, R.K.; Ceballos, H.; Novo, A.; Boi, E.; Selvaraj, M.G. Ground penetrating radar: A case study for estimating root bulking rate in cassava (Manihot esculenta Crantz). Plant Methods 2017, 13, 65–76. [Google Scholar] [CrossRef]
- Molon, M.; Boyce, J.I.; Arain, M.A. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3-D ground-penetrating radar(GPR). J. Geophys. Res. Biogeosci. 2017, 122, 80–102. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, C.; Su, Y.; Sato, M. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field. Remote Sens. 2014, 6, 5754. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Guo, L.; Cui, X.H.; Chen, J.; Cao, X.; Lin, H. Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant Soil 2014, 383, 155–172. [Google Scholar] [CrossRef]
- Lunina, O.V.; Gladkov, A.S.; Gladkov, A.A. Surface and shallow subsurface structure of the Middle Kedrovaya paleoseismic rupture zone in the Baikal Mountains form geomorphological and ground-penetrating radar investigations. Geomorphology 2018, 326, 54–67. [Google Scholar] [CrossRef]
- Guo, L.; Fan, B.H.; Wu, Y.; Li, W.T.; Cui, X.H.; Chen, J. A review on the application of ground-penetrating radar to detect and quantify coarse roots. China Sci. 2014, 9, 494–498. [Google Scholar]
- Xiang, L.; Zhou, H.L.; Shu, Z.; Tan, S.H.; Liang, G.Q.; Zhu, J. GPR evaluation of the Damaoshan highway tunnel: A case study. NDT E Int. 2013, 59, 68–76. [Google Scholar] [CrossRef]
- Liang, H.; Xing, L.Y.; Lin, J.H. Application and Algorithm of Ground-Penetrating Radar for Plant Root Detection: A Review. Sensors 2020, 326, 2836. [Google Scholar] [CrossRef]
- Zhang, X.H.; Derival, M.; Albrecht, U.; Ampatzidis, Y. Evaluation of a Ground Penetrating Radar to Map the Root Architecture of HLB-infected Citrus Trees. Agronomy 2019, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Senalik, C.A.; Wacker, J.; Wang, X.P.; Li, G.H. Object Detection of Ground-Penetrating Radar Signals Using Empirical Mode Decomposition and Dynamic Time Warping. Forests 2020, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Agtuca, B.; Schueller, M.J.; Jurisson, S.S.; Stacey, G.; Ferrieri, R.A. Relationship Between Carbon Mobilization and Root Growth Measured by Carbon-11 Tracer in Arabidopsis Starch Mutants. J. Plant Growth Regul. 2019, 38, 164–179. [Google Scholar] [CrossRef]
- Weigand, M.; Kemna, A. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems. Biogeosciences 2017, 14, 921–939. [Google Scholar] [CrossRef] [Green Version]
- Metzner, R.; Eggert, A.; van Dusschoten, D.; Pflugfelder, D.; Gerth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods 2015, 11, 17–28. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Shen, J.; Cao, X.; Chen, X.; Zhu, X. Modelling tree root diameter and biomass by ground-penetrating radar. Sci. China Earth Sci. 2011, 54, 711–719. [Google Scholar] [CrossRef]
- Zhang, L.L. Research on the Method of Improving Ground Penetrating Radar Signal Resolution. Ph.D. Thesis, Jilin University, Changchun, China, 2012. [Google Scholar]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A Realistic FDTD Numerical Modeling Framework of Gronud Penetrating Radar for Landmine Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 37–51. [Google Scholar] [CrossRef]
- Mihai, A.E.; Gerea, A.G.; Curioni, G.; Atkins, P.; Hayati, F. Direct measurements of tree root relative permittivity for the aid of GPR forward models and surveys. Near Surf. Geophys. 2019, 17, 299–310. [Google Scholar] [CrossRef]
- Mapoka, K.O.M.; Birrell, S.J.; Tekeste, M.Z.; Steward, B.; Eisenmann, D. Using GprMax to Model Ground-Penetrating Radar (GPR) to Locate Corn Seed as an Attempt to Measure Planting Depth. Transctions Asabe. 2019, 62, 673–686. [Google Scholar] [CrossRef]
- Moran, C.J.; Pierret, A.; Stevenson, A.W. X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure. Plant Soil 2000, 223, 99–115. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H.; Fan, B.H.; Cui, X.H.; Chen, J. Impact of root water content on root biomass estimation using ground penetrating radar: Evidence from forward simulations and field controlled experiments. Plant Soil 2013, 371, 503–520. [Google Scholar] [CrossRef]
