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Abstract: The in situ non-destructive quantitative observation of plant roots is difficult. Traditional
detection methods are not only time-consuming and labor-intensive, but also destroy the root
environment. Ground penetrating radar (GPR), as a non-destructive detection method, has great
potential in the estimation of root parameters. In this paper, we use GprMax software to perform
forward modeling of plant roots under different soil dielectric constants, and analyze the situation of
plant roots with different dielectric constants and different root diameters under 1.5 GHz frequency
antenna detection. Firstly, root systems with increasing diameter under different values of root and
soil dielectric constant were scanned. Secondly, from the scanning results, two time points T1 and T2

of radar wave entering and penetrating the root system were defined, and the correlation between
root diameter D and time interval ∆T between T1 and T2 was analyzed. Finally, the least square
regression model and back propagation (BP) neural network model for root diameter parameter
estimation were established, and the estimation effects of the two models were compared and
evaluated. The research results show that the root diameter (12–48 mm) is highly correlated with
the time interval. Given the dielectric constants of the root and soil, the prediction results of the two
models are accurate, but the prediction result of the neural network model is more stable, and the
residual between the predicted value and the actual value is mainly concentrated in the [−1.5 mm,
1.5 mm] range, as well as the average of prediction error percentage being 3.62%. When the dielectric
constants of the root and soil are unknown, the accuracy of the prediction results of the two models
is decreased, but the stability of the neural network model is still superior to the least squares model,
and the residual error is mainly concentrated in the range of [−5.3 mm, 5.0 mm], the average of
prediction error percentage is 10.19%. This study uses GprMax to simulate root system detection and
reveals the theoretical potential of GPR technology for non-destructive estimation of root diameter
parameters. It is also pointed out that in the field exploration process, if the dielectric constants of
the root and soil in the experimental site are sampled and measured first, the prediction accuracy of
the model for root diameter would be effectively improved. This research is based on simulation
experiments, so further simulation followed by laboratory and field testing is warranted using
non-uniform roots and soil.

Keywords: ground penetrating radar; gprMax; root diameter estimation; neural networks

1. Introduction

Plant roots are important media to ensure the carbon-nitrogen-water cycle of terres-
trial ecosystems [1]. The root system obtains water and nutrients from the soil to support
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the growth and energy conversion of above-ground vegetation [2], and its fixation of soil
organic matter effectively reduces the occurrence and harm of soil erosion [3]. The research
of plant root systems helps explain the basic principles of plant evolution and spread,
effectively protecting species diversity and biogeochemical cycles [4], and is also of great
reference value for the formulation of natural environmental protection measures [5]. Tradi-
tional root research methods, such as excavation methods, monoliths, etc. [6,7], are limited
in their application and development due to their heavy workload, destructive sampling
approach and unachievable repeated measurements [8]. With the innovation and develop-
ment of technology, some in situ non-destructive observation methods have become the
hotspots of plant root parameter estimation and distribution modeling research [9], such as
minirhizotrons [10], X-ray Computed Tomography (CT) [11], magnetic resonance imaging
(MRI) [12], ground-penetrating radar (GPR) method [13–16], etc. Among them, GPR is a
non-intrusive geophysical technology that uses high-frequency electromagnetic waves to
locate underground targets [17]. It has fast detection speed, simple and flexible operation,
and is widely used in the field of non-destructive detection [18]. The working principle
of GPR is to transmit high-frequency electromagnetic waves into the ground through the
transmitting antenna, and then use the receiving antenna to receive the electromagnetic
waves reflected by the underground dielectric discontinuous medium, so as to obtain
the change of two-way travel time and energy intensity of electromagnetic waves from
transmission to reception [19]. Liang et al., Zhang et al., and Wu et al. have illustrated a
more detailed introduction to the working methods of GPR [20–22].

At present, the research on root detection by GPR mainly focuses on root depth, diam-
eter, growth direction, water content, biomass, distribution range and three-dimensional
structure reconstruction [23–25]. Root diameter detection is a basic and important re-
search direction. There is a strong positive correlation between root diameter and root
biomass [26], so root diameter can be used to estimate root biomass, but the premise is
that the detection result of root diameter should be as accurate as possible. Similarly,
the correct estimation of root diameter will bring convenience to the three-dimensional
structure reconstruction of underground roots, which requires high-resolution GPR, that is,
to ensure that GPR can distinguish different reflection interfaces in vertical section [27].

In field exploration, increasing the frequency of electromagnetic waves can obtain
higher-resolution root diameter scanning results, but it will also enhance the effects of
various disturbance factors. At present, some researchers have proposed that the factors
affecting GPR detection include the dielectric properties of root and soil, water content,
and clay content of soil [28]. Among all the influencing factors, the comparison of dielectric
properties between root and surrounding soil is a decisive factor affecting GPR perfor-
mance [29,30]. The stronger the contrast of dielectric properties between root and soil, the
greater the reflection coefficient of electromagnetic waves, which makes root detection
easier [31]. In addition, surface vegetation, puddles, and soil heterogeneity will all affect
the performance of GPR [28]. In order to reduce the effect of disturbance factors in the
field detection environment, controlled experiments are carried out first in most cases.
Guo et al. [32] successfully detected roots with a diameter of 2 cm buried 30 cm deep in the
ground by using 900 MHz GPR, and improved the root biomass estimation model based
on the amplitude and time interval of the reflected wave. Cui et al. [33] established an
estimation model of root diameter parameters under controlled experiments and achieved
good estimation results. For field exploration, Yamase et al. successfully detected the
yellow poplar root with a diameter greater than 5 mm using the 900 MHz GPR [34], while
Zhang et al. scanned the underground root with a diameter less than 1 cm using the 1600
MHz, 900 MHz, and 400 MHz GPR, and the results showed that the root recognition rates
were all more than 50% [35]. Generally speaking, it is feasible to use GPR to detect roots in
the field, but the success rate of root detection and the accuracy of root diameter estimation
needs to be improved.

