Finite Element Method Simulations and Experiments of Detachments of Lycium barbarum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reverse Engineering Modeling Using the 3D Scanner
2.2. Physical Tests Using Universal Testing Machines
2.3. Establishing the Material Mechanics Models
2.3.1. Densities
2.3.2. Elastic Moduli
2.3.3. Poisson Ratio
2.4. Detachment Simulations Based on FEM
3. Results
3.1. Analyses of Detachment Simulations
3.2. Verification Using Field Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, L.; Chen, J.; Wu, G.; Yuan, Q.; Ma, S.; Yu, C.; Duan, Z.; Xing, J.; Liu, X. Design and operating parameter optimization of comb brush vibratory harvesting device for wolfberry. Trans. CSAE 2018, 34, 75–82. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, H.; Ding, W.; Mei, S. Machanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode. Trans. CSAE 2015, 31, 20–28. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Chen, Y.; Zhang, S.; Liu, F.; Bu, L.; Chen, Y.; Wang, Z.; Chen, J. FEM explicit dynamics simulation and NIR hyperspectral reflectance imaging for determination of impact bruises of Lycium barbarum L. Postharvest Biol. Technol. 2019, 155, 102–110. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Han, B.; Chen, J. Research on laws of wolfberry dropping based on high-speed camera. J. Agric. Mech. Res. 2018, 40, 166–170. [Google Scholar] [CrossRef]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Chen, Y.; Bu, L.; Hu, G.; Zhang, E. Design and experiment on vibrating and comb brushing harvester for Lycium barbarum. Trans. CSAM 2019, 50, 152–161. [Google Scholar] [CrossRef]
- So, J.D. Vibration characteristics of boxthorn (Lycium chinense Mill) branches. Appl. Eng. Agric. 2001, 17, 755–760. [Google Scholar] [CrossRef]
- So, J.D. Vibratory harvesting machine for boxthorn (Lycium chinense Mill) berries. Trans. ASAE 2003, 46, 211–221. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Tan, Y.; Li, W. Optimal design and experiment on variable pacing combing brush picking device for Lycium barbarum. Trans. CSAM 2018, 49, 83–90. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Zhang, J.; Li, W. Design and experiment of vibrating wolfberry harvester. Trans. CSAM 2018, 49, 97–102. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Wang, Y.; Chen, J. Experimental research on parameter optimization of portable vibrating and harvesting device of Chinese wolfberry. J. Agric. Mech. Res. 2019, 41, 176–182. [Google Scholar] [CrossRef]
- Wang, Y. Research on Key Technology of Wolfberry Vibration Harvest. Master’s Thesis, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
- Zhou, B.; He, J. Design of simulate hand wolfberry picking machine. Trans. CSAE 2010, 26 (Supp. 1), 13–17. [Google Scholar] [CrossRef]
- He, M.; Kan, Z.; Li, C.; Wang, L.; Yang, L.; Wang, Z. Mechanism analysis and experiment on vibration harvesting of wolfberry. Trans. CSAE 2017, 33, 47–53. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Liu, F.; Chen, Y.; Hu, G.; Zhang, E.; Chen, J. Parameter optimization of winnowing equipment for machineharvested Lycium barbarum L. Span. J. Agric. Res. 2019, 17, e0203. [Google Scholar] [CrossRef]
- Gilman, E.F. Branch-to-stem diameter ratio affects strength of attachment. J. Arboric. 2003, 29, 291–293. [Google Scholar]
- Kane, B.; Farrell, R.; Zedaker, S.M.; Loferski, J.R.; Smith, D.W. Failure mode and prediction of the strength of branch attachments. Arboric. Urban For. 2008, 34, 308–316. Available online: https://www.researchgate.net/profile/Brian-Kane/publication/238757178_Failure_Mode_and_Prediction_of_the_Strength_of_Branch_Attachments/links/00b7d536b533e75fc5000000/Failure-Mode-and-Prediction-of-the-Strength-of-Branch-Attachments.pdf (accessed on 25 May 2021).
