Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Paraffin Section Microscopy
2.3. Scanning Electron Microscopy
2.4. RNA Isolation, Library Construction and Sequencing
2.5. Sequence Processing and Analysis
2.6. Alternative Splicing Analysis
2.7. Identification of MADSs
2.8. Co-Expression Network Analysis
2.9. Expression Analysis
3. Results
3.1. Observation of Stamen Development
3.2. Sequence Processing
3.3. Alternative Splicing
3.4. MADS TFs
3.5. Identification of Hub Genes
3.6. Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, H.; Chen, P.; Zhu, Z.; Chen, Y.; Zou, F.; Yuan, D. Morphological and cytological characterization of petaloid type cytoplasmic male sterility in Camellia oleifera. HortScience 2019, 54, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Yuan, D.; Yuan, J.; Zou, F.; Xie, P.; Su, Y.; Yang, D.; Peng, J. An elite variety: Camellia oleifera ‘Huashuo’. Sci. Silvae Sinicae. 2011, 47, 184, (in Chinese with English Abstract). [Google Scholar]
- Wang, D.; Hao, Z.; Long, X.; Wang, Z.; Zheng, X.; Ye, D.; Peng, Y.; Wu, W.; Hu, X.; Wang, G.; et al. The Transcriptome of Cunninghamia lanceolata male/female cone reveal the association between MIKC MADS-box genes and reproductive organs development. BMC Plant Biol. 2020, 20. [Google Scholar] [CrossRef]
- Wang, P.; Liao, H.; Zhang, W.; Yu, X.; Zhang, R.; Shan, H.; Duan, X.; Yao, X.; Kong, H. Flexibility in the structure of spiral flowers and its underlying mechanisms. Nat. Plants 2016, 2. [Google Scholar] [CrossRef]
- Hugouvieux, V.; Zubieta, C. MADS transcription factors cooperate: Complexities of complex formation. J. Exp. Bot. 2018, 69, 1821–1823. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Daher, H.; Galien, A.; Hugouvieux, V.; Zubieta, C. Structural basis for plant MADS transcription factor oligomerization. Comput. Struct. Biotechnol. J. 2019, 17, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Theissen, G.; Melzer, R.; Ruempler, F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution. Development 2016, 143, 3259–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Hall, A.B.; Biedler, J.K.; Tu, Z. Single molecule RNA sequencing uncovers trans-splicing and improves annotations in Anopheles stephensi. Insect Mol. Biol. 2017, 26, 298–307. [Google Scholar] [CrossRef]
- Li, Y.; Dai, C.; Hu, C.; Liu, Z.; Kang, C. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J. 2017, 90, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Teng, K.; Teng, W.; Wen, H.; Yue, Y.; Guo, W.; Wu, J.; Fan, X. PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome. BMC Genom. 2019, 20. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Han, X.; Qiao, G.; Yang, K.; Wen, Z.; Wen, X. Comparative Transcriptome Analysis Combining SMRT- and Illumina-Based RNA-Seq Identifies Potential Candidate Genes Involved in Betalain Biosynthesis in Pitaya Fruit. Int. J. Mol. Sci. 2020, 21, 3288. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Y.; Easton, J.; Finkelstein, D.; Wu, G.; Chen, X. UMI-count modeling and differential expression analysis for single-cell RNA sequencing. Genome Biol. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karst, S.M.; Ziels, R.M.; Kirkegaard, R.H.; Sorensen, E.A.; McDonald, D.; Zhu, Q.; Knight, R.; Albertsen, M. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 2021, 18, 165–169. [Google Scholar] [CrossRef]
- Posfai, D.; Krishnan, K.; Song, C.; Liu, P.; Naishadham, G.; Langhorst, B.W.; Dimalanta, E.T.; Davis, T.B. Improving transcriptome analysis by incorporating unique molecular identifiers into RNA-sequencing. Eur. J. Hum. Genet. 2020, 28, 611–612. [Google Scholar]
- Smith, T.; Heger, A.; Sudbery, I. UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017, 27, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.; Yuan, D.-Y.; Zou, F.; Gao, C.; Yang, Y.; Zhang, L.; Tan, X.-F. Self-Sterility in Camellia oleifera may be due to the prezygotic late-acting self-incompatibility. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Gao, C.; Yuan, D.; Yang, Y.; Wang, B.; Liu, D.; Zou, F. Pollen Tube Growth and Double Fertilization in Camellia oleifera. J. Am. Soc. Hort. Sci. 2015, 140, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Jiao, C.; Sun, H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.; Banf, M.; Dai, X.; Martin, G.B.; Giovannoni, J.J.; et al. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant. 2016, 9, 1667–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Moral, A.; Mancini, M.; D’Amati, G.; Camici, P.; Petretto, E. Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling. J. Cardiovasc. Trans. Res. 2013, 6, 931–944. [Google Scholar] [CrossRef]