The main purpose of this study is to establish a non-destructive estimation model of
plant root diameter parameters, so as to estimate the underground root diameter parameters
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according to the scanning results, including: (1) defining the time interval parameter and
analyze its correlation with root diameter according to the GprMax v.3.1.5 (Available online:
http://www.gprmax.com/, accessed on 29 March 2021) software’s simulation detection
results; (2) establishing least squares model and BP neural network model of root diameter
parameters by using the correlation between root diameter and time interval; (3) testing
the estimation effects of the two models under the conditions of known and unknown
root and soil dielectric constants. The models established in this study will facilitate the
non-destructive estimation of underground root diameter parameters and provide methods
and guidance for the determination of root biomass in the future.

2. Materials and Methods
2.1. The Theoretical Basis of GprMax Forward Modeling

GprMax v.3.1.5 (Available online: http://www.gprmax.com/, accessed on 29 March
2021) is an open source software that can simulate electromagnetic wave propagation for
GPR [36]. Previously, many researchers have proved the feasibility and accuracy of using
GprMax for simulation detection through theory and practice [37–41]. Using GprMax for
forward simulation is for modelling the corresponding radar response of roots and soil
under the condition of known all variables of the simulation model, so as to explore the
influence of each variable on the detection of roots by GPR [42]. In this research, GprMax
was used to simulate the scanning process of GPR to obtain the data samples needed
for the research. In GprMax, the simulation geometric model was constructed by using
instructions with position coordinate information, and Paraview v5.9 (Available online:
https://www.paraview.org/, accessed on 29 March 2021) [30] was used to check whether
the constructed geometric model meets the expected requirements. For the establishment
of the geometric model, please refer to Appendix A.

2.2. Time Interval Parameter

Scanning the root system with GPR yielded both A-scan and B-scan images. In B-scan,
the result of root scanning is a hyperbola (for the description of A-scan and B-scan and
the principles of hyperbola imaging of root scanning, see Appendix B), and the vertex of
the hyperbola indicates the position of the root system [43]. Therefore, by extracting the
A-scan at the vertex of the hyperbola, the reflection of the radar wave propagating along
the root diameter direction can be obtained. The receiving antenna recorded the reflected
wave of the root system and plotted the change of the positive and negative fluctuation of
the field strength caused by the reflected wave. In the A-scan of field strength fluctuation
caused by the radar wave reflected by the root system, two time points of the radar wave
entering and penetrating the root system were defined as T1 and T2 (see Appendix C for
detailed description of T1 and T2). T1 and T2 not only record the two time points when
radar waves enter and penetrate the root system, but also reflect the time interval ∆T when
the reflected wave field strength is negative:

∆T = T2 − T1 (1)

2.3. Forward Modeling Experiment Design

In order to clarify the relationship between root diameter and ∆T, GprMax was used
to design a simulation experiment. The comparison of the dielectric properties of the
root and soil has been proved to be an important factor affecting the effectiveness of GPR
detection. When the relative dielectric constants of root and soil are too close, the reflected
wave signal received by the receiving antenna is weak or even cannot be received, thus
making the root detection difficult. Using GPR, Liu et al. [44] found a close relationship
between wave velocity and water content of soil in the root zone. In their experimental
design, the dielectric constants of the soil were chosen to be 3.70, 6.35, 8.28, 9.98, and 13.67,
and those of the root were chosen to be 7.59, 9.21, 13.06, 17.81, and 23.53. The values
of the dielectric constants of the root and soil in the experiment were obtained based on
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field measurements in Inner Mongolia, China. The values of the dielectric constants of
the root and soil obtained by Liu et al. through field measurement provided a reference
for the setting of the dielectric constants of the root and soil in this study. Therefore, in
the exploratory experiment on the correlation between root diameter and ∆T, the soil
dielectric constant was set to 3.70 and the root dielectric constant was set to 23.53, so that
the comparison of the two dielectric constants was obvious in order to obtain a clear root
scan hyperbola.

The simulation geometric model for exploring the correlation between root diameter
and ∆T is shown in Figure 1, which is a vertical section of root scanning with GPR. The
lower left corner of the image is the origin of coordinates, the x axis is the horizontal
distance, and the y axis is the vertical depth, which together defines a rectangular area
of 7.92 m × 0.28 m. In the vertical direction, the gray area below 0.25 m represents soil,
and the white area above 0.25 m represents air. A pair of small gray and blue rectangles
with an interval of 0.04 m were set at the surface of 0.25 m to simulate the transmitting and
receiving antennas of GRP. In the horizontal direction, a cylinder root system was set every
0.5 m, totally 15 roots were set. The radius starts from 2 mm and increases at 2 mm intervals,
as shown by the red circle in Figure 1 (the drawing of some root systems is omitted for
simplicity). We ensure that the upper vertex of the circle is located on the horizontal line
of 0.15 m, so that the time of radar wave propagation to each root vertex is the same. The
blue border around Figure 1 simulates the perfect matching layer (PML), which is used
to absorb the electromagnetic waves emitted by the antenna to the rectangular boundary.
The transmitting and receiving antennas of the radar move synchronously to the right
along the horizontal ground from the initial position on the left in Figure 1 to complete the
simulation scan.

