Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Description
2.3. Laboratory Analysis and Data Evaluation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Singh, P.; Jorquera, M.A.; Sangwan, P.; Kumar, P.; Verma, A.K.; Agrawal, S. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J. Microbiol. Biotechnol. 2013, 29, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xue, S.; Wang, G.; Liu, G. Effects of nitrogen addition on soil oxidisable organic carbon fractions in the rhizospheric and bulk soils of Chinese pines in north-western China. Soil Res. 2017, 56, 441. [Google Scholar] [CrossRef]
- Mohite, B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 2013, 13, 638–649. [Google Scholar] [CrossRef]
- Sanders, I.R. Mycorrhizal symbioses: How to be seen as a good fungus. Curr. Biol. 2011, 21, 550–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Pozo, M.J.; López-Ráez, J.A.; Azcón-Aguilar, C.; García-Garrido, J.M. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 2015, 205, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Bais, H. Role of plant growth regulators as chemical signals in plant–microbe interactions: A double edged sword. Curr. Opin. Plant Biol. 2015, 27, 52–58. [Google Scholar] [CrossRef]
- Chanclud, E.; Morel, J.B. Plant hormones: A fungal point of view. Mol. Plant Pathol. 2016, 17, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Holik, L.; Vranová, V.; Rejšek, K. The role of cytokinins, ethephon, and chlorocholine chloride in the native proteolytic activity of forest soils. J. Soils Sed. 2018, 18, 1500–1506. [Google Scholar] [CrossRef]
- Amara, U.; Khalid, R.; Hayat, R. Soil bacteria and phytohormones for sustainable crop production. In Bacterial Metabolites in Sustainable Agroecosystem, vol 12 of the Series Sustainable Development and Biodiversity; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 87–103. [Google Scholar]
- Parray, J.A.; Mir, M.Y.; Shameem, N. Sustainable Agriculture: Biotechniques in Plant Biology; Springer Nature Singapore Pte Ltd.: Singapore, 2019; p. 559. [Google Scholar]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Ramireddy, E.; Schmülling, T. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J. Exp. Bot. 2013, 64, 5021–5032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, G.E.; Bishopp, A.; Kiebe, J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell 2015, 27, 44–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Mir, M.R.; Nazar, R.; Singh, S. The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Cycoń, M.; Lewandowska, A.; Piotrowska-Seget, Z. Mineralization Dynamics of Chlormequat Chloride (CCC) in Soils of Different Textures. Pol. J. Environ. Stud. 2012, 21, 595–602. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification Systém for Naming Soil and Creating Legends for Soil Maps; Report No. 106; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Rejsek, K.; Formanek, P.; Pavelka, M. Estimation of protease aktivity in soils at low temperatures by casein amendment and with substitution of buffer by demineralized water. Amino Acids 2008, 35, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Zar, J. Biostatistical Analysis; Prentice Hall Int.: Hoboken, NJ, USA, 1994; p. 663. [Google Scholar]
- Gómez, D.A.; Carpena, R.O. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions. J. Plant Physiol. 2014, 171, 1354–1361. [Google Scholar] [CrossRef]
- Márquez, G.; Alarcón, M.V.; Salguero, J. Differential responses of primary and lateral roots to indole-3-acetic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid in maize seedlings. Biol. Plant. 2016, 60, 367–375. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Cherdyntseva, T.A.; Klimova, S.Y.; Shestakov, A.I.; Botina, S.G.; Netrusov, A.I. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch. Microbiol. 2007, 188, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Taketa, S.; Ichii, M.; Xu, L.; Xia, K.; Zhou, X. Lateral root formation in rice (Oryza sativa L.): Differential effects of indole-3-acetic acid and indole-3-butyric acid. Plant Growth Reg. 2003, 41, 41–47. [Google Scholar] [CrossRef]
