Reforestation Impacted Soil Heavy Metal Fractionation and Related Risk Assessment in the Karst Area, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Sequential Extraction
2.4. Assessment of Heavy Metal Contamination
2.4.1. Potential Ecological Risk Index
2.4.2. Risk Assessment Code
2.4.3. Individual and Global Contamination Factor
2.5. Statistics Analysis
3. Results and Discussion
3.1. Total Soil Heavy Metals
3.2. Fractionation of Soil Heavy Metals
3.2.1. Cadmium
3.2.2. Iron
3.2.3. Manganese
3.2.4. Chromium
3.2.5. Nickel
3.2.6. Zinc
3.3. Relationship between Metal Content and SOC, TP
3.4. Assessment of Potential Ecological Risk
3.4.1. Potential Ecological Risk Index
3.4.2. Risk Assessment Code
3.4.3. Individual and Global Contamination Factor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil science. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau, from degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Han, G.; Yang, K. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, Northeast Thailand. J. Clean. Prod. 2020, 265, 121898. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. J. Clean. Prod. 2021, 280, 124406. [Google Scholar] [CrossRef]
- Lu, Q.; Bai, J.; Zhang, G.; Wu, J. Effects of coastal reclamation history on heavy metals in different types of wetland soils in the Pearl River Delta: Levels, sources and ecological risks. J. Clean. Prod. 2020, 272, 122668. [Google Scholar] [CrossRef]
- Qu, R.; Han, G. The Grain for Green Project May Enrich the Mercury Concentration in a Small Karst Catchment, Southwest China. Land 2020, 9, 354. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Tracing Riverine Particulate Black Carbon Sources in Xijiang River Basin: Insight from Stable Isotopic Composition and Bayesian Mixing Model. Water Res. 2021, 194, 116932. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, G. Major ions and δ34SSO4 in Jiulongjiang River water: Investigating the relationships between natural chemical weathering and human perturbations. Sci. Total Environ. 2020, 724, 138208. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-driven China’s Grain to Green Program: Implications for ecosystem services. Ecosyst. Serv. 2017, 27, 38–47. [Google Scholar] [CrossRef]
- Han, G.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.; Yu, C.; Wang, H.; Song, Z. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Zhao, M.; Zeng, C.; Liu, Z.; Wang, S. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. J. Hydrol. 2010, 388, 121–130. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Zhang, R.; Jing, G.; Yu, K. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ. Sci. Pollut. Res. Int. 2016, 23, 9122–9133. [Google Scholar] [CrossRef]
- Legrand, H.E. Hydrological and Ecological Problems of Karst Regions: Hydrological actions on limestone regions cause distinctive ecological problems. Science 1973, 179, 859–864. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Wu, Q.; Tang, Y. Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agric. Ecosyst. Environ. 2020, 290, 106782. [Google Scholar] [CrossRef]
- Miko, S.; Durn, G.; Adamcová, R.; Ovi, M.; Dubíková, M.; Skalsky, R.; Kapelj, S.; Ottner, F. Heavy metal distribution in karst soils from Croatia and Slovakia. Environ. Geol. 2003, 45, 262–272. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, X.; Li, T.; Chen, P.; Lian, B. Heavy Metal Pollution in Agricultural Soils of the Karst Areas and Its Harm to Human Health. Earth Environ. 2015, 43, 92–97. [Google Scholar]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Mireles, A.; Solis, C.; Andrade, E.; Lagunas-Solar, M.; Pina, C.; Flocchini, R.G. Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico city. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. 2004, 219–220, 187–190. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Cheng, Y.; Liu, G.; Wallace, A.R. Trace metal(loid)s exposure through soil–tobacco–human pathway: Availability in metal-contaminated agricultural soils, transfer models and health risk assessment. Ecotoxicol. Environ. Saf. 2018, 148, 1034–1041. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gkbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey—ScienceDirect. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Kobayashi, E.; Okubo, Y.; Suwazono, Y.; Kido, T.; Nishijo, M.; Nakagawa, H.; Nogawa, K. Association between total cadmium intake calculated from the cadmium concentration in household rice and mortality among inhabitants of the cadmium-polluted Jinzu River basin of Japan. Toxicol. Lett. 2002, 129, 85–91. [Google Scholar] [CrossRef]