Figure 1. Simulation geometric model of experiment on correlation between root diameter and time interval. Gray part
represents soil, and red circles represents roots (15 roots in total, where R1, R2, . . . , R15 represent the radius of roots). A pair
of red and blue rectangles represent the transmitting and receiving antennas of ground-penetrating radar (GPR), they move
synchronously to the right along the ground from the left side of the figure to complete the simulation scan. The blue border
around the figure simulates the perfect matching layer (PML).
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2.4. Assessment of Model Input Parameters
2.4.1. Model Training Data

When using GPR to scan the root system in the field, the dielectric constants of root
and soil are unknown. The required parameters can only be extracted from the A-scan
and B-scan images of the root scan, so as to predict the root diameter. However, under the
contrast of different dielectric constants of root and soil, the scanning results of GPR on
the root system are obviously different [32,45]. Therefore, in the process of establishing the
model, the scanning results under different values of dielectric constant of root and soil
should be comprehensively analyzed. Wu et al. [46] established a model of soil volume
moisture content and dielectric constant, and determined that the dielectric constant of
unsaturated water-bearing soil and sandy soil was between 6 and 11. However, due
to the influence of water content, the dielectric constant of dry roots was 4.5, and the
dielectric constant of saturated water roots can reach 22 and above [47]. The results of
these studies provided a reference for the root and soil dielectric constants in this article. In
the acquisition scheme of model training data, 5 different soil dielectric constants and 10
different root dielectric constants were selected and combined, and the specific values are
shown in Figure 2.

Figure 2. Root and soil dielectric constant combination scheme for generating training data. The x
axis represents the relative dielectric constant of soil (εsoil ), its value increases from 4 at intervals
of 2, the y axis represents the relative dielectric constant of root (εroot), its value increases from 7 at
intervals of 2. The value in each rectangle represents the relative dielectric constant difference ∆ε
between root and soil, and the black part is the discarded dielectric constant combination.

The relative dielectric constant difference ∆ε between root and soil is defined as:

∆ε = εroot − εsoil (2)

According to the values of the root and soil dielectric constants in Figure 2, 50 dielectric
constant combinations of root and soil can be obtained. Under normal circumstances, the
water content of living roots is greater than that of soil. It is found in the present study
that when ∆ε is less than 3, the hyperbola of the root scanned by GprMax simulation is not
clear, so the combinations of the dielectric constants of root and soil with εroot < εsoil or
∆ε < 3 are discarded. The black portion in Figure 2 is that discarded combination, and the
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final effective combination is 40. For each effective combination of root and soil dielectric
constants, 7 simulated cylindrical roots were set, with a radius of 5 mm beginning and
increasing at 3 mm intervals. A center frequency of the radar was set to 1.5 GHz. Using
GprMax to scan 7 roots with increasing radius under 40 combinations of root and soil
dielectric constants, a total of 280 root hyperbolic samples can be obtained. Then A-scan
of each hyperbola vertex was extracted to record T1 and T2, and calculate ∆T, thereby
obtaining a training data set of the model. The least square model and neural network
model were established based on this training data. In the process of establishing neural
network model, the training data were further divided into training set, validation set, and
test set.

2.4.2. Model Test Data

In order to compare the prediction effects of the least square model and the neural
network model on the root diameter parameters, the same test data need to be input. In
this study, the soil dielectric constant was set to be 4, and the root dielectric constant was
increased from 7 to 24 at interval 1. A total of 18 combinations of dielectric constants of roots
and soil were generated. Under each combination of dielectric constants, 5 cylindrical roots
with the diameters of 12 mm, 18 mm, 26 mm, 36 mm, and 48 mm were set. A hyperbola of
90 root scans was obtained by performing a simulation scan using GprMax. Then A-scan
through each hyperbola vertex was plotted to record T1, T2, and ∆T, and the results were
input into the two established models as test data for the models, so that the performance
of the two estimated models could be compared.

2.5. Estimation Model of Root Diameter Parameters
2.5.1. Least Square Regression Model

The least square method is a commonly used method for data fitting [48]. Detailed
description of the least square method can be found in Appendix D. In this study, the
quadratic function curve with better fitting results was selected, that is, the basis function
ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2, and the corresponding fitting function is:

S(x) = a0 + a1x + a2x2 (3)

After solving the fitting coefficients a∗0 , a∗1 , a∗2 , the fitting Equation S∗(x) = a∗0 + a∗1 x +
a∗2 x2 was obtained, and the least square fitting model of time interval and root diameter
was established. In this paper, x in the basis function ϕn(x) is the time interval ∆T, and y is
the root diameter D.

For roots with the same diameter D, ∆T obtained by root system scanning is not the
same under different dielectric constants of root and soil. Therefore, the corresponding
fitting curve S(x) will be produced under each combination of dielectric constants of root
and soil. In Section 2.4.1, the root simulation scanning results of 40 combinations of root
and soil dielectric constants were obtained, so 40 fitting curves of root diameter and time
interval can be plotted. When using the least square model to predict the root diameter, if
the dielectric constants of root and soil are known, the corresponding fitting curve S(x)
can be found, and then the root diameter value can be predicted. If the dielectric constants
of root and soil are unknown, the corresponding fitting curve S(x) cannot be obtained.
Therefore, in this paper, the average value predicted by 40 fitting curves was calculated as
the prediction result of root diameter:

DL =
1

40

40

∑
i=1

Si(∆T) (4)

where: DL is the average value of the prediction results of 40 fitting curves. Si(∆T) is the
root diameter value predicted by the fitting curve when the input is ∆T.
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2.5.2. BP Neural Network Model

The back propagation (BP) neural network is a computing model composed of a
large number of interconnected neurons. Through learning and training, it calculates the
output result that is approximate to the expected value when the input value is given [49].
The application of neural network in the field of non-destructive detection is novel and
feasible [50]. Liu et al. used neural networks to determine the location of underground
targets from GPR data [51]. In this study, we will also use a neural network to predict the
diameter of the underground root system. The single-output neural network structure is
shown in Figure 3.

