Effect of Prunus serotina Ehrh. Volatile Compounds on Germination and Seedling Growth of Pinus sylvestris L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Germination and Growth Assays
2.3. Chromatographical Analysis
2.4. Allelopathic Bioassay with Linalool
2.5. Statistical Analyses
3. Results
3.1. Influence of Black Cherry Volatiles on Pine Seed Germination and Seedling Growth
3.2. Composition of Volatile Organic Compounds of Black Cherry Leaves
3.3. Influence of Linalool on Pine Seed Germination and Seedling Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Solon, J. Scots pine forests of the Vaccinio-Piceetea class in Europe: Forest sites studied. Pol. J. Ecol. 2003, 51, 421–439. [Google Scholar]
- Masternak, K.; Głębocka, K.; Surowaniec, K.; Kowalczyk, K. Growth traits of natural regeneration of Scots pine (Pinus sylvestris L.) in south-eastern Poland. Folia For. Pol. 2020, 62, 220–226. [Google Scholar] [CrossRef]
- Oleskog, G.; Sahlén, K. Effects of Seedbed Substrate on Moisture Conditions and Germination of Pinus sylvestris Seeds in a Clearcut. Scand. J. For. Res. 2000, 15, 225–236. [Google Scholar] [CrossRef]
- Nilsson, U.; Gemmel, P.; Johansson, U.; Karlsson, M.; Welander, T. Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden. For. Ecol. Manag. 2002, 161, 133–145. [Google Scholar] [CrossRef]
- Hille, M.; Ouden, J.D. Charcoal and activated carbon as adsorbate of phytotoxic compounds—A comparative study. Oikos 2005, 108, 202–207. [Google Scholar] [CrossRef]
- Vickers, A.; Palmer, S. The influence of canopy cover and other factors upon the regeneration of Scots pine and its associated ground flora within Glen Tanar National Nature Reserve. Forest 2000, 73, 37–49. [Google Scholar] [CrossRef]
- Packer, A.; Clay, K. Soil Pathogens and Prunus Serotina Seedling and Sapling Growth Near Conspecific Trees. Ecology 2003, 84, 108–119. [Google Scholar] [CrossRef]
- Gentili, R.; Ferrè, C.; Cardarelli, E.; Montagnani, C.; Bogliani, G.; Citterio, S.; Comolli, R. Comparing Negative Impacts of Prunus serotina, Quercus rubra and Robinia pseudoacacia on Native Forest Ecosystems. Forest 2019, 10, 842. [Google Scholar] [CrossRef] [Green Version]
- Dyderski, M.K.; Jagodziński, A.M. Impact of Invasive Tree Species on Natural Regeneration Species Composition, Diversity, and Density. Forest 2020, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- Starfinger, U. Introduction and naturalization of Prunus serotina in Central Europe. In Plant Invasions: Studies from North America and Europe; Brock, J.H., Wade, M., Pysek, P., Green, D., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1997; pp. 161–171. [Google Scholar]
- Pairon, M.; Chabrerie, O.; Casado, C.M.; Jacquemart, A.-L. Sexual regeneration traits linked to black cherry (Prunus serotina Ehrh.) invasiveness. Acta Oecologica 2006, 30, 238–247. [Google Scholar] [CrossRef]
- Closset-Kopp, D.; Chabrerie, O.; Valentin, B.; Delachapelle, H.; Decocq, G. When Oskar meets Alice: Does a lack of trade-off in r/K-strategies make Prunus serotina a successful invader of European forests? For. Ecol. Manag. 2007, 247, 120–130. [Google Scholar] [CrossRef]
- Starfinger, U.; Kowarik, I.; Rode, M.; Schepker, H. From Desirable Ornamental Plant to Pest to Accepted Addition to the Flora?—the Perception of an Alien Tree Species Through the Centuries. Biol. Invasions 2003, 5, 323–335. [Google Scholar] [CrossRef]
