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Abstract: Forest operations are well known in exposing their workers to many risk factors, and they
often require ergonomic interventions for improvement. In this regard, evaluation of biomechanical
exposure has gained a lot of interest due to the concerning scientific results repeatedly showing the
association between poor working postures and the development of work-related musculoskeletal
disorders. Due to its simplicity, easy understanding, cost affordability, and the capability to evaluate
the whole body, the OWAS method has been commonly used in postural evaluation of forestry work,
being able to map the experimental observations in a final action category, in the form of a postural
risk index (PRI), which helps designing or taking actions for ergonomic improvement. However,
postural comparability is both relevant and important when, for instance, one tries to improve a work
method or to introduce a new technology. Unfortunately, the PRI metric holds a rather low capability
to characterize the changes brought by such factors in terms of postural dissimilarity or similarity,
making it difficult to accurately follow the changes. For this reason, we introduce in the postural
analysis, test and discuss herein two commonly used similarity metrics as specific to plant sociology
and other ecology-related sciences, namely the Sørensen’s quotient of similarity (hereafter QS) and
the Canberra metric (hereafter CM); their selection was based on their mathematical capabilities of
dealing with data at two resolutions, namely species and individuals. Three case studies were setup
to show the differences between QS, CM, and PRI and their usefulness for postural analysis while,
for a better understanding, the results were described and discussed by analogy to the living world.
As the technology of automating data collection and processing for postural analysis is in progress,
the utility of similarity metrics in postural assessment and comparison could be further expanded
so as to map a given work sequence in the time domain against best-fit postural profiles. The main
conclusion of this study is that the PRI is useful for action-taking while the similarity metrics are
useful for pairwise postural change evaluations and comparison.

Keywords: forest operations; ergonomics; postural analysis; musculoskeletal disorders; job compari-
son; similarity; metrics

1. Introduction

Wood procurement is a complex process that includes a set of operations of which
many are implemented outdoors, in workplaces that are often characterized by difficult
terrain and adverse weather conditions [1]. Typically, the implementation of timber har-
vesting operations is done by the use of machines and tools which, in addition to the
inherent safety risks, expose their operators to other harmful factors such as the noise, dust
and vibration. The introduction and use of fully mechanized harvesting systems has been
found to improve the operational productivity, safety, and ergonomics [2,3], representing
a necessary step towards the transition to autonomous machines and robots, which are
forecasted to work in the forests of the future [4,5]. However, despite the efforts put to-
wards a complete mechanization of the forest work and machine improvement [6,7], in

Forests 2021, 12, 926. https://doi.org/10.3390/f12070926 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-5750-5243
https://doi.org/10.3390/f12070926
https://doi.org/10.3390/f12070926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12070926
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f12070926?type=check_update&version=2


Forests 2021, 12, 926 2 of 20

many geographical areas the operational reality shows that the use of partly mechanized
harvesting systems, requiring manual labor, is still extensive [8–10].

A significant body of knowledge has been built by applying the ergonomics methods
to forest operations, by studies spanning a wide variety of topics and a fairly large number
of operational setups and harvesting equipment [11]. For instance, such studies have eval-
uated the workload and work difficulty by the means of cardiovascular response [12–23],
mental workload [24,25], exposure to harmful factors caused by the use of tools and ma-
chines such as noise and vibrations [21,23,26–34], effects of environmental parameters on
the performance of work [35], accidents, exposure to risks and safety issues [36–42] and
last, but not least, the working postures [21,43–46].

From these topics, postural analysis has gained a lot of interest in the forest operations
research, particularly when carrying on ergonomic evaluations of manual and motor-
manual operations. The interest of science and practice on such evaluations has been
driven mainly by the findings of studies repeatedly showing concerning problems related
to the health of forest workers in terms of developing musculoskeletal disorders [3,43,47,48].
At least in forest operations, the interaction between the workers and their job tasks, work
procedures, work behavior, the used tools and the features of the operational environment
is often complex, being characterized by a wide variability in the postures taken during
the work. For instance, the postural variability among given individuals may be high
for the same work task, tool used, and operating environment solely as an effect of their
anthropometric features. In addition, the goal of maintaining neutral postures during
the work is often impaired by the characteristics of the work tasks and of the operational
environment, which may force the workers to take uncomfortable work postures [20,43,49].

There are dozens of postural evaluation methods documented in the scientific litera-
ture [50], and automated techniques were developed and tested for some of them with the
aim to ease the analytical effort [51–53]. In particular, OWAS (the Ovako Working Posture
Analysis System) has been often used in forest operations, mainly due to its simplicity, easy
understanding of its concepts, cost affordability, and the capability to evaluate the whole
body, including the level of exerted force [44,49]. The method is based on work sampling
which, as a strategy, can be implemented systematically or randomly [54]. Irrespective
of the data collection strategy, the method builds upon a sample of work instances, for
which it uses a set of codes to document the postures of the main body segments (back,
arms, and legs) as well as the level of force exertion. By doing so, each instance is described
by a four-digit code which can be complemented by a string to describe the work task
to which it belongs [55]. The four-digit code is then used to map a given instance into
one of four possible action categories which were designed to characterize the deviation
from a neutral posture and the urgency of ergonomic actions to be taken [49,55,56]. Since
the samples may contain a considerable number of instances, their frequencies on action
categories have been used to compute a postural risk index (PRI), in the form of the sum
of products between the relative frequencies on action categories and their corresponding
action category numbers, multiplied by 100 [57] as cited by [58,59]. As such, the PRI may
take values in between 100 and 400, and it has been used if forest operations research
to evaluate the necessity of improvement or to compare between different operational
alternatives and jobs in terms of urgency of actions needed to be taken.