Figure 3. Neural network structure. The input layer x contains d neurons, the hidden layer b contains
q neurons, and the output layer y is 1 neuron. vih and whj are the connection weights.

The input received by the h-th neuron in the hidden layer in Figure 3 is:

ah =
d

∑
i=1

vihxi (5)

where xi is the input from the i-th neuron. vih is the connection weight between the i-th
neuron in the input layer and the h-th neuron in the hidden layer.

When the input ah of the hidden layer is greater than the threshold γh, the neuron is
activated to further propagate the signal to the output layer. The input received by the
output layer neuron is:

β =
q

∑
h=1

whjbh (6)

where whj is the connection weight between the h-th neuron in the hidden layer and the
j-th neuron in the output layer. bh is the output of the h-th neuron in the hidden layer.

When the total input received by neurons in the output layer is greater than the
threshold, an output is generated. The neural network can be used to fit the data and
establish a mapping relationship between the input and output of the data set.

In the training of the neural network model, the Levenberg–Marquardt (LM) back
propagation algorithm was selected. This method involves three types of data sets: training
set, validation set, and test set. The training set was used to calculate the gradient as well
as update the connection weights and thresholds to complete the training of the model. A
validation set was used for error estimation: if the error of training set decreases but the
error of the validation set increases, we stop training in time to prevent over-fitting [52].
The test set was used to preliminarily evaluate the generalization ability of the model.
T1, T2, and ∆T of 280 root samples in the training data in Section 2.4.1 were counted and
randomly divided into 70% (196) of the training set, 15% (42) of the validation set, and
15% (42) of the test set (this test set is different from the test data in Section 2.4.2. The
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test set was used to preliminarily determine the prediction effect of the trained neural
network model, while the test data in Section 2.4.2 were used to compare the prediction
effect of the established least squares model with that of the neural network model under
the same inputs). We set εroot, εsoil , T1, T2, and ∆T as inputs, root diameter D as label, and
the number of hidden layer neurons as 10 to train the neural network model.

2.6. Performance Assessment and Comparison

In this paper, two models were used to estimate the root diameter parameters. When
the same test samples were input, the prediction results of the two models needed to be
counted, and the prediction performances of the two models were compared by calculating
parameters such as residual δ and root mean square error (RMSE) between the predicted
value and the actual value [53]. Among them, the distribution of the residuals can be
analyzed by boxplots (the calculation of the residuals and RMSE is described in detail in
Appendix E).

3. Results
3.1. The Correlation between Root Diameter and ∆T

The simulation scanning results of 15 cylinder roots with increasing radius set in the
forward modeling experimental design in Section 2.3 are shown in Figure 4. The first
hyperbolic image in Figure 4 is a scan result of a root with a diameter of 4 mm, and the
second is a scan result of a root having a diameter of 8 mm. Through comparison, we can
find that the hyperbolic image of the 8 mm root is relatively clear, and the two reflections
of the root on the radar wave can be distinguished thereafter, while the scanning result of
the 4 mm root is relatively vague, which indicates that the vertical resolution less than 8
mm can be obtained using the radar frequency of 1.5 GHz in this study. Later, with the
increase of root diameter, the scanned hyperbola became clearer. Since the apex of the root
system is located on the same horizontal line, the time point T1 when the electromagnetic
wave propagates to the top surface of the root system is basically the same, which is about
2 ns on the time axis. The propagation distance of electromagnetic wave increases in the
root with increasing size, which leads to a longer time between two reflected waves, and
the time point T2 when the radar wave propagates to the bottom surface under the root
diameter is also delayed.

Figure 4. Scanning results of 15 root systems with increasing radius in forward experimental design. Red indicates positive
field strength, blue indicates negative field strength, and white indicates zero field strength. Taking the 11th root scanning
hyperbola as an example, two time points (zero field strength) of radar wave entering and penetrating the root system were
marked as T1 and T2. The time interval between T1 and T2 is ∆T.

The A-scan passing through each hyperbola vertex was extracted from Figure 4, and
then time points T1 and T2 were recorded from the A-scan and time interval ∆T was
calculated. The results obtained are listed in Table 1.
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Table 1. The time point and time interval of the two reflected waves recorded by the receiving
antenna under different root diameters. εroot is the relative dielectric constant of root. εsoil is the
relative dielectric constant of soil. NO. is the root number. D is the root diameter.

εroot εsoil NO. D (mm) T1(ns) T2(ns) ∆T(ns)

23.53 3.70

1 4 1.9745 2.0759 0.1014
2 8 2.0127 2.2029 0.1902
3 12 2.0139 2.2782 0.2643
4 16 2.036 2.3697 0.3337
5 20 2.0453 2.4748 0.4295
6 24 2.0517 2.5784 0.5267
7 28 2.0536 2.6982 0.6446
8 32 2.0499 2.818 0.7681
9 36 2.0551 2.9427 0.8876

10 40 2.0537 3.0405 0.9868
11 44 2.0535 3.1628 1.1093
12 48 2.0575 3.2707 1.2132
13 52 2.0522 3.3994 1.3472
14 56 2.0553 3.5128 1.4575
15 60 2.0524 3.6501 1.5977

When the root dielectric constant is 23.53 and the soil dielectric constant is 3.70, the
time interval ∆T increases with the increase of root diameter D (Table 1), which indicates
that there is a positive correlation between the time interval ∆T and root diameter D.