- Godefroid, S.; Phartyal, S.; Weyembergh, G.; Koedam, N. Ecological factors controlling the abundance of non-native invasive black cherry (Prunus serotina) in deciduous forest understory in Belgium. For. Ecol. Manag. 2005, 210, 91–105. [Google Scholar] [CrossRef]
- Halarewicz, A.; Żołnierz, L. Changes in the understorey of mixed coniferous forest plant communities dominated by the American black cherry (Prunus serotina Ehrh.). For. Ecol. Manag. 2014, 313, 91–97. [Google Scholar] [CrossRef]
- Gaudio, N.; Balandier, P.; Perret, S.; Ginisty, C. Growth of understorey Scots pine (Pinus sylvestris L.) saplings in response to light in mixed temperate forest. Forest 2011, 84, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Bączek, P.; Halarewicz, A. Effect of Black Cherry (Prunus serotina) Litter Extracts on Germination and Growth of Scots Pine (Pinus sylvestris) Seedlings. Pol. J. Ecol. 2019, 67, 137. [Google Scholar] [CrossRef]
- Callaway, R.M. Experimental designs for the study of allelopathy. Plant Soil 2003, 256, 1–11. [Google Scholar] [CrossRef]
- Lorenz, K.; Preston, C.M.; Krumrei, S.; Feger, K.-H. Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur. J. For. Res. 2004, 123, 177–188. [Google Scholar] [CrossRef]
- Vanderhoeven, S.; Dassonville, N.; Meerts, P. Increased Topsoil Mineral Nutrient Concentrations Under exotic invasive plants in Belgium. Plant Soil 2005, 275, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Koutika, L.-S.; Vanderhoeven, S.; Lardy, L.; Dassonville, N.; Meerts, P. Assessment of changes in soil organic matter after invasion by exotic plant species. Biol. Fertil. Soils 2007, 44, 331–341. [Google Scholar] [CrossRef]
- Chabrerie, O.; Verheyen, K.; Saguez, R.; Decocq, G. Disentangling relationships between habitat conditions, disturbance history, plant diversity, and American black cherry (Prunus serotina Ehrh.) invasion in a European temperate forest. Divers. Distrib. 2007, 14, 204–212. [Google Scholar] [CrossRef]
- Kourtev, P.; Ehrenfeld, J.; Häggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 2003, 35, 895–905. [Google Scholar] [CrossRef]
- Drogoszewski, B.; Barzdajn, W. Effect of aqueous extracts from Prunus serotina (Ehrh.) tissues on seed germination of Pinus sylvestris L. Pol. J. Ecol. 1984, 58, 33–38. [Google Scholar]
- Mondello, L. Mass Spectra of Flavors and Fragrances of Natural and Synthetic Compounds, 3rd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef]
- Abd-Elgawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; ElShamy, A.I. Phytotoxic Effects of Plant Essential Oils: A Systematic Review and Structure-Activity Relationship Based on Chemometric Analyses. Plants 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Santonja, M.; Bousquet-Mélou, A.; Greff, S.; Ormeño, E.; Fernandez, C. Allelopathic effects of volatile organic compounds released from Pinus halepensis needles and roots. Ecol. Evol. 2019, 9, 8201–8213. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oils by ion Trap Mass Spectroscopy; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Baldwin, I.T.; Halitschke, R.; Paschold, A.; Von Dahl, C.C.; Preston, C.A. Volatile Signaling in Plant-Plant Interactions: “Talking Trees” in the Genomics Era. Science 2006, 311, 812–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinnan, R.; Albers, C.N. Soil Uptake of Volatile Organic Compounds: Ubiquitous and Underestimated? J. Geophys. Res. Biogeosciences 2020, 125, 6. [Google Scholar] [CrossRef]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochem. Syst. Ecol. 2009, 37, 362–369. [Google Scholar] [CrossRef]
