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Abstract: Miombo woodlands are extensive dry forest ecosystems in central and southern Africa
covering ≈2.7 million km2. Despite their vast expanse and global importance for carbon storage, the
long-term carbon stocks and dynamics have been poorly researched. The objective of this paper was
to present and summarize the evidence gathered on aboveground carbon (AGC) and soil organic
carbon (SOC) stocks of miombo woodlands from the 1960s to mid-2018 through a literature review.
We reviewed the data to find out to what extent aboveground carbon and soil organic carbon stocks
are found in miombo woodlands and further investigated if are there differences in carbon stocks
based on woodland categories (old-growth, disturbed and re-growth). A review protocol was used
to identify 56 publications from which quantitative data on AGC and SOC stocks were extracted.
We found that the mean AGC in old-growth miombo (45.8 ± 17.8 Mg C ha−1), disturbed miombo
(26.7 ± 15 Mg C ha−1), and regrowth miombo (18.8 ± 16.8 Mg C ha−1) differed significantly. Data
on rainfall, stand age, and land-use suggested that the variability in aboveground carbon is site-
specific, relating to climatic and geographic conditions as well as land-use history. SOC stocks in both
old-growth and re-growth miombo were found to vary widely. It must be noted these soil data are
provided only for information; they inconsistently refer to varying soil depths and are thus difficult
to interpret. The wide range reported suggests a need for further studies which are much more
systematic in method and reporting. Other limitations of the dataset include the lack of systematic
sampling and lack of data in some countries, viz. Angola and Democratic Republic of the Congo.

Keywords: miombo; dry forests; biomass; aboveground; soil organic carbon

1. Introduction

Forests are important terrestrial ecosystems and act as carbon sinks with up to
2.4 ± 0.4 Pg C year−1 carbon sequestered globally over the last two decades [1]. Despite
their numerous benefits, trends in global forest cover show a rapid loss of forests due to
land-use conversion and degradation. These trends have resulted in a loss of 11 Pg of
global carbon stocks in the past 25 years alone [2], with net emissions arising from tropical
land-use change estimated at 1.3 ± 0.7 Pg C year–1 [1]. While the changes occurring in
carbon stocks of tropical moist forests are well documented, the changes occurring in
the carbon stocks of tropical dry forests, such as the African miombo woodlands, remain
poorly quantified and understood. To address this gap, this review synthesized the current
data available on above and below-ground carbon stocks in the miombo woodlands to aid
effective policy development to better manage these valuable, but diminishing, ecosystems.

Miombo woodlands are seasonal tropical dry forests found in parts of south and cen-
tral Africa and extend over Angola, the Democratic Republic of Congo, Malawi, Mozam-
bique, Tanzania, Zambia, and Zimbabwe [3]. They are the most extensive dry-forest
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woodlands in all of Africa, covering over 2.7 million km2 [4]. These woodlands are rec-
ognized as an ecoregion (a large area of land or water having characteristic species and
environmental conditions that are biologically different from other regions) [5]. Miombo
woodlands are the largest of 21 ecoregions in sub-Saharan Africa and part of the WWF’s
(World Wildlife Fund) Global 200 most-important ecoregions [5]. The landscape of these
woodlands is dominated by trees of the genera Brachystegia, Julbernardia, and/or Isoberlinia,
all belonging to the legume family Fabaceae (subfamily Caesalpinioideae) [4].

Miombo woodlands can be broadly categorized into old-growth, disturbed, and re-
growth. Old-growth woodlands (OG) are relatively mature woodlands with little indication
that they were intensively used or logged. However, due to the long history of human use
(charcoal production, logging, gathering of fuelwood, and shifting cultivation) as well as
natural causes such as wildlife damage and fire, many areas of woodlands are disturbed.
Hence, this is included as a category by itself in this review. Re-growth woodlands (RG)
refer to naturally regenerating woodlands following the clearing of mature woodlands
for agriculture or other purposes [6]. Since the Caesalpinoid species do not die out after
clearing and regenerate easily from existing root systems [5], it is common to find these
woodlands in various stages of regrowth. Re-growth woodlands contribute to carbon
sequestration [5] with wood C stock increments of 0.4 to 0.9 t C ha−1 year−1 having been
reported [7]. Young miombo stands were found to sequester carbon at an even higher rate
of 1.2 to 3.4 t C ha−1 year−1 [8].