- Li, J.; Karkee, M.; Zhang, Q.; Xiao, K.; Feng, T. Characterizing apple picking patterns for robotic harvesting. Comput. Electron. Agric. 2016, 127, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.; Silwal, A.; Karkee, M.; Mo, C.; Zhang, Q. Hand-picking dynamic analysis for undersensed robotic apple harvesting. Trans. ASABE 2016, 59, 745–758. [Google Scholar] [CrossRef]
- Slater, D.; Ennos, A.R. Determining the mechanical properties of hazel forks by testing their component parts. Trees 2013, 27, 1514–1524. [Google Scholar] [CrossRef]
- Viet, D.D.; Ma, T.; Inagaki, T.; Kim, N.T.; Chi, N.Q.; Tsuchikawa, S. Physical and Mechanical Properties of Fast Growing Polyploid Acacia Hybrids (A. auriculiformis × A. mangium) from Vietnam. Forests 2020, 11, 717. [Google Scholar] [CrossRef]
- Celik, H.K. Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biol. Tec. 2017, 128, 83–97. [Google Scholar] [CrossRef]
- Shen, C.; Chen, Q.; Li, X.; Zhang, B.; Huang, J.; Tian, K. Test and analysis of axial compressive mechanical properties for ramie stalk. Acta Agric. Univ. Zhejiangensis 2016, 28, 688–692. [Google Scholar] [CrossRef]
- The Poisson’s Ratio. Available online: https://baike.baidu.com/item/%E6%B3%8A%E6%9D%BE%E6%AF%94/5920115?fr=aladdin (accessed on 25 May 2021).
- Shen, C.; Li, X.; Tian, K.; Zhang, B.; Huang, J.; Chen, Q. Experimental analysis on mechanical model of ramie stalk. Trans. CSAE 2015, 31, 26–33. [Google Scholar] [CrossRef]
- Wang, Y. Abaqus Analysis User’s Guide: Materials Volume, 1st ed.; China Machine Press: Beijing, China, 2018; pp. 27–28. [Google Scholar]
- Shi, N. Peeling Method of Cotton Stalk and Development of Rubbing Peeling Machine. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
- Wu, J.; Huang, Y.; Wang, Y.; Wang, W. Study on axial compression properties of cotton stalks. J. Agric. Mech. Res. 2004, 26, 148–149, 152. [Google Scholar] [CrossRef]
- Wang, Y.; Su, P. Research of mechanics characteristics for cotton stalks compression. J. Agric. Mech. Res. 2006, 28, 171–172. [Google Scholar] [CrossRef]
- The State General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; China National Standardization Administration Commission. Test Method for Flexural Properties of Sandwich Constructions; National standards of the People’s Republic of China: Beijing, China, 2005; pp. 1–9. [Google Scholar]
- Hu, G.; Bu, L.; Chen, J. Simulation to determination of significant parameters on apple stress for combing harvesting in trellis trained trees. Sci. Hortic. 2020, 274, 109654. [Google Scholar] [CrossRef]
- Bu, L.; Hu, G.; Chen, C.; Sugirbay, A.; Chen, J. Experimental and simulation analysis of optimum picking patterns for robotic apple harvesting. Sci. Hortic. 2020, 261, 108937. [Google Scholar] [CrossRef]
Item | Density (t/mm3) | Elastic Modulus (MPa) | Poisson Ratio |
---|---|---|---|
The ripe fruit | 9.3339 × 10−10 | 1.3440 × 10−1 | 0.4000 |