3.2. Root Diameter Parameter Estimation Model
3.2.1. Establishment of Least Square Model

The comparison of dielectric properties between root and soil will affect the detection
effect of GPR. Therefore, we adopted the experimental scheme of Section 2.4 to expand the
data samples, and then analyzed the correlation between root diameter and time interval
under the comparison of dielectric properties between different roots and soil.

According to the root scanning results in Section 2.4, the fitting results of root diameter
and time interval parameters under 40 combinations of root soil dielectric constants were
obtained (Figure 5).

Figure 5. Least square estimation model. The x axis is the time interval, and the y axis is the root
diameter. Each curve represents a fitting result under the combination of dielectric constants of root
and soil.

By observing the distribution of curves in Figure 5, it can be concluded that when
∆T is small, the difference between different curves is small, but when ∆T increases, the
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difference between different curves increases. For example, when ∆T is 0.3 ns, the predicted
results of 40 curves are about 13–23 mm, while when ∆T is 1.2 ns, the predicted results
are about 42–63 mm. Therefore, under different combinations of dielectric constants of
root and soil, there are some differences among the least square prediction models, but the
overall relationship between ∆T and D is similar.

3.2.2. Back Propagation (BP) Neural Network Model

After the neural network model training was completed, regression analysis was
carried out on each data set and the fitting curve was drawn (Figure 6).

Figure 6. Fitting curves of data samples. The black circle represents the estimated value of the model.
The blue, green, and red curves represent the fitting curves of training set, validation set, and test set,
respectively. The dashed line represents the ideal predicted result (estimated value = actual value,
i.e., E = A).

It can be seen that for each type of data set in Figure 6, the fitting curve basically
coincides with the ideal estimated distribution. The correlation coefficient and RMSE of
each data set are listed in Table 2.

Table 2. Fitting results of neural network to each data set.

Number of Samples RMSEN R

Training 196 1.75 × 10−4 0.9999
Validation 42 2.47 × 10−4 0.9998

Testing 42 2.51 × 10−4 0.9997
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From the statistical results, the correlation coefficients R of the training, validation,
and test set were 0.9999, 0.9998, and 0.9997, respectively, indicating a high correlation. The
corresponding RMSEN were 1.75 × 10−4, 2.47 × 10−4, and 2.51 × 10−4, respectively, and
the RMSE is very small, which indicates that the model training effect is excellent.

3.3. Estimation of Root Diameter Parameters and Comparison of Prediction Effects of Models
3.3.1. Comparison of Prediction Results under the Condition of Known Dielectric
Constants of Root and Soil

After the establishment of the least square model and the neural network model, the
time intervals ∆T extracted from the test samples in Section 2.4.2 were input into the two
models to estimate the root diameter. Under the condition that the dielectric constants of
root and soil are known, the root diameter results predicted by the two models according
to ∆T are shown in Figure 7.

Figure 7. Estimated results of two models under the condition of known dielectric constant of root and soil. (a) Least square
model; (b) Neural network model. By comparing the prediction results of the two models, it can be seen that the coincidence
degree between the predicted value of model and the actual value is very high, which represents good prediction effect.

The black circle in Figure 7 represents root input diameter, which could be divided
into 5 groups according to the root diameter sizes: 12 mm, 18 mm, 26 mm, 36 mm, and
48 mm. The red circles are the estimation results of the root diameter by the prediction
model. The residual error and the residual percentage between the estimated value and
the actual value of the two models were calculated. The boxplots of the residual error and
residual percentage are shown in Figure 8.

As shown in Figure 8a, the residual span of the least square model prediction result
is about 3.7 mm, and that of the neural network model prediction result is about 3.2 mm,
which indicates that the overall distribution range of the neural network model prediction
residual is smaller. The range of the upper quartile (Q75%) and lower quartile (Q25%) of the
residual distribution of the least square model is approximately [−0.5 mm, 1 mm], and the
corresponding value of the neural network model is approximately [−1 mm, 1 mm], which
indicates that the residual distribution of the least square method is more concentrated. It
can be seen from Figure 8b that the residual percentage span of the least square model is
about [−5%, 11%], and the residual percentage span of the neural network model is about
[−10%, 5%], which shows that their span ranges are similar. By calculation, the RMSEL of
the least square model is 0.881, and the RMSEN of the neural network model is 0.973.
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Figure 8. Boxplots of residuals distribution of two models with known dielectric constants of root and soil. (a) Boxplot of
residual distribution; (b) boxplot of residual percentage distribution (the symbol “+” in the figure represents outlier).

It can be found that both models have their advantages. The distribution span of the
upper and lower quartiles of the least square model is smaller, and the RMSE is smaller
than that of the neural network model. However, the overall residual distribution range of
the neural network model is smaller, the prediction performance of the model is more stable,
and the median of the residual distribution is closer to 0. In summary, under the condition
of known dielectric constants of root and soil, the estimation of root diameter using the
least square model and neural network model have both achieved good results. However,
considering that the overall residual distribution range of the neural network model is
smaller and the prediction performance of the model is more stable, the neural network
model is more suitable for predicting root diameter parameters. The root diameters of
the test samples were within [12 mm, 48 mm] of the range and the residual error range
predicted by the neural network model was within [−1.5 mm, 1.5 mm] of the range, the
residual percentage span was about [−10%, 5%], and the percentage of average prediction
error was 3.62% according to the calculated absolute value of prediction error.