Rainfall varies significantly in the ecoregion and the woodlands are often character-
ized as either dry or wet [9] based on the mean annual precipitation (MAP); MAP ranges
between 629 and 1600 mm were reported in the reviewed literature. Dry miombo refers
to areas receiving less than 1000 mm of rainfall annually with Brachystegia spiciformis, B.
boehmii, and Julbernardia globiflora as the dominant tree species, while wet miombo areas
receive more than 1000 mm of rainfall per year with a comparatively richer floristic com-
position of Brachystegia floribunda, B. glaberrima, B. longifolia, B. wangermeeana, Julbernardia
paniculata, Isoberlinia angolensis, and Marquesia macroura [4]. Elevation also varies in the
region: study sites reported an elevation range of 316 to 2080 m above sea level.

The objective of this paper was to present and summarize the evidence gathered on
aboveground carbon (AGC) and soil organic carbon (SOC) stocks in miombo woodlands
from the 1960s to mid-2018. Further, we investigated if there were differences in AGC
stocks between the categories of old-growth, disturbed and re-growth woodlands. We
also included two case studies in (I) Kataba Forest Reserve (FR) in the Western Province of
Zambia and (II) Kitulangalo Forest Reserve in the Morogoro region of Tanzania.

2. Materials and Methods
2.1. Literature Review and Data Extraction

The aim of this paper was to review evidence on the above- and belowground carbon
stocks of miombo woodlands spanning six decades (1960s to mid-2018). To be included in
the review, studies had to show two main criteria. First, the study site(s) were in miombo
woodlands through the presence of tree species of the genera Brachystegia, Julbernardia
and Isoberlinia; and second, the study had to present quantitative data for AGC and/or
SOC pools. Literature was reviewed following the systematic review protocol by Syam-
pungani et al. [10]. This follows a previous systematic review protocol and systematic
review methods described by CIFOR’s Evidence-Based Forestry (EBF) initiative [11,12].
However, we emphasize that the present paper was not based on a ‘pure’ systematic review.
Specifically, the intention of this paper was to provide a summarized assessment of carbon
data for miombo based on the available literature, screened to the best of our knowledge,
but falling short of the standard set by EBF (and other systematic review) criteria. In a
’pure‘ systematic review, the references are gathered through a pre-defined search strategy
including the time period [13]. Here, we deviated from the confines of a strict review
and added these ‘additional’ references to the annotated bibliography following the same
protocol described above.
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Following full text screening (Figure 1), critical appraisal criteria were applied, which
included study length and duration, relevance of the study area/population (e.g., presence
of relevant woodland species), exposures, (e.g., activities which affect aboveground carbon
(AGC) and/or soil organic carbon (SOC) such as wood extraction for fuel and charcoal)
comparators (e.g., control plots included in study design or before-and-after intervention
comparison of study sites), and outcomes (e.g., quantitative data on above and below-
ground carbon) [10]. For the appraisal rating, each study was given a score of 1 = yes,
0.5 = unclear and 0 = no for each criterion described above. The values in each row were
summed up to obtain an overall rating for each study in the list. The overall rating was
categorized as 13–14 = high, 9–12.5 = medium, 6–8.5 = low and 0–5.5 = very low. All studies
with low and very low rating were excluded (See TABLE S1–Study validity, included in
the supplementary material). Further, the replicability of methods, clarity and replicability
of the analysis, and if the results were logically derived and whether confounding factors
were also included in assessing the study validity. Additional context-based social and site
information were also recorded (such as historical information of the study area, ecological
context, site characteristics such as climate, soil, seasonality, and site vegetation) to further
appraise studies.

Figure 1. Steps outlining the systematic review process. Source: graph by the authors.

After applying the above criteria to the dataset, 13 papers were finally selected and
data on wood biomass, carbon stocks, and SOC stocks were extracted into an Excel file. Data
were mainly reported as basal area (m2 ha−1), biomass (Mg ha−1), and aboveground carbon
stocks (Mg C ha−1). Other information such as country of study, location, age of study
sites, year(s) during which data was collected, geographical coordinates, elevation, MAP,
and miombo type were included in the database. In addition, bibliographic information
such as author, year of publication, reference, and study type was recorded.