The half-ripe fruit | 9.6742 × 10−10 | 4.0970 × 10−1 | 0.4000 |
The unripe fruit | 8.5822 × 10−10 | 4.4694 | 0.4000 |
The flower | 3.1461 × 10−11 | 1.5500 × 10−1 | 0.4500 |
The leaf | 5.3178 × 10−10 | 4.2090 | 0.4500 |
The calyx of ripe fruit | 3.3684 × 10−11 | 3.5500 × 10−2 | 0.4200 |
The calyx of half-ripe fruit | 4.3356 × 10−11 | 1.6100 × 10−2 | 0.4200 |
The calyx of unripe fruit | 1.5180 × 10−10 | 8.8500 × 10−2 | 0.4200 |
The calyx of flower | 8.3132 × 10−11 | 1.2900 × 10−2 | 0.4200 |
The stem of ripe fruit | 2.4618 × 10−9 | 8.2110 | 0.3800 |
The stem of half-ripe fruit | 2.1556 × 10−9 | 1.1322 | 0.3800 |
The stem of unripe fruit | 2.2060 × 10−9 | 4.9444 | 0.3800 |
The stem of flower | 1.5778 × 10−9 | 3.2611 | 0.3800 |
The branch of ripe fruit | 4.1148 × 10−10 | 4.2564 × 102 | 0.3000 |
The branch of half-ripe fruit | 1.6544 × 10−9 | 1.9119 × 102 | 0.3000 |
The branch of unripe fruit | 1.0988 × 10−9 | 2.5738 × 102 | 0.3000 |
The branch of flower | 1.2096 × 10−9 | 5.6472 × 102 | 0.3000 |
The branch of leaf | 9.9668 × 10−10 | 4.5531 × 102 | 0.3000 |
Item | Maximum Value | Minimum Value | Mean Value | Standard Deviation |
---|---|---|---|---|
The first detachment force of ripe fruit (R1) | 1.26 | 0.32 | 0.62 | 0.33 |
The second detachment force of ripe fruit (R2) | 2.54 | 0.57 | 1.21 | 0.58 |
The first detachment force of half-ripe fruit (H1) | 3.35 | 0.16 | 1.08 | 0.86 |
The second detachment force of half-ripe fruit (H2) | 3.62 | 0.70 | 1.51 | 0.82 |
The first detachment force of unripe fruit (U1) | 2.15 | 0.38 | 1.13 | 0.52 |
The second detachment force of unripe fruit (U2) | 3.16 | 1.32 | 2.10 | 0.55 |
The first detachment force of flowers (F1) | 1.10 | 0.49 | 0.75 | 0.20 |
The first detachment force of leaves (L1) | 3.93 | 1.47 | 2.94 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Ma, T.; Inagaki, T.; Chen, Q.; Gao, Z.; Sun, L.; Cai, H.; Chen, C.; Li, C.; Zhang, S.; et al. Finite Element Method Simulations and Experiments of Detachments of Lycium barbarum L. Forests 2021, 12, 699. https://doi.org/10.3390/f12060699
Zhao J, Ma T, Inagaki T, Chen Q, Gao Z, Sun L, Cai H, Chen C, Li C, Zhang S, et al. Finite Element Method Simulations and Experiments of Detachments of Lycium barbarum L. Forests. 2021; 12(6):699. https://doi.org/10.3390/f12060699
Chicago/Turabian StyleZhao, Jian, Te Ma, Tetsuya Inagaki, Qingyu Chen, Zening Gao, Lijuan Sun, Haoxuan Cai, Chao Chen, Chuanlin Li, Shixia Zhang, and et al. 2021. "Finite Element Method Simulations and Experiments of Detachments of Lycium barbarum L." Forests 12, no. 6: 699. https://doi.org/10.3390/f12060699
APA StyleZhao, J., Ma, T., Inagaki, T., Chen, Q., Gao, Z., Sun, L., Cai, H., Chen, C., Li, C., Zhang, S., Tsuchikawa, S., & Chen, J. (2021). Finite Element Method Simulations and Experiments of Detachments of Lycium barbarum L. Forests, 12(6), 699. https://doi.org/10.3390/f12060699