3.3.2. Comparison of Prediction Results under the Condition of Unknown Dielectric
Constants of Root and Soil

Under the condition of unknown dielectric constants of root and soil, the test samples
generated in Section 2.4.2 were also input into the least square model and neural network
model respectively, so as to compare the prediction effects of the two models. For the
least square model, the predicted value of root diameter can be obtained according to
Equation (4). The prediction results of the two models are shown in Figure 9.

For the least square model, after the average value of 40 prediction curves was ob-
tained, the error of the prediction results was larger than that in Figure 7a, but the overall
prediction trend conforms to the distribution of the prediction curves of the least square
model (Figure 9). Similarly, compared with Figure 7b, the coincidence degree between
the estimated value and the actual value of the neural network model decreases, and the
estimation error increases. Therefore, under the condition of unknown dielectric constant
of root and soil, the prediction effect of both models is worse. As shown in Figure 10, the
distribution boxplot of the residual and the percentage of the residual of the root diameter
estimation of the two models under the unknown dielectric constants of the root and soil
are plotted.
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Figure 9. Estimated results of two models under the condition of unknown dielectric constant of root and soil. (a) Least
square model; (b) neural network model. For the neural network model, in order to better distinguish the prediction results
of the model, we used five colored dots to represent the estimated values of five types of root diameter.

Figure 10. Boxplots of residuals distribution of two models with unknown dielectric constants of root and soil. (a) Boxplot
of residual distribution; (b) boxplot of residual percentage distribution.

It can be seen from Figure 10a that under the condition of the unknown dielectric
constant of the root and soil, the residual span of the prediction result of the least square
model is about 11 mm, and that of the prediction result of the neural network model is
about 10 mm. The residual distribution intervals of the two models are roughly the same,
but the median of the neural network model is closer to 0. It can be seen from Figure 10b
that the residual percentage span of the least square model is about [−38%, 30%], and
the residual percentage span of the neural network model is about [−30%, 21%], which
indicates that the residual percentage distribution span of the neural network model is
relatively small and the median of the residual percentage is closer to 0. Based on these
two points, it is considered that the prediction performance of the neural network model is
better. The specific prediction residuals are distributed between [−5.3 mm, 5.0 mm], the
percentage of average prediction error is 10.19% according to the calculated absolute value
of prediction error.

The trained neural network model was used to predict the root diameter parameters
under the condition of unknown root and soil dielectric constants, and the results showed
that the prediction performance was more stable than the least square model. Altogether,
the stability performance of the neural network model is better than that of the least
square model in the case of known or unknown dielectric constants of roots and soils.
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So the neural network model is considered to be more suitable for the estimation of root
diameter parameters.

4. Discussion

In this paper, we describe two root diameter parameter prediction models based on
simulation data, namely least square model and neural network model, and compare the
prediction performance of the two models under the condition of known and unknown
relative dielectric constants of root and soil. The simulation results showed that the
prediction effect of the neural network model is better than that of the least square model, no
matter whether the relative dielectric constants of root and soil are known or not. Therefore,
the neural network model is more suitable for estimating root diameter parameters. Based
on this conclusion, the prediction performance of the neural network model is compared
under the conditions of known and unknown relative dielectric constants of root and soil.
The results show that, given the relative dielectric constants of root and soil, the prediction
error of the neural network model is in the range of [−1.5 mm, 1.5 mm], and the percentage
of prediction residual is in the range of [−10%, 5%]. By calculating the absolute value of
prediction error, the average prediction error percentage is 3.62%. However, under the
condition of unknown relative dielectric constants of root and soil, the prediction error
of the neural network model is increased by more than three times, and the prediction
accuracy is seriously reduced. Therefore, we recommend sampling and measuring the
dielectric constants of root and soil in the field exploration, so that the estimation accuracy
of root diameter parameters can be effectively improved when the dielectric constants of
root and soil are known.

In this study, the scanning environment set based on simulation detection has no effect
of interference factors, so the neural network root diameter estimation model established
in this environment has achieved good estimation effect. However, there are still some
limitations in this study. Firstly, because the prediction performance of the model has not
been evaluated by real detection data, it is our next task to carry out a large number of
embedded experiments and field detection experiments. Secondly, although the root shape
is not a cylinder and the soil is inhomogeneous in the real environment, the scanning results
obtained by using GPR to detect specific tree species in a specific environment are clear
hyperbola [16,54]. The clearer the hyperbola image is, the more accurate the time interval
∆T of radar wave passing through the vertex of hyperbola will be. As an important input
parameter of the neural network model, the more accurate the time interval is, the better
the prediction accuracy of the model will be. Therefore, we expect the neural network
model to show good prediction performance under specific experimental conditions. In
addition, in this study, the influence of root growth direction and the angle between root
and GPR scanning line on the detection results has not been considered, while Liu et al.
pointed out that the root direction and the relative geometry between root and ground GPR
measurement direction will affect the intensity and shape of root reflection signals [55].
Therefore, in the following study, we will also analyze the influence of root angle on the
scanning results based on simulation and embedded experiments.

The estimation of plant root diameter is basic and important research. Accurate
estimation of root diameter will facilitate the study of root expansion. For example, it
is difficult to detect fine roots in the actual detection process. However, Zhang et al.
pointed out that the spatial distribution of fine roots can be predicted by using the spatial
distribution of coarse roots [56], because fine roots occur nearly continuously along coarse
roots [57]. If we can master the distribution law of the diameter of coarse roots, we can
predict the spatial distribution of fine roots and even estimate the biomass of roots [6]. In
addition, root diameter is also an important parameter for 3D structural reconstruction
of roots [58,59]. Combined with the changing trend of root diameter, the root system
can be restored more realistically [16,60]. Non-destructive estimation of root diameter is
basic research. Although the root diameter parameter estimation model based on neural
networks is based on simulation experiments, it provides a new idea in the root diameter
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estimation method, and the neural network model is a very suitable method in practical
application. Specifically, the data collected in both controlled and field experiments can
be used as supplementary data for training the neural network model, so that the neural
network model can be continuously corrected and improved to produce more accurate
estimation results in a more complex detection environment, which shows the advantages
of using the neural network method to establish root diameter parameter estimation model,
and also lays a foundation for further research of root systems in the future.