- Tang, B.; Tong, P.; Xue, K.S.; Williams, P.L.; Wang, J.S.; Tang, L. High-throughput assessment of toxic effects of metal mixtures of cadmium(Cd), lead(Pb), and manganese(Mn) in nematode Caenorhabditis elegans. Chemosphere 2019, 234, 232–241. [Google Scholar] [CrossRef]
- Antonio, M.T.; Corredor, L.; Leret, M.L. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol. Lett. 2003, 143, 331–340. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G. Tracing zinc sources with Zn isotope of fluvial suspended particulate matter in Zhujiang River, Southwest China. Ecol. Indic. 2020, 118, 106723. [Google Scholar] [CrossRef]
- Oyeyiola, A.O.; Olayinka, K.O.; Alo, B.I. Comparison of three sequential extraction protocols for the fractionation of potentially toxic metals in coastal sediments. Environ. Monit. Assess. 2011, 172, 319–327. [Google Scholar] [CrossRef]
- Rauret, G. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 1998, 46, 449. [Google Scholar] [CrossRef]
- Sastre, J.; Hernandez, E.; Rodriguez, R.; Alcobe, X.; Vidal, M.; Rauret, G. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Sci. Total Environ. 2004, 329, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.G.; Shi, J.B.; He, B.; Liu, J.F.; Liang, L.N.; Jiang, G.B. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ. Int. 2004, 30, 769–783. [Google Scholar] [CrossRef]
- Jung, J.M.; Choi, K.Y.; Chung, C.S.; Kim, C.J.; Kim, S.H. Fractionation and risk assessment of metals in sediments of an ocean dumping site. Mar. Pollut. Bull. 2019, 141, 227–235. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification. Ecotoxicol. Environ. Saf. 2020, 198, 110663. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.P.; Campbell, P.; Bisson, M.X. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A. Concentration and speciation of heavy metals in six different sewage sludge-composts. J. Hazard. Mater. 2007, 147, 1063–1072. [Google Scholar] [CrossRef]
- Nemati, K.; Bakar, N.; Abas, M.R.; Sobhanzadeh, E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. [Google Scholar] [CrossRef]
- Gabarrón, M.; Zornoza, R.; Martínez-Martínez, S.; Muñoz, V.A.; Faz, Á.; Acosta, J.A. Effect of land use and soil properties in the feasibility of two sequential extraction procedures for metals fractionation. Chemosphere 2019, 218, 266–272. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, G.; Liu, M.; Liang, T. Spatial distribution and controlling factors of heavy metals in soils from Puding Karst Critical Zone Observatory, southwest China. Environ. Earth Sci. 2019, 78, 279. [Google Scholar] [CrossRef]
- Li, X.; Han, G. One-step chromatographic purification of K, Ca, and Sr from geological samples for high precision stable and radiogenic isotope analysis by MC-ICP-MS. J. Anal. At. Spectrom. 2021, 36, 676–684. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Zhang, Q.; Miao, Z. An optimal separation method for high-precision K isotope analysis by using MC-ICP-MS with a dummy bucket. J. Anal. At. Spectrom. 2020, 35, 1330–1339. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Li, X. Comparative analysis of soil nutrients under different land-use types in the Mun River basin of Northeast Thailand. J. Soils Sediments 2021, 21, 1136–1150. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Li, X. Using stable nitrogen isotope to indicate soil nitrogen dynamics under agricultural soil erosion in the Mun River basin, Northeast Thailand. Ecol. Indic. 2021, 128, 107814. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.-F.; Sahuquillo, A.; Barahona, E.; Lachica, M.; Ure, A.M.; Davidson, C.M.; Gomez, A.; Lück, D.; Bacon, J. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monit. 2000, 2, 228–233. [Google Scholar]
- Qiao, Y.; Yang, Y.; Gu, J.; Zhao, J. Distribution and geochemical speciation of heavy metals in sediments from coastal area suffered rapid urbanization, a case study of Shantou Bay, China. Mar. Pollut. Bull. 2013, 68, 140–146. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef]