Data from the 13 studies were collated with data from 38 quantitative studies from the
recently published systematic map by Gumbo et al. [14] for this review. It must be noted
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that a few references from [14] were excluded due to unverifiable data. The final dataset
contained a total of 52 quantitative studies of the best available evidence on the AGC and
SOC stocks of miombo woodlands. Thus, while the systematic map [14] also describes
values for aboveground carbon in old-growth miombo woodland, the present study was
based on a revised and completed dataset and provided a more in-depth analysis which
included estimates for regrowth miombo and SOC pools. By providing a summary of
published carbon data as they are currently available, we hope to prompt further, more
systematic research into questions regarding the study and documentation of land use,
management, and carbon stocks in the miombo woodlands. We also hope this review
provides a better basis for calculating forest reference levels for such as the UNFCCC
(United Nations Framework Convention on Climate Change).

The countries covered in the literature sweep were Malawi, Mozambique, Tanzania,
Zambia, and Zimbabwe. No data were found for Angola and the Democratic Republic of
Congo. Most studies in the dataset were from Tanzania (36%), followed by Zambia (28%)
and Zimbabwe (17%). The quantitative studies included are from 1966 to mid-2018 with
the majority (67%) published in the 2010s. A total of 227 observations for AGC stocks were
recorded into the database with 33, 81, and 113 observations for the cover types old-growth,
disturbed, and re-growth, respectively.

2.2. Aboveground Carbon Stocks in Trees

Data on woody biomass and carbon stocks were recorded into a database. When only
basal area estimates were provided, these were converted to biomass using the equation
from [15]:

AGB = 0.702 × BAbh − 281.484, (1)

where AGB is aboveground wood biomass in kg ha−1, BAbh is basal area at breast height
(1.3 m aboveground ground) in cm2. Basal area data at stump height (BAsh), measured
between 15 and 30 cm above ground, were converted to its equivalent at breast height
following the equation from [16]:

BAbh = –0.0019 + 0.71 × BAsh, (2)

Biomass data calculated from Equation (1) were then converted into Mg ha−1 by
multiplying with 0.001. A carbon conversion factor of 0.47 [17] was used to estimate
carbon stocks.

2.3. Soil Carbon Stocks

In the assessed literature (Supplementary material: Table S2), soil data were estimated
at various depths ranging from 2.5 to 150 cm and often presented as stratified by soil
layers or horizons. However, some studies provided information only on pooled-soil
organic carbon (SOC) stocks, i.e., for the entire sampling depth considered in the study
design rather than stratified by layers [18,19]. For these studies, only the total SOC stocks
were recorded in the database. It is important to note that not all studies published
error/variation estimates. Data on sampling depth and SOC stocks were extracted from
the selected literature. For estimating SOC stocks (Mg C ha−1) from SOC%, the equation
from [20] was used:

SOC = SOC% × BD × SD, (3)

where SOC%, soil organic carbon; BD, bulk density, g cm−3; SD, soil depth, cm. Not all
studies reported bulk density (BD) values. For miombo woodlands, soil bulk density (to a
depth of 20 cm) was found in the range of 1.2 to 1.4 g cm−3 [7,21] and an average value of
1.3 g cm−3 was used for estimating SOC stocks whenever BD values were not reported.
When only soil organic matter (SOM)% data were reported [22], they were converted to
SOC% using the equation from [23]:

SOC% = SOM% × 0.50, (4)
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2.4. Statistical Analysis

A preliminary analysis on the distribution of the aboveground carbon (AGC) stocks
using the Shapiro-Wilk normality test showed that the data did not conform to a normal dis-
tribution. Non-parametric tests Mann-Whitney (M-W) and Kruskal-Wallis (K-W) ANOVA
were used to test for significant differences between AGC groups based on factors such as
woodland category, conservation status, rainfall, stand age, and land-use change. When
results were significant at the 0.05 level, pairwise comparisons of each pair of groups were
performed using the M-W test with Bonferroni correction to test which pairs of groups
were significantly different to each other. All descriptive and comparative statistics were
computed using RStudio version 1.3.959.