- Chi, W.; Li, J.; He, B.; Chai, X.; Xu, X.; Sun, X.; Jiang, J.; Feng, P.; Zuo, J.; Lin, R.; et al. DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of ARABIDOPSIS RESPONSE REGULATOR 4. Proc. Nat. Acad. Sci. USA 2016, 113, 3568–3576. [Google Scholar] [CrossRef] [Green Version]
- Veselov, D.S.; Kudoyarova, G.R.; Kudryakovab, N.V.; Kusnetsov, V.V. Role of Cytokinins in Stress Resistance of Plants. Russ. J. Plant Physiol. 2017, 64, 15–27. [Google Scholar]
- Chang, Z.; Liu, Y.; Dong, H.; Teng, K.; Han, L.; Zhang, X. Effects of Cytokinin and Nitrogen on Drought Tolerance of Creeping Bentgrass. PLoS ONE 2016, 11, e0154005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupp, L.A.; Mudge, K.W.; Negm, F.B. Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings. Can. J. Bot. 1989, 67, 477–482. [Google Scholar] [CrossRef]
- Čatská, V.; Vraný, J. Rhizosphere mycoflora of wheat after foliar application of chlorocholine chloride, urea and 4-chloro-2-methylphenoxyacetic acid. Folia Microbiol. 1976, 21, 268–273. [Google Scholar] [CrossRef]
- Anosheh, H.P.; Emam, Y.; Ashraf, M.; Foolad, M.R. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Stud. Biol. 2012, 4, 501–520. [Google Scholar]
- Cosme, M.; Ramireddy, E.; Franken, P.; Schmülling, T.; Wurst, S. Shoot-and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza 2016, 26, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Taylor, A.A.; Astor, S.R.; Terry, N. Enhancing saltgrass germination and growth in a saline soil contaminated with petroleum hydrocarbons. Plant Soil 2017, 412, 189–199. [Google Scholar] [CrossRef]
- Kudoyarova, G.R.; Vysotskaya, L.B.; Arkhipova, T.N.; Kuzmina, L.Y.; Galimsyanova, N.F.; Sidorova, L.V.; Gabbasova, I.M.; Melentiev, A.I.; Veselov, S.Y. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol. Plant. 2017, 39, 253. [Google Scholar] [CrossRef]
- Kadmiri, I.M.; Chaouqui, L.; Azaroual, S.E.; Sijilmassi, B.; Yaakoubi, K.; Wahby, I. Phosphate-Solubilizing and Auxin-Producing Rhizobacteria Promote Plant Growth Under Saline Conditions. Arab. J. Sci. Eng. 2018, 43, 3403–3415. [Google Scholar] [CrossRef]
Plot | Ct (%) | Nt (%) | C/N | pH H2O | pH 1M KCl |
---|---|---|---|---|---|
Spruce, Oe horizon (haplic Podzosol) | 19.53 | 0.89 | 21.9 | 4.35 | 3.12 |
Treatment | 0 | 5 | 50 | 100 |
---|---|---|---|---|
Auxin | ||||
NAA | 78.43 ± 0.01 | 80.70 ± 2.48 | 84.11 ± 0.57 | 84.97 ± 1.02 * |
NOA | 78.43 ± 0.01 | 91.22 ± 2.26 * | 88.66 ± 1.77 * | 88.38 ± 0.57 * |
IBA | 78.43 ± 0.01 | 82.41 ± 2.71 | 85.25 ± 0.85 | 84.68 ± 2.05 |
IAA | 78.43 ± 0.01 | 92.36 ± 0.75 * | 82.98 ± 1.50 | 76.73 ± 1.30 |
Cytokinin | ||||
BAP | 78.43 ± 0.01 | 71.04 ± 1.02 * | 64.22 ± 2.05 * | 62.80 ± 2.22 * |
AH | 78.43 ± 0.01 | 73.60 ± 3.76 | 78.72 ± 2.33 | 73.88 ± 2.71 |
ET | 78.43 ± 0.01 | 69.34 ± 2.27 * | 50.30 ± 0.49 * | 50.87 ± 2.71 * |
CCC | 78.43 ± 0.01 | 71.33 ± 2.88 | 59.96 ± 1.24 * | 51.44 ± 2.84 * |
Correlation coefficients (p) | ||||
Auxin | ||||
NAA | 1.0000 | |||
NOA | 0.6290 ** | 1.0000 | ||
IBA | 0.8177 ** | 0.7663 ** | 1.0000 | |
IAA | −0.2721 | 0.4634 | -0.0451 | 1.0000 |
Cytokinin | ||||
BAP | 1.0000 | |||
AH | 0.1620 | 1.0000 | ||
ET | 0.8573 ** | 0.1027 | 1.0000 | |
CCC | 0.8875 ** | 0.1990 | 0.9062 ** | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holik, L.; Volánek, J.; Vranová, V. Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand. Forests 2021, 12, 665. https://doi.org/10.3390/f12060665
Holik L, Volánek J, Vranová V. Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand. Forests. 2021; 12(6):665. https://doi.org/10.3390/f12060665
Chicago/Turabian StyleHolik, Ladislav, Jiří Volánek, and Valerie Vranová. 2021. "Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand" Forests 12, no. 6: 665. https://doi.org/10.3390/f12060665
APA StyleHolik, L., Volánek, J., & Vranová, V. (2021). Effect of Plant Growth Regulators on Protease Activity in Forest Floor of Norway Spruce Stand. Forests, 12(6), 665. https://doi.org/10.3390/f12060665