5. Conclusions

This research is based on GprMax simulation. From the results of root scanning, the
time points and time intervals of two radar wave reflections caused by the root system
were extracted, the correlation between root diameter and time interval was analyzed, and
the estimation model of root diameter parameters was established. Through theoretical
experiments, this paper draws the following conclusions for roots of 12–48 mm diameter
in uniform soil:

(1) Under the condition that the dielectric constants of root and soil are known, the
average prediction error percentage of the least square model is 3.81%, and that of the
neural network model is 3.62%. Under the condition of unknown dielectric constants
of root and soil, the average prediction error percentage of the least square model is
11.32%, and that of the neural network model is 10.19%.

(2) The prediction stability of the neural network model is better than that of the least
square model with known and unknown dielectric constants of root and soil, so it
is considered that the prediction effect of the neural network model is better and it
is more suitable for estimating root diameter parameters. However, with unknown
dielectric constants of root and soil, the prediction error of the neural network model
is between [−5.3 mm, 5.0 mm], which is about 3 times that with known dielectric
constants of root and soil, and the prediction accuracy drops seriously.

(3) Comparing the prediction results of the neural network model under the known
and unknown dielectric constants of root and soil, we recommend sampling and
measuring the dielectric constants of root and soil in field exploration, so that the
estimation accuracy of root diameter parameters can be effectively improved when
the dielectric constants of root and soil are known.

The establishment of a root diameter parameter estimation model expands the means
of root non-destructive detection. Root diameter is an important parameter in root research,
so the correct estimation of root diameter lays a foundation for the future study of root
biomass measurement, distribution range and three-dimensional reconstruction. This
research is based on simulation experiments, so further simulation followed by laboratory
and field testing is warranted using non-uniform roots and soil.
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Appendix A. Geometric Model Constructed by GprMax

The geometric model constructed by GprMax can be viewed by Paraview (Figure A1).
The model is a vertical section of the simulated root of a cylinder with a buried depth of
0.07 m. In the Figure A1, the lower left corner is the origin of coordinates, the x axis is the
horizontal distance, and the y axis is the vertical depth, which together define a rectangular
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area of 0.24 m×0.18 m. In the vertical direction, the gray area below 0.15 m represents soil,
and the white area above 0.15 m represents air. A pair of small gray and blue rectangles
with an interval of 0.04 m were set at the surface of 0.15 m to simulate the transmitting
and receiving antennas of GPR. In the horizontal direction, a cylindrical root system with
a diameter of 2 cm was set in the center of the model, as shown by the red circle in the
Figure A1. The blue border around the Figure A1 simulates the PML, which is used to
absorb the electromagnetic waves emitted by the antenna to the rectangular boundary.

Figure A1. Geometric model constructed by GprMax viewed in Paraview. Gray represents soil,
small rectangles of gray and blue represent transmitting and receiving antennas of radar, red circle
represents root system, and blue borders around it represent perfect matching layer (PML).

Appendix B. The imaging Principle of Root Scanning Hyperbola

A-scan and B-scan images can be obtained by simulating scanning of the root system
with GPR. When GPR emit an electromagnetic wave underground, the electromagnetic
wave is partially reflected at the interface between root and soil due to the difference of
dielectric properties between root and soil, and the rest of the wave continues to propagate
downward until the attenuation ended (In Figure A1, the receiving antenna only received
the electromagnetic wave reflected by root, because the other electromagnetic waves were
absorbed by PML). The receiving antenna receives the electromagnetic wave reflected by
the root and records the change of electric field intensity of the reflected wave in time
domain, thus forming a time-field strength change curve called A-scan (the black curves in
Figure A2).

When the transmitting and receiving antennas transmit electromagnetic waves to the
ground once at the initial position on the left side of the Figure A1, the A-scan recorded
by the receiving antenna at this time is shown as the first curve in Figure A2. When GPR
moves to the right with equal steps and emits electromagnetic waves to the ground at
the same time of each movement, a group of A-scan diagrams of receiver field strength
changes caused by electromagnetic waves reflected by roots can be recorded. The graph
formed by merging this group of A-scans is the B-scan (Figure A2).
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Figure A2. B-scan of root scanning and hyperbolic imaging principle. The black curve is A-scan in
different positions. Two red dotted lines represent hyperbolas obtained by root scanning.

Throughout the scanning process, when the GPR was directly above the root system,
the GPR was closest to the root, and the two-way travel time of the radar wave from
transmission to reception was the shortest. When GPR was located at the initial and stop
positions of both ends, GPR was furthest away from root, and the bidirectional travel time
of radar wave from transmission to reception was the longest. Therefore, the distance
between GPR and root decreased firstly and then increased during the whole movement
process, which was manifested as the initial time point of field strength fluctuation caused
by root decreased firstly and then increased in radar receiver. By connecting the starting
and ending time points of radar wave reflection caused by root system in a group of
A-scans with red dotted lines, the hyperbolic graph of root system scanning shown in
Figure A2 can be obtained.