All data were categorized into old-growth (n = 33), disturbed (n = 81), and re-growth
(n = 113) categories. We also sub-categorized re-growth data into ‘mature’ re-growth
(≥30 years) and ‘young’ re-growth (<30 years). Here, old-growth woodlands refer to those
described in the literature as primary, undisturbed, or mature woodlands. Disturbed
miombo have varying levels of disturbance caused by anthropogenic activities (charcoal
production, logging, fuelwood gathering, shifting cultivation) or due to wildlife damage
(elephants) and fire. Re-growth sites are on previously clear-cut sites. A K-W ANOVA
was used to test for differences among these categories with respect to AGC. Additionally,
AGC stocks were grouped into four categories: old-growth (n = 33), disturbed (n = 81),
re-growth ≥30 years (n = 21), and re-growth <30 years (n = 78). Differences in C stocks for
each category in the aboveground pool were estimated using the K-W test.

3. Results
3.1. Aboveground Carbon Stocks in Trees

AGC in old-growth miombo ranged from 11.55 to 107.25 Mg ha−1 and from 1.48 to
75.42 Mg ha−1 in disturbed miombo. In re-growth miombo, the range was from 0.09 to
77.07 Mg ha−1. Significant differences in AGC were observed between all three woodland
categories (M-W: p < 0.001). All categories of miombo woodlands showed large variation
in the AGC stocks (Table 1).

Table 1. Aboveground carbon stocks in miombo woodlands.

Woodland Category
Summary Statistics

n Mean SD Min Median Max

Old-growth Miombo 33 45.75 17.6 11.55 44.7 107.24
Disturbed Miombo 81 26.71 15.0 1.48 21.6 75.42
Re-growth Miombo 113 18.76 16.8 0.09 13.6 77.07

n, sample size; SD, standard deviation.

Aboveground carbon differed significantly between all three woodland categories
(K-W ANOVA: p < 0.001) (Figure 2).

When comparing AGC stocks in old-growth, disturbed, mature re-growth (≥30 years),
and young re-growth (<30 years), results were significant at the 0.05 level (K-W ANOVA:
p < 0.001). Pairwise comparisons showed that old-growth and mature re-growth as well
as disturbed and mature re-growth woodlands did not differ significantly (p = 0.238 and
p = 0.074 respectively). All other pairs differed significantly (p < 0.001) (Figure 3).

In the next two sections, we explore the characteristics of the miombo AGC data
further in two case studies. Case study I considers variation between sites and within sites.
Case study II considers biomass growth over time.
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Figure 2. Aboveground carbon stocks in old-growth, disturbed and re-growth woodlands. Statis-tical
significances are indicated: p-value < 0.001 ‘***’. Source: Graph by the authors.

Figure 3. Comparison of old-growth, disturbed, mature re-growth (>30 years), and young re-growth
(<30 years). Statistical significances are indicated: p-value < 0.001 ‘***’. Source: Graph by the authors.
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3.1.1. Case Study I: Miombo Biomass in Old-Growth Sites

This case study data set is from [24], but more detailed information about the site is
found in [25]. The site is a miombo woodland within the Kataba Forest Reserve (FR) in the
Western Province of Zambia. Some extractive activities were permitted in the reserve [24].
Four plots of 50 × 50 m and numbered one to four were established to follow a degradation
gradient from highly disturbed (1; cf. Figure 4), via slightly disturbed (two and three;
forest edge effects), to undisturbed (four; in the core area of a forest reserve established
in 1973). AGB was measured in 100 subplots of 5 × 5 m per plots, resulting in a 100%
sampling coverage. It is not clear when the plots were sampled, but assuming it was closely
before the publication year of 2011, the reserve had had more than 30 years to recover
and, consequently, plot four showed no signs of disturbance. However, disturbance from
forest edge effects was high in plots two and three; plot one, outside of the reserve, had
been strongly degraded by logging and charcoal production during the three years prior
to their study, with few trees remaining, but some shrubs and grasses were recovering in
the area. All plots were on Arenosols, but they differed in height, tree density, and species
composition [24,25].