- Hall, T.; Steiner, R.; Wright, H.; Wilmot, B.; Roullet, J.; Peters, M.; Harris, M. Lipid and sterol gene sequence variation in autism and correlates with neurodevelopmental status: A pilot study. Arch. Clin. Neuropsychol. 2015, 2, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Boucas, J.; Pico, A.R.; Demchak, B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Gao, C.; Yuan, D.Y.; Wang, B.F.; Yang, Y.; Liu, D.M.; Han, Z.Q. A cytological study of anther and pollen development in Camellia oleifera. Gen. Mol. Res. 2015, 14, 8755–8765. [Google Scholar] [CrossRef]
- Mizunoe, Y.; Ozaki, Y. Effects of growth temperature and culture season on morphogenesis of petaloid-stamen in double-flowered Cyclamen. Horticult. J. 2015, 84, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Tang, A.; Wan, H.; Zhang, T.; Cheng, T.; Wang, J.; Yang, W.; Pan, H.; Zhang, Q. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Wang, H.; You, C.; Chang, F.; Wang, Y.; Wang, L.; Qi, J.; Ma, H. Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Z.X.; Ma, J.; Song, Y.; Chen, F.J. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae). Plant. Sci. 2015, 241, 277–285. [Google Scholar] [CrossRef]
- Dreni, L.; Ravasio, A.; Gonzalez-Schain, N.; Jacchia, S.; da Silva, G.J.; Ricagno, S.; Russo, R.; Caselli, F.; Gregis, V.; Kater, M.M. Functionally divergent splicing variants of the rice AGAMOUS ortholog OsMADS3 are evolutionary conserved in grasses. Front. Plant. Sci. 2020, 11. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, T.; Cai, M.; Pan, H.; Wang, J.; Zhang, Q. Transcriptome analysis during floral organ development provides insights into stamen petaloidy in Lagerstroemia speciosa. Plant Physiol. Biochem. 2019, 142, 510–518. [Google Scholar] [CrossRef]
- Fan, Y.; Zheng, Y.; Teixeira da Silva, J.A.; Yu, X. Comparative transcriptomics and WGCNA reveal candidate genes involved in petaloid stamens in Paeonia lactiflora. J. Horticult. Sci. Biotechnol. 2021. [Google Scholar] [CrossRef]
- Chen, D.; Yan, W.; Fu, L.-Y.; Kaufmann, K. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- O’Maoileidigh, D.S.; Graciet, E.; Wellmer, F. Gene networks controlling Arabidopsis thaliana flower development. N. Phytol. 2014, 201, 16–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wils, C.R.; Kaufmann, K. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 95–105. [Google Scholar] [CrossRef]
- Ito, T.; Ng, K.-H.; Lim, T.-S.; Yu, H.; Meyerowitz, E.M. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 2007, 19, 3516–3529. [Google Scholar] [CrossRef] [Green Version]
- Jack, T. New members of the floral organ identity AGAMOUS pathway. Trends Plant Sci. 2002, 7, 286–287. [Google Scholar] [CrossRef]
- Pelaz, S.; Ditta, G.S.; Baumann, E.; Wisman, E.; Yanofsky, M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 2000, 405, 200–203. [Google Scholar] [CrossRef]
- Hugouvieux, V.; Silva, C.S.; Jourdain, A.; Stigliani, A.; Charras, Q.; Conn, V.; Conn, S.J.; Carles, C.C.; Parcy, F.; Zubieta, C. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res. 2018, 46, 4966–4977. [Google Scholar] [CrossRef] [Green Version]
- Melzer, R.; Theissen, G. Reconstitution of floral quartets in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res. 2009, 37, 2723–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaczniak, C.; Immink, R.G.H.; Muino, J.M.; Blanvillain, R.; Busscher, M.; Busscher-Lange, J.; Dinh, Q.D.; Liu, S.; Westphal, A.H.; Boeren, S.; et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl. Acad. Sci. USA 2012, 109, 1560–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soza, V.L.; Snelson, C.D.; Hazelton, K.D.H.; Di Stilio, V.S. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot. Dev. Biol. 2016, 419, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Tsuda, S.; Tanaka, Y.; Mayama, T.; Okuyama, Y.; Tsuchimoto, S.; Takatsuji, H. Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant J. 2002, 32, 115–127. [Google Scholar] [CrossRef]
- Yockteng, R.; Almeida, A.M.R.; Morioka, K.; Alvarez-Buylla, E.R.; Specht, C.D. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: A proposed mechanism for floral diversification. Mol. Biol. Evol. 2013, 30, 2401–2422. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Hu, Y.; Gao, C.; Guo, Q.; Deng, Q.; Nan, H.; Yang, L.; Wei, H.; Qiu, J.; Yang, L. Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera. Forests 2021, 12, 749. https://doi.org/10.3390/f12060749
Li H, Hu Y, Gao C, Guo Q, Deng Q, Nan H, Yang L, Wei H, Qiu J, Yang L. Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera. Forests. 2021; 12(6):749. https://doi.org/10.3390/f12060749
Chicago/Turabian StyleLi, Huie, Yang Hu, Chao Gao, Qiqiang Guo, Quanen Deng, Hong Nan, Lan Yang, Hongli Wei, Jie Qiu, and Lu Yang. 2021. "Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera" Forests 12, no. 6: 749. https://doi.org/10.3390/f12060749
APA StyleLi, H., Hu, Y., Gao, C., Guo, Q., Deng, Q., Nan, H., Yang, L., Wei, H., Qiu, J., & Yang, L. (2021). Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera. Forests, 12(6), 749. https://doi.org/10.3390/f12060749