- Robakowski, P.; Bielinis, E. Competition between sessile oak (Quercus petraea) and black cherry (Padus serotina): Dynamics of seedlings growth. Pol. J. Ecol. 2011, 59, 325–334. [Google Scholar]
- Orr, S.P.; Rudgers, J.A.; Clay, K. Invasive Plants Can Inhibit Native Tree Seedlings: Testing Potential Allelopathic Mechanisms. Plant Ecol. 2005, 181, 153–165. [Google Scholar] [CrossRef]
- Chon, S.-U.; Nelson, C.J. Allelopathy in Compositae plants. A review. Agron. Sustain. Dev. 2010, 30, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, E.; Chatterjee, S.N.; Chakraborty, P. Allelopathic effect of Cassia tora on seed germination and growth of mustard. Turk. J. Bot. 2012, 36, 488–494. [Google Scholar] [CrossRef]
- Gniazdowska, A.; Bogatek, R. Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiol. Plant. 2005, 27, 395–407. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Chauhan, A.; Bhukya, B. Natural benzaldehyde from Prunus persica (L.) Batsch. Int. J. Food Prop. 2017, 20, 1–5. [Google Scholar] [CrossRef]
- Silva, E.; Overbeck, G.; Soares, G. Phytotoxicity of volatiles from fresh and dry leaves of two Asteraceae shrubs: Evaluation of seasonal effects. S. Afr. J. Bot. 2014, 93, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A.; Hastings, A.P.; Johnson, M.T.J.; Maron, J.L.; Salminen, J.-P. Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science 2012, 338, 113–116. [Google Scholar] [CrossRef]
- Swain, E.; Poulton, J.E. Immunocytochemical Localization of Prunasin Hydrolase and Mandelonitrile Lyase in Stems and Leaves of Prunus serotina. Plant Physiol. 1994, 106, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pérez, R.; Belmonte, F.S.; Borch, J.; Dicenta, F.; Møller, B.L.; Jørgensen, K. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds. Plant Physiol. 2012, 158, 1916–1932. [Google Scholar] [CrossRef] [Green Version]
- Del Cueto, J.; Ionescu, I.A.; Pičmanová, M.; Gericke, O.; Motawia, M.S.; Olsen, C.E.; Campoy, J.A.; Dicenta, F.; Møller, B.L.; Sánchez-Pérez, R. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. Front. Plant Sci. 2017, 8, 800. [Google Scholar] [CrossRef] [Green Version]
- Scala, A.; Allmann, S.; Mirabella, R.; Haring, M.A.; Schuurink, R.C. Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens. Int. J. Mol. Sci. 2013, 14, 17781–17811. [Google Scholar] [CrossRef] [Green Version]
- Gleadow, R.M.; Møller, B.L. Cyanogenic Glycosides: Synthesis, Physiology, and Phenotypic Plasticity. Annu. Rev. Plant Biol. 2014, 65, 155–185. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.-H.; Ro, J.-H.; Park, B.-J.; Lee, D.-Y.; Cheong, M.-S.; Lee, D.-Y.; Seo, W.-D.; Kim, J.H.; Choi, J.-H.R.G.-H. Benzaldehyde as a new class plant growth regulator onBrassica campestris. J. Appl. Biol. Chem. 2016, 59, 159–164. [Google Scholar] [CrossRef]