Figure 4. Old-growth AGB data for cases selected for case study I in Kataba Forest Reserve, Zambia
(data from [24], ordered by increasing standard deviation). The forest is characterized by a projected
canopy cover of nearly 70% [26] and is commonly described as a “woodland” [25]. Source: Graph by
the authors based on data in [25].

ABG estimates vary between 38.0 and 228.2 Mg ha−1, a difference by a factor of 6.
They were low in the highly disturbed plot (1: 24.5 Mg ha−1), high to very high in the two
disturbed plots (2: 228.2 Mg ha−1; 3: 116.0 Mg ha−1), and high in the undisturbed plot
(four: 107.6 Mg ha−1). Thus, one disturbed plot (two) had very high biomass, which was
one of the highest values recorded in our study.

Variability in these plots also differed dramatically. The variability in one disturbed
plots (two: standard deviation ±234.3) was so large that it wrapped around that of all other
plots (between ±6.3 and ±46.5). As the same method was used across all four plots, the
variation must be an intrinsic characteristic of each site. For example, plot one had 48 trees
left, while site four had 364 trees (above 2 cm dbh), a difference by a factor of 8, which
could explain the different AGB. The variance across the subplots in the disturbed plots
was high, suggesting the disturbance was selective (taking out single trees).
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Our conclusions are that (1) it is possible but difficult to find a non-disturbed miombo
plot even in reserves; (2) miombo forests characteristics differ greatly, resulting in varied
AGBs, making it hard to come up with unequivocal numbers for miombo AGB for climate
models; and (3) AGB varies dramatically depending on site characteristics, disturbance
levels, and time since recovery. Insufficient documentation of the intensity of disturbances
renders it difficult to assess its role in AGB from such studies. Better, more practical, and
uniformly applied miombo classification according to vegetation type, rainfall, soil type,
height, slope, disturbance, and etc. will be needed to be able to distinguish various types
of miombo biomass reliably across the region.

3.1.2. Case Study II: Biomass Increments in Old-Growth Miombo in Morogoro, Tanzania

Several studies in the database provide longitudinal data on old-growth miombo
woodlands from the Kitulangalo Forest Reserve in the Morogoro region of Tanzania. In
1985, the area was established as a reserve with restrictions on wood harvest which, in 1995,
was completely protected from any extractive activities [27]. Eight permanent sampling
plots were established and measured for biomass density in 1977 by Kielland-Lund [28].
Another study repeated the biomass measurements at the same sites over a period of
15 years [29] (Figure 5). These observations are cited in [27]. Note the case study is in
biomass units, not carbon.

Figure 5. Variation in old-growth biomass as measured in eight sites in Kitulango Forest Reserve,
Tanzania over a period of 15 years. Source: Graph by the authors based on data in [27].

Considering the 15-year period, the plots one, three, five, four, and two showed
relative linear aboveground increments of between 2.1 and 2.9 Mg ha−1, while the three
remaining plots showed stagnant or declining biomass (−0.7 to 0.1 Mg ha−1) (Figure 5).
The plots one, three, five, four, and two (following their ranking in Figure 2), which
showed an increase in biomass at the end of the period, had higher biomass levels in 1977
(39–90 Mg ha−1). In comparison, plots six, eight, and seven started out with lower biomass
levels (22–46 Mg ha−1) and the levels remained stagnant or even declined at the end of the
15-year period. This case study illustrates (1) that even in miombo sites in the same areas
biomass and growth rates can vary widely, and (2) that the growth rates depend on the
initial biomass and may reflect different site-specific conditions.

3.2. Soil Organic Carbon Stocks

The SOC stocks of old-growth and disturbed miombo were reported at varying
sampling depths (Table 2). Soil carbon data in re-growth miombo were reported from ages
1 to 30 years since abandonment of the previous land use, i.e., either as fallow land following
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cultivation or following clearing for other purposes with a minimum of 10.73 Mg C ha-1

and a maximum of 52.2 Mg C ha−1.

Table 2. Soil organic carbon stocks for old-growth and disturbed miombo woodlands [18,19,22,24,30–41]. Note: Data in the
same columns are from one or more of the given sources.