Appendix C. The Definition of Time Interval Parameters

In Figure A1, the initial coordinates of the transmit antenna are (0.04 m, 0.15 m) and the
initial coordinates of the receive antenna are (0.05 m, 0.15 m). Based on the initial position
on the left side of Figure A1, they were set to translate to the right in steps of 0.002 m, with
one scan of the root after each movement. After 80 times of translation, the symmetrical
scanning results of the root system were obtained (Figure A3). In Figure A3, red indicates
positive field strength and blue indicates negative field strength. A darker color indicates
a greater magnitude of the field strength. The distribution of color and amplitude is a
result of the excitation source being a gaussian waveform. When the electromagnetic wave
penetrates into and out of the root, the dielectric properties of the root and the soil change
twice, resulting in two radar wave reflections, where the field strength fluctuates from
positive to negative and then returns to positive (Figure A3).

A-scan was extracted from Figure A3 when the transmitting and receiving antennas
were symmetrically distributed just above the root (Figure A4). At this moment the
radar wave passed through the cylinder root approximately vertically. In the process
of positive and negative fluctuation of field strength caused by radar wave reflected
by root, the time points corresponding to zero field strength were defined as T1 and T2
(Figure A3, Figure A4). T1 and T2 not only record the two time points when radar waves
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enter and pass through the root system, but also reflect the time interval ∆T when the
reflected wave field strength is negative:

∆T = T2 − T1 (A1)

Figure A3. B-scan generated by simulation scanning of root using GprMax. Red indicates positive
field strength, blue indicates negative field strength, and white indicates zero field strength. The
upper part is the surface reflected wave and the lower part is the result of root scanning. Two time
points with zero field strength were marked as T1 and T2.

Figure A4. A-scan of radar wave crossing root diameter vertically downward along root diameter
direction. Two time points with zero field strength were marked as T1 and T2.
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Appendix D. Least Square Method

The least square method requires that the quadratic sum ∑n
i=0 δ2

i of errors δi = S(xi)−
yi at a given point xi is the smallest, i.e.:

‖δ∗‖2
2 =

n

∑
i=0

[S∗(xi)− yi]
2 = min

n

∑
i=0

[S(xi)− yi]
2 (A2)

where S(x) is a fitting function, S∗(xi) is the fitting value of the fitting function at the point
xi, and yi is the actual value at the point xi.

In the least square method, polynomials are often used as fitting functions, namely:

S(x) = Pm(x) =
m

∑
j=0

aj ϕj(x) (A3)

where aj is the fitting coefficient, ϕj(x) is the basis function, and ϕ0(x) = 1, ϕ1(x) = x,
. . . , ϕm(x) = xm. Therefore, the least square problem is transformed into the problem of
finding the minimum points a∗0 , a∗1 , . . . , a∗m of multivariate functions.

The linear equations of fitting coefficient are expressed by matrix as follows:
(ϕ0, ϕ0) (ϕ0, ϕ1)
(ϕ1, ϕ0) (ϕ1, ϕ1)

· · · (ϕ0, ϕn)
· · · (ϕ1, ϕn)

...
...

(ϕn, ϕ0) (ϕn, ϕ1)

. . .
...

· · · (ϕn, ϕn)




a0
a1
...

an

 =


(ϕ0, y)
(ϕ1, y)

...
(ϕn, y)

 (A4)

where
(

ϕj, ϕk
)
,
(

ϕj, y
)

are the inner products of functions, and their calculation methods
are as follows: 

(
ϕj, ϕk

)
=

m
∑

i=0
ρi ϕj(xi)ϕk(xi)(

ϕj, y
)
=

m
∑

i=0
ρiyj ϕk(xi)

(A5)

where ρi is the weight.
By solving formula (5), the fitting coefficient can be solved, and then the fitting function

can be determined.

Appendix E. Indicators of Model Evaluation

In this paper, the residual error and root mean square error (RMSE) of the two models
were calculated as follows:

For the least square model, the residual error between the estimated root diameter
and the actual root diameter on the regression curve was calculated first:

δi = S(∆Ti)− Di (A6)

where:
δi is the residual error between the estimated value and the actual value of the least

square model. ∆Ti is the i-th time interval parameter entered. S(∆Ti) is the estimated value
of root diameter of the least square model when ∆Ti is entered. Di is the actual value of
root diameter.

After obtaining the residual error of all test data, the distribution of residual error was
analyzed by boxplots, and the RMSE was calculated:

RMSEL =

√
1
n

n

∑
i=1

(S(∆Ti)− Di)
2 (A7)

where RMSEL is the RMSE of the least squares model.
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For the neural network model, it is necessary to use training data to train the model,
establish the mapping relationship between input and output, and then use correlation co-
efficient R and root mean square error RMSEN to evaluate the training effect of the model:

R(∆T, D) =
Cov(∆T, D)√
Var[∆T]Var[D]

(A8)

RMSEN =

√
1
n

n

∑
i=1

(N(∆Ti)− Di)
2 (A9)

where:
D is the root diameter. R is the correlation coefficient between time interval and root

diameter. N(∆Ti) is the estimated value of root diameter of neural network model when
input as ∆Ti.

The closer the correlation coefficient R is to 1, the closer the positive linear relationship
between the time interval and the root diameter. The smaller the RMSEN , the higher the
accuracy of the root diameter estimated by the neural network model. After training a
satisfactory neural network model, the root diameter parameter could be estimated. The
evaluation indicator of estimation performance of neural network model is consistent with
that of least square model, that is, residual distribution and RMSE.

When comparing the prediction effects of the least square model and the neural
network model, the residual percentage of the prediction model should be calculated, so as
to draw boxplots of the residual percentage to compare and evaluate the prediction effects
of the two models.

p =
δ

D
∗ 100% (A10)

where p is the residual percentage of the model.
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