- Echeng, F.; Echeng, Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Dehimeche, N.; Buatois, B.; Bertin, N.; Staudt, M. Insights into the Intraspecific Variability of the above and Belowground Emissions of Volatile Organic Compounds in Tomato. Molcules 2021, 26, 237. [Google Scholar] [CrossRef] [PubMed]
- Chuihua, K.; Hu, F.; Xu, X. Allelopathic Potential and Chemical Constituents of Volatiles from Ageratum conyzoides Under Stress. J. Chem. Ecol. 2002, 28, 1173–1182. [Google Scholar] [CrossRef]
- Wang, R.; Pen, S.; Zeng, R.; Ding, L.W.; Xu, Z.F. Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha HBK and allelopathic potential of β-caryophyllene. Allelopath. J. 2009, 24, 35–44. [Google Scholar]
- Bourtsoukidis, E.; Kawaletz, H.; Radacki, D.; Schütz, S.; Hakola, H.; Hellén, H.; Noe, S.; Mölder, I.; Ammer, C.; Bonn, B. Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina. Trees 2013, 28, 193–204. [Google Scholar] [CrossRef]
- Holzke, C.; Hoffmann, T.; Jaeger, L.; Koppmann, R.; Zimmer, W. Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from Scots pine (Pinus sylvestris L.). Atmos. Environ. 2006, 40, 3174–3185. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Kuźma, P.; Obiedziński, M.; Węglarz, Z. Intraspecific variability of self-sown Scots pine (Pinus sylvestris L.) occurring in Eastern Poland in respect of essential oil content and composition. Balt. For. 2017, 23, 576–583. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Ramezani, H.; Kohli, R. Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 2002, 141, 111–116. [Google Scholar] [CrossRef]
- Reigosa, M.J.; Sánchez-Moreiras, A.; González, L. Ecophysiological Approach in Allelopathy. Crit. Rev. Plant Sci. 1999, 18, 577–608. [Google Scholar] [CrossRef]
- Inderjit; Wardle, D.; Karban, R.; Callaway, R.M. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol. Evol. 2011, 26, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Vartoukian, S.R.; Palmer, R.M.; Wade, W.G. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 2010, 309, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trowbridge, A.M.; Stoy, P.C.; Phillips, R.P. Soil Biogenic Volatile Organic Compound Flux in a Mixed Hardwood Forest: Net Uptake at Warmer Temperatures and the Importance of Mycorrhizal Associations. J. Geophys. Res. Biogeosci. 2020, 125, 125. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Schurgers, G.; Rinnan, R. Process Understanding of Soil BVOC Fluxes in Natural Ecosystems: A Review. Rev. Geophys. 2019, 57, 966–986. [Google Scholar] [CrossRef]
Parameter | Control | April | ||
10 (g) | 20 (g) | 40 (g) | ||
Germination capacity (%) | 95.3 ± 0.16 a | 90 ± 0.26 a | 90.7 ± 0.28 a | 88 ± 0.22 a |
Root length (mm) | 42.8 ± 0.89 a | 28.3 ± 0.81 b | 24.07 ± 1.29 c | 22.13 ± 1.16 c |
Stem height (mm) | 50.9 ± 0.80 a | 49.73 ± 0.88 a | 44.73 ± 1.28 b | 41 ± 1.49 b |
June | ||||
10 (g) | 20 (g) | 40 (g) | ||
Germination capacity (%) | 95.3 ± 0.16 a | 92.7 ± 0.25 a | 90 ± 0.24 a | 90 ± 0.24 a |
Root length (mm) | 42.8 ± 0.89 a | 34.07 ± 0.98 b | 32.8 ± 0.95 b | 31.8 ± 1.38 b |
Stem height (mm) | 50.9 ± 0.80 a | 48.8 ± 0.55 ab | 46.07 ± 0.97 b | 47.07 ± 0.86 b |
August | ||||
10 (g) | 20 (g) | 40 (g) | ||
Germination capacity (%) | 95.3 ± 0.16 a | 94 ± 0.19 a | 92 ± 0.24 a | 91.3 ± 0.16 a |
Root length (mm) | 42.8 ± 0.89 a | 38.07 ± 1.13 b | 40.73 ± 1.13 ab | 37.4 ± 0.9 b |