Depth
cm

Soil C
Mg/ha

Depth
cm

Soil C
Mg/ha

Depth
cm

Soil C
Mg/ha

Depth
cm

Soil C
Mg/ha

Depth
cm

Soil C
Mg/ha

Depth
cm

Soil C
Mg/ha

0–5 8.75 0–15 28.47 0–16 19.40 0–20 54.10 0–25 25.00 0–30 14.51
0–5 12.10 0–15 45.63 0–20 30.90 0–30 14.33

0–15 16.19 0–20 36.50 0–30 13.70
0–15 15.41 0–20 21.06 0–30 14.66
0–15 14.63 0–20 21.32 0–30 34.52
0–15 18.35 0–20 47.32 0–30 46.80

0–20 28.90 0–30 27.11
0–30 28.08
0–30 20.20
0–30 40.10
0–30 29.25
0–30 43.88

0–35 55.70 0–40 45.30 0–45 45.60 0–50 87.00 0–60 134.60 0–100 72.47
0–50 76.30 0–60 33.90 0–150 82.52
0–50 34.90 0–60 80.10

0–60 71.80

There is a need to emphasize, however, the limitations of interpreting these data due
to the variation in the soil depths. Other factors such as variation in the edaphic and
climatic conditions, or differences in spatial and temporal dimensions of the data, further
contribute to the limitations. Although SOC stocks in re-growth are reported at varying
ages of natural regeneration, the high variability in the data (Table 3) and the fact that these
were reported at differing depths prevents further analyses, such as looking at variation
in SOC with age and/or exploring time trends. Similarly, it is difficult to interpret the
SOC data in re-growth miombo woodlands due to these differences and the changing but
mostly unknown site histories.

Table 3. Soil organic carbon stocks in re-growth miombo woodlands at various stages of recovery ranging from 1 to 30 years
since abandonment [7,22,31,42,43].

Depth
cm

Age
Year

Soil C
Mg/ha

Depth
cm

Age
year

Soil C
Mg/ha

Depth
cm

Age
Year

Soil C
Mg/ha

Depth
cm

Age
Year

Soil C
Mg/ha

0–15 1 20.38 0–20 16 32.76 0–30 1 24.18 0–150 M 52.2
0–15 1 20.30 0–20 16 26.26 0–30 1 42.32
0–15 1 19.70 0–30 2 13.85
0–15 1 14.70 0–30 2 18.72
0–15 1 13.00 0–30 5 23.99
0–15 2 20.87 0–30 5 35.10
0–15 2 19.17 0–30 6 25.55
0–15 2 21.26 0–30 6 10.73
0–15 2 15.91 0–30 7 19.50
0–15 2 13.82 0–30 13 24.77
0–15 3 21.22 0–30 19 29.45
0–15 3 20.21 0–30 20 34.32
0–15 4 19.85 0–30 25 24.57
0–15 20 20.50 0–30 1–30 45.20
0–15 20 22.50

M, data not reported.
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4. Discussion

Miombo woodlands across the region are found in various stages of disturbance
from human activities, such as selective wood harvesting for charcoal production and
fuelwood collection, leading to changes in wood species structure and diversity. It seems
difficult to find completely undisturbed miombo woodlands and, hence, to establish
reference biomass/ACG data for natural vegetation. Often, the extractive activities modify
the ecosystem to an extent that makes it vulnerable to further degradation. The results
suggested that conversion of old-growth miombo has consequences for carbon storage
with a significantly lower range of carbon stocks found in re-growth miombo.

Data for AGC in old-growth miombo had a much higher mean (45.6 Mg ha−1) than
in disturbed (26.7 Mg C ha−1) and re-growth (18.8 Mg C ha−1) miombo. However, large
variation was observed in all three groups, which suggests that other factors such as rainfall,
species composition, and variable growth conditions [44] also influence carbon storage.
Data suggest that more mature re-growth stands (age >30 years) have comparable AGC
stocks to old-growth and disturbed stands, which seems to indicate that woodland recovery
is taking place with respect to woody biomass. Chidumayo (1991) showed that a minimum
of 30 years is required for naturally regenerating miombo to reach woody biomass levels
comparable to that of pre-disturbance levels [45]. This matches recovery information found
in a global meta-study [46].