- Ebong, G.A.; Dan, E.U.; Inam, E.; Offiong, N.O. Total concentration, speciation, source identification and associated health implications of trace metals in Lemna dumpsite soil, Calabar, Nigeria. J. King Saud Univ. Sci. 2019, 31, 886–897. [Google Scholar] [CrossRef]
- CEMS (China Environmental Monitoring Station). Background Values of Elements in Soils of China; China Environmental Science Press: Beijing, China, 1990; pp. 94–367. [Google Scholar]
- Moore, F.; Nematollahi, M.J.; Keshavarzi, B. Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environ. Monit. Assess. 2015, 187, 4117. [Google Scholar] [CrossRef] [PubMed]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanette, M.L.; Orio, A.A. Heavy Metal Speciation in the Sediments of Northern Adriatic Sea—A New Approach for Environmental Toxicity Determination. In Proceedings of the International Conference Heavy Metals in the Environment, Athens, Greece, 1 January 1985; pp. 454–456. [Google Scholar]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef]
- Nemati, K.; Bakar, N.; Abas, M.R. Investigation of heavy metals mobility in shrimp aquaculture sludge—Comparison of two sequential extraction procedures. Microchem. J. 2009, 91, 227–231. [Google Scholar] [CrossRef]
- Ikem, A.; Nyavor, N. Trace Elements In Water, Fish and Sediment from Tuskegee Lake, Southeastern Usa. Water Air Soil Pollut. 2003, 149, 51–75. [Google Scholar] [CrossRef]
- Nasr, S.M.; Okbah, M.A.; El Haddad, H.S.; Soliman, N.F. Fractionation profile and mobility pattern of metals in sediments from the Mediterranean Coast, Libya. Environ. Monit. Assess. 2015, 187, 430. [Google Scholar] [CrossRef]
- Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environ. Pollut. 2006, 142, 521–529. [Google Scholar] [CrossRef]
- Whiteley, J.D.; Pearce, N. Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK. Appl. Geochem. 2003, 18, 901–913. [Google Scholar] [CrossRef]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Strom, D.; Simpson, S.L.; Batley, G.E.; Jolley, D.F. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environ. Toxicol. Chem. 2011, 30, 1599–1610. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.C.; Wang, J.D.; Zhang, X.L. Study on the Association between Heavy Metals and Organic Matter in Polluted Black Soil in Northeast China. Res. Environ. Sci. 2007, 20, 36–41. [Google Scholar]
- Yang, J.; Ling, C.; Liu, L.Z.; Shi, W.L.; Meng, X.Z. Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol. Environ. Saf. 2014, 102, 129–135. [Google Scholar] [CrossRef]
Land Use Type | Land Cover Change | Dominant Plant Species |
---|---|---|
Cropland (CL) | Long-term cultivation and mixed application of compound fertilizer and manure | Zea mays; Houttuynia cordata; Allium fistulosum; Ipomoea batatas |
Abandoned cropland (ACL) | Abandoned cropland for over 5 years and evolving into grassland or shrubland | Chrysopogon aciculatus; Artemisia lavandulaefolia; Potentilla reptans |
Sampling Site | Er (Zn) | Er (Ni) | Er (Cr) | Er (Cd) | RI |
---|---|---|---|---|---|
A1 | 0.76 | 2.2 | 2.2 | 17.5 | 22.6 |
A2 | 0.79 | 2.1 | 1.9 | 24.4 | 29.2 |
A3 | 0.73 | 1.9 | 1.9 | 20.4 | 24.9 |
C1 | 0.91 | 1.9 | 2.0 | 33.4 | 38.2 |
C2 | 0.89 | 2.1 | 2.1 | 24.5 | 29.7 |
C3 | 0.92 | 2.5 | 2.5 | 27.4 | 33.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Han, G.; Xu, X. Reforestation Impacted Soil Heavy Metal Fractionation and Related Risk Assessment in the Karst Area, Southwest China. Forests 2021, 12, 891. https://doi.org/10.3390/f12070891
Zhang Q, Han G, Xu X. Reforestation Impacted Soil Heavy Metal Fractionation and Related Risk Assessment in the Karst Area, Southwest China. Forests. 2021; 12(7):891. https://doi.org/10.3390/f12070891
Chicago/Turabian StyleZhang, Qian, Guilin Han, and Xingliang Xu. 2021. "Reforestation Impacted Soil Heavy Metal Fractionation and Related Risk Assessment in the Karst Area, Southwest China" Forests 12, no. 7: 891. https://doi.org/10.3390/f12070891
APA StyleZhang, Q., Han, G., & Xu, X. (2021). Reforestation Impacted Soil Heavy Metal Fractionation and Related Risk Assessment in the Karst Area, Southwest China. Forests, 12(7), 891. https://doi.org/10.3390/f12070891