Stem height (mm) | 50.9 ± 0.80 a | 49.2 ± 0.54 a | 48.47 ± 1.01 a | 47.2 ± 1.4 a |
Compound | KI exp. | KI lit. | April (%) | June (%) | August (%) |
---|---|---|---|---|---|
2-ethyl furan | 705 | 703 | 0.0527 ± 0.0488 a | 0.0180 ± 0.0091 a | 0.0145 ± 0.0005 a |
(E)-2-pentenal | 752 | 755 | 0.0034 ± 0.0006 a | 0.0043 ± 0.0006 a | 0.0040 ± 0.0010 a |
(E)-3-hexenal | 814 | 811 | 0.3277 ± 0.0396 ab | 0.5290 ± 0.1837 b | 0.1750 ± 0.0320 a |
(E)-2-hexenal | 857 | 854 | 0.0020 ± 0.0020 a | 0.0034 ± 0.0032 a | 0.6600 ± 0.0330 b |
1-hexanol | 867 | 868 | 0.0023 ± 0.0006 a | 0.0060 ± 0.0056 a | 0.0155 ± 0.0025 a |
(Z)-2-hexen-1-ol | 872 | 870 | 0.0867 ± 0.0532 a | 0.0070 ± 0.0043 a | 0.3345 ± 0.0945 b |
(E, E)-2,4-hexadienal | 915 | 911 | 0.0343 ± 0.0396 a | 0.0480 ± 0.0745 a | 0.1665 ± 0.0115 a |
benzaldehyde | 965 | 962 | 99.0227 ± 0.4016 b | 99.048 ± 0.3233 b | 97.2275 ± 0.2375 a |
2,4-heptadienal | 1016 | 1013 | 0.0263 ± 0.0093 b | 0.0080 ± 0.0026 a | 0.0405± 0.0065 b |
benzyl alcohol | 1035 | 1036 | 0.0347 ± 0.0574 a | 0.0067 ± 0.0015 a | 0.3003 ± 0.0630 a |
linalool | 1097 | 1099 | 0.0140 ± 0.0017 a | 0.0043 ± 0.0038 a | 0.0150 ± 0.0050 a |
n-nonanal | 1103 | 1102 | 0.0013 ± 0.0006 a | 0.0043 ± 0.0049 a | 0.0660 ± 0.0080 a |
phenyl ethyl alcohol | 1106 | 1108 | 0.0050 ± 0.0026 a | 0.0050 ± 0.0010 a | 0.0955 ± 0.0175 b |
(E)-4-decenal | 1194 | 1196 | 0.0050 ± 0.0026 a | 0.0067 ± 0.0046 a | 0.4650 ± 0.0770 a |
estragole | 1198 | 1196 | 0.2190 ± 0.3776 a | 0.0103 ± 0.0066 a | 0.0000 ± 0.0000 a |
α-cyanobenzyl alcohol | 1305 | 1302 | 0.0087 ± 0.0057 a | 0.0073 ± 0.0050 a | 0.1430 ± 0.0320 b |
cis-jasmone | 1392 | 1397 | 0.0083 ± 0.0035 a | 0.0370 ± 0.0225 a | 0.0125 ± 0.0025 a |
(E)-β-caryophyllene | 1413 | 1417 | 0.0710 ± 0.0358 a | 0.0787 ± 0.0772 a | 0.0240 ± 0.0070 a |
nerylacetone | 1437 | 1435 | 0.0187 ± 0.0064 a | 0.1377 ± 0.1220 a | 0.0050 ± 0.0040 a |
Parameter | Control | Linalool | |||
---|---|---|---|---|---|
5 (µg mL−1) | 10 (µg mL−1) | 25 (µg mL−1) | 50 (µg mL−1) | ||
Germination capacity (%) | 95.3 ± 0.16 a (100%) | 96 ± 0.16 a (101%) | 91.3 ± 0.24 ab (96%) | 89.3 ± 0.27 ab (94%) | 78.7 ± 0.32 b (83%) |
Root length (mm) | 42.8 ± 0.89 a (100%) | 42.5 ± 1.3 a (99%) | 29.2 ± 1.05 b (68%) | 25.9 ± 1.36 bc (61%) | 18.7 ± 0.51 c (44%) |
Stem height (mm) | 50.9 ± 0.80 a (100%) | 50.4 ± 0.90 a (99%) | 50.7 ± 0.76 a (100%) | 45.1 ± 1.14 b (89%) | 40.3 ± 1.37 c (79%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halarewicz, A.; Szumny, A.; Bączek, P. Effect of Prunus serotina Ehrh. Volatile Compounds on Germination and Seedling Growth of Pinus sylvestris L. Forests 2021, 12, 846. https://doi.org/10.3390/f12070846
Halarewicz A, Szumny A, Bączek P. Effect of Prunus serotina Ehrh. Volatile Compounds on Germination and Seedling Growth of Pinus sylvestris L. Forests. 2021; 12(7):846. https://doi.org/10.3390/f12070846
Chicago/Turabian StyleHalarewicz, Aleksandra, Antoni Szumny, and Paulina Bączek. 2021. "Effect of Prunus serotina Ehrh. Volatile Compounds on Germination and Seedling Growth of Pinus sylvestris L." Forests 12, no. 7: 846. https://doi.org/10.3390/f12070846
APA StyleHalarewicz, A., Szumny, A., & Bączek, P. (2021). Effect of Prunus serotina Ehrh. Volatile Compounds on Germination and Seedling Growth of Pinus sylvestris L. Forests, 12(7), 846. https://doi.org/10.3390/f12070846