SOC presents a lesser-studied but important carbon pool in the miombo ecoregion.
Studies show that the SOC stocks in miombo forests account for significant amounts of total
C stored in the ecosystem, storing up to 50–80% of total C [9,30]. Woollen et al. (2012) [39]
observed that soil C stocks in miombo woodland vary significantly over short distances of
14–26 m, which may explain the large variability we observed in SOC stocks. Therefore,
we hypothesize, concurring with Gibbs et al., (2007) [47], that in general soil C stocks in
miombo woodland are more stable than those in aboveground biomass which are directly
impacted by woodland degradation. The ranges for re-growth and cropland SOC stocks
indicate that the two datasets cover a similar range of underlying variability. This could be
explained by the similar age range that the data cover, i.e., between 0–30 years, and most of
the data in the re-growth cover type fall under the post-cultivation category. Hence, prior
to abandonment, most re-growth areas were cultivated. Thus, the similarity in variability
of SOC stocks of the two cover types may be attributed the similar land-use management
histories. The minimum SOC stock in old-growth miombo also falls under a similar range
as re-growth and cropland, but old-growth miombo stores up to 2.5 times more C on the
upper end of the scale.

Forest conservation strategies such as national parks and forest reserves appear inef-
fective in stemming forest cover loss with no significant differences found between these
two categories and open areas which are not formally protected from encroachment. Mu-
poshi et al. [34] studied the effects of anthropogenic disturbances on the edges of protected
areas along a disturbance gradient with increasing distance from the edge of the park
boundary to inside to the park. They found that these disturbances significantly affected
wood plant density and height, which is likely to affect the carbon storage of these wood-
lands. Therefore, there is an urgent need to manage these boundary areas which act as a
buffer between communities living outside these protected areas and the protected areas
themselves. Introducing buffer zones and extractive reserves to limit encroachment and
degradation of woodlands in these protected areas are some potential possibilities for
woodland management.

This review demonstrated the limited information available for the biomass and car-
bon stocks in aboveground carbon and SOC pools for the miombo ecoregion in earlier
decades. It is only in the last decade (2010s) that the evidence base has considerably ex-
panded, accounting for nearly 70% of the studies in this review. The regional coverage has,
however, not changed and is restricted to the countries of Malawi, Mozambique, Tanza-
nia, Zambia, and Zimbabwe, while no data are available for Angola and the Democratic
Republic of Congo.
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Most of our data were extracted from chronosequence studies that used space for time
(“false time series”) and therefore may have spatial confounding factors that may have
affected the analytical results [48]. Further, the sampling designs and the resultant data
used may not have met the standard sampling protocols to enable data analysis using
parametric statistical tests. Therefore, we used non-parametric tests to compare the effects
of protection and other comparators on carbon stocks and fluxes.

5. Conclusions

Despite the ecological and social importance of miombo woodlands, the carbon stocks
of these ecosystems remain poorly assessed and documented, which limits the scope
of any analysis. The variability in aboveground carbon data reported points to stand
characteristics and age, environmental effects, and disturbance, but these factors are not
consistently recorded across the studies. Root carbon data are missing and could only
be inferred from conversion factors, which is not optimal. SOC stocks cannot be reliably
computed because different studies sampled widely different soil depths, often pooling
the data. More systematic miombo site classifications and clearly defined disturbance
parameters should be used more uniformly in further miombo assessments. Establishing
permanent sampling plots with systematic records of environmental parameters and
disturbance regimes and levels would be needed to assess the time trends in carbon
stocks in these woodlands. Moreover, future studies should include sites in the miombo
woodlands of Angola and the Democratic Republic of Congo, whose ecosystems and
carbon dynamics are absent in the available literature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12070862/s1, Supplementary file 1: Literature search sources and search strings used,
Supplementary file 2: Additional information on methods used for estimating aboveground tree
biomass Table S1: Study validity, Table S2: References from 2016 to 2018 literature review, Table S3:
Selected quantitative studies from the systematic evidence gap map by Gumbo et al. 2018 [13],
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