- Cui, F.; Li, S.; Yuan, J.X.; Bai, J.B.; Zhao, Y.X.; Zhou, Y.G. GPR based RTM imaging technology for estimating rhizome diameters and application in the western China mining area. Appl. Geophys. 2020, 17, 154–166. [Google Scholar] [CrossRef]
- Yamase, K.; Tanikawa, T.; Dannoura, M.; Ohashi, M.; Todo, C.; Ikeno, H.; Aono, K.; Hirano, Y. Ground-penetrating radar estimates of tree root diameter and distribution under field conditions. Trees 2018, 32, 1657–1668. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Cui, X.H.; Quan, Z.X.; Zhang, Z.; Chen, J. The availability of ground penetrating radar in recognizing plant roots in field. Prog. Geophys. 2021, 1, 1–13. [Google Scholar]
- Warren, C.; Giannopoulos, A.; Giannakis, I. GprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhao, S.; Al-Qadi, I.L. Real-Time Density and Thickness Estimation of Thin Asphalt Pavement Overlay During Compaction Using Ground Penetrating Radar Data. Surv. Geophys. 2020, 41, 431–445. [Google Scholar] [CrossRef]
- Özkap, K.; Pekşen, E.; Kaplanvural, İ.; Çaka, D. 3D scanner technology implementation to numerical modeling of GPR. J. Appl. Geophys. 2020, 179, 104086. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Gray, A.; Giannakis, I.; Patterson, A.; Wetter, L.; Hamrah, A. A CUDA-based GPU engine for GprMax: Open source FDTD electromagnetic simulation software. Comput. Phys. Commun. 2018, 237, 208–218. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. An advanced GPR modelling framework: The next generation of gprMax. In Proceedings of the 8th International Workshop on Advanced Ground Penetrating Radar: IWAGPR 2015, Florence, Italy, 7–10 July 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Giannopoulos, A. Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 2005, 19, 755–762. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H.; Fan, B.H.; Cui, X.H.; Chen, J. Forward simulation of root’s ground penetrating radar signal: Simulator development and validation. Plant Soil 2013, 372, 487–505. [Google Scholar] [CrossRef]
- Bain, J.C.; Day, F.P.; Butnor, J.R. Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar. Remote Sens. 2017, 9, 1337. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cui, X.; Guo, L.; Chen, J.; Li, W.T.; Yang, D.D.; Cao, X.; Chen, X.H.; Liu, Q.X.; Lin, H. Non-invasive estimation of root zone soil moisture from coarse root reflections in ground-penetrating radar images. Plant Soil 2019, 436, 623–639. [Google Scholar] [CrossRef]
- Zajicova, K.; Chuman, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 2019, 343, 116–129. [Google Scholar] [CrossRef]
- Wu, Y.B.; Cui, F.; Wang, L.; Chen, J.; Li, Y.Y. Detecting moisture content of soil by transmission-type ground penetrating radar. Trans. Chin. Soc. Agric. Eng. 2014, 30, 125–131. [Google Scholar] [CrossRef]
- Attia al Hagrey, S. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J. Exp. Bot. 2007, 58, 839–854. [Google Scholar] [CrossRef] [Green Version]
- Ndoye, M.; Anderson, J.M.; Greene, D.J. An MM-Based Algorithm for l(1)-Regularized Least-Squares Estimation with an Application to Ground Penetrating Radar Image Reconstruction. IEEE Trans. Image Process. 2016, 25, 2206–2221. [Google Scholar] [CrossRef]
- Liao, B.B. Research on the Application of Deep Learning in Target Recognition of Ground Penetrating Radar. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2019. [Google Scholar]
- Zhang, B.; Liu, J.Y.; Zhong, Y.H.; Li, X.L.; Hao, M.M.; Li, X.; Zhang, X.; Wang, X.L. A BP Neural Network Method for Grade Classification of Loose Damage in Semirigid Pavement Bases. Adv. Civ. Eng. 2021, 2021, 6658235. [Google Scholar] [CrossRef]
- Liu, T.; Su, Y.; Huang, C.L. Inversion of Ground Penetrating Radar Data Based on Neural Networks. Remote Sens. 2018, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.H. Maching Learning, 1st ed.; Tsinghua University Press: Beijing, China, 2016; pp. 97–103. [Google Scholar]
- Aboudourib, A.; Serhir, M.; Lesselier, D. A Processing Framework for Tree-Root Reconstruction Using Ground-Penetrating Radar Under Heterogeneous Soil Conditions. IEEE Trans. Geosci. Remote Sens. 2021, 59, 208–219. [Google Scholar] [CrossRef]
- Cui, X.; Liu, X.; Cao, X.; Fan, B.; Zhang, Z.; Chen, J.; Chen, X.; Lin, H.; Guo, L. Pairing dual-frequency GPR in summer and winter enhances the detection and mapping of coarse roots in the semi-arid shrubland in China. Soil Sci. 2019, 71, 236–251. [Google Scholar] [CrossRef]
- Liu, Q.X.; Cui, X.H.; Liu, X.B.; Chen, J.; Chen, X.H.; Cao, X. Detection of Root Orientation Using Ground-Penetrating Radar. IEEE Trans. Geosci. Remote Sens. 2017, 56, 93–104. [Google Scholar] [CrossRef]
- Zhang, T.; Song, L.N.; Zhu, J.J.; Wang, G.C.; Li, M.C.; Zheng, X.; Zhang, J.X. Spatial distribution of root systems of Pinus sylvestris var. mongolica trees with different ages in a semiarid sandy region of Northeast China. For. Ecol. Manag. 2021, 438, 118776. [Google Scholar] [CrossRef]
- Kajimoto, T.; Osawa, A.; Matsuura, Y.; Abaimov, A.P.; Zyryanova, O.A.; Kondo, K.; Tokuchi, N.; Hirobe, M. Individual-based measurement and analysis of root system development: Case studies for Larix gmelinii trees growing on the permafrost region in Siberia. J. For. Res. 2007, 12, 103–112. [Google Scholar] [CrossRef]
- Ohashi, M.; Ikeno, H.; Sekihara, K.; Dannoura, M.; Yamase, K. Reconstruction of root systems in Cryptomeria japonica using root point coordinates and diameter. Planta 2018, 249, 445–455. [Google Scholar] [CrossRef]
- Alani, A.M.; Ciampoli, L.B.; Lantini, L.; Tosti, F.; Benedetto, A. Mapping the root system of matured trees using ground penetrating radar. In Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018. [Google Scholar] [CrossRef]
- Yu, B.Q.; Xie, C.K.; Cai, S.Z.; Chen, Y.; Lv, Y.P.; Mo, Z.L.; Liu, T.L.; Yang, Z.W. Effects of Tree Root Density on Soil Total Porosity and Non-Capillary Porosity Using a Ground-Penetrating Tree Radar Unit in Shanghai, China. Sustainability 2018, 10, 4640. [Google Scholar] [CrossRef] [Green Version]
NO. | D (mm) | |||||
---|---|---|---|---|---|---|
23.53 | 3.70 | 1 | 4 | 1.9745 | 2.0759 | 0.1014 |
2 | 8 | 2.0127 | 2.2029 | 0.1902 | ||
3 | 12 | 2.0139 | 2.2782 | 0.2643 | ||
4 | 16 | 2.036 | 2.3697 | 0.3337 | ||
5 | 20 | 2.0453 | 2.4748 | 0.4295 | ||
6 | 24 | 2.0517 | 2.5784 | 0.5267 | ||
7 | 28 | 2.0536 | 2.6982 | 0.6446 | ||
8 | 32 | 2.0499 | 2.818 | 0.7681 | ||
9 | 36 | 2.0551 | 2.9427 | 0.8876 | ||
10 | 40 | 2.0537 | 3.0405 | 0.9868 | ||
11 | 44 | 2.0535 | 3.1628 | 1.1093 | ||
12 | 48 | 2.0575 | 3.2707 | 1.2132 | ||
13 | 52 | 2.0522 | 3.3994 | 1.3472 | ||
14 | 56 | 2.0553 | 3.5128 | 1.4575 | ||
15 | 60 | 2.0524 | 3.6501 | 1.5977 |
Number of Samples | |||
---|---|---|---|
Training | 196 | 1.75 × 10−4 | 0.9999 |
Validation | 42 | 2.47 × 10−4 | 0.9998 |
Testing | 42 | 2.51 × 10−4 | 0.9997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Fan, G.; Li, Y.; Zhao, Y. Theoretical Development of Plant Root Diameter Estimation Based on GprMax Data and Neural Network Modelling. Forests 2021, 12, 615. https://doi.org/10.3390/f12050615
Liang H, Fan G, Li Y, Zhao Y. Theoretical Development of Plant Root Diameter Estimation Based on GprMax Data and Neural Network Modelling. Forests. 2021; 12(5):615. https://doi.org/10.3390/f12050615
Chicago/Turabian StyleLiang, Hao, Guoqiu Fan, Yinghang Li, and Yandong Zhao. 2021. "Theoretical Development of Plant Root Diameter Estimation Based on GprMax Data and Neural Network Modelling" Forests 12, no. 5: 615. https://doi.org/10.3390/f12050615
APA StyleLiang, H., Fan, G., Li, Y., & Zhao, Y. (2021). Theoretical Development of Plant Root Diameter Estimation Based on GprMax Data and Neural Network Modelling. Forests, 12(5), 615. https://doi.org/10.3390/f12050615