However, the method holds rather limited capabilities to evaluate the similarity of
work in terms of postures taken, therefore to compare more accurately between given
work scenarios. This is because, by its design, different four-digit codes characterizing the
whole-body postures are leading to the same action category. In addition, some comparison
designs may need to use highly unbalanced samples, making it difficult if not impossible to
compare two work scenarios based on the absolute frequencies of each of their component
four-digit instances. While using the relative frequencies as a basis for comparison could be
one strategy in such cases, the approach will still need to use some sort of nonparametric
tests [44,45], which could be less powerful [60], and the occurrence of some instances only
in a given dataset could be also problematic from an analytical point of view.



Forests 2021, 12, 926 3 of 20

The technological progress is now understood as one of the main drivers of forest
operations improvement and the changes brought by it and by the societal development
need to be addressed by critical and impartial scientific studies aiming at ergonomics and
safety improvement [11]. The potential benefits or drawbacks of such changes are often
proven by comparing a newly designed alternative, developed technology, or method
to a reference one, which is that typically accepted and used in practice at the time of
evaluation. From this point of view, and given the progress in automation of the observa-
tional postural analysis methods, more accurate metrics which are able to compare and
to evaluate the diversity or similarity of the working postures may be needed for the
science and practice. Their application may be useful to check the effects of anthropometric
features on postural variability for two individuals performing the same task, with the
same tool and in the same operational environment, to check the effects of training and
awareness-raising programs on postural improvement, to compare among different jobs
and work scenarios and to evaluate and prove the benefits brought by new technologies,
equipment, or working methods.

Based on the abovementioned, the aim of this study was to introduce and test the
potential of using similarity metrics in the ergonomic postural assessment, as the means
for an improved comparison and characterization of the work similarity. While the study
builds upon the use of the OWAS method as a reference tool for postural analysis (datasets
coded according to the method were available for this study), the concepts described could
be extended to other postural assessment methods which are mapping their outcomes based
on the use of instances codded according to the postures found for different body parts.

2. Materials and Methods
2.1. Theory
2.1.1. The Ovako Working Posture Analysis System (OWAS)

The Ovako Working Posture Analysis System (OWAS) is an observational postural
assessment method developed on the basis of three main principles such as the simplicity
in learning and use, unambiguity in the interpretation of results, and possibility of formu-
lating improvements in terms of postures by considering factors such as the health and
safety, with the main emphasis on the discomfort caused by working postures [56]; it was
developed and tested initially in the steel industry of Finland with the aim of correcting
poor postures and it was based on work sampling as a method to collect the data needed in
evaluations [56]. Right at its initial tests, their developers acknowledged that two different
workers may perform the same work task by assuming different working postures [56],
then some case studies on how the postural analysis could be implemented by the method
were published by [61], showing the potential of comparing the postures of individual
body parts by their relative frequencies observed in the collected data. Following its de-
velopment, the method has been widely used in many industries around the world [62],
including forestry and forest operations.

The method implements an evaluation of three main body parts—namely the back,
arms, and legs [56]—coupled with an evaluation of force exertion [50] and, for inter-task
comparison purposes, it can be complemented by the use of a string code to describe
the task to which a given statistical observation belongs to [55]. Procedurally, the data
needed for evaluation can be collected by direct observation, photographing or video
recording, with the latter providing the important advance of holding the real sequence of
the observed work [63], which enables the users to run and adjust the sampling procedure
and its rates in the office phase of the study [20,21,46].

Each statistical observation is collected from a continuum and may be seen as a work
instance characterized by a single (fixed) posture of the back, arms, and legs and by a given
level of force exertion [49]; each instance is typically documented by a four-digit numeric
code which aggregates the digits attributed to the three body parts and to the level of
force exertion. For coding procedures, the method uses a set of four digits characterizing
the possible postures of the back (1 to 4), a set of three digits characterizing the possible
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postures of the arms (1 to 3), a set of seven digits characterizing the possible postures of
the legs (1 to 7), and a set of three digits characterizing the level of force exertion (1 to
3) [49,55,56]. Accordingly, the maximal set of combinations of the four evaluated features
leads to a possible number of 252 instances. Conceptually, a matrix-like approach [43,49],
having as entries the codes attributed to the back, arms, legs and to the level of force
exertion, is being used to map each instance into an action category. The action categories
(ACs) were originally developed so as to indicate the deviance from neutral body postures
and to indicate the urgency of ergonomic improvement actions [54,56]. Currently, there are
four ACs and each instance may fall in only one of them. Of the 252 possible instances, 72
are mapped in the first action category (AC1), 53 in the second action category (AC2), 55 in
the third action category (AC3) and 72 in the fourth action category (AC4). In addition to
the original work of the method’s developers, some visual examples on how the codding
procedure works and how the action categories are commonly interpreted, are given, for
instance, in [43,49,55].

Originally, the method was supposed to be implemented by work sampling at variable
or constant intervals [56], an approach that was maintained in some of the recent studies
(see [64] for a list). Nevertheless, systematic sampling at finer rates may be resource
intensive in the analytical part of a study, a reason for which some have opted for random
sampling approaches [44–46], which have been facilitated by the developments in media-
related technology; in addition, a recent study has suggested that the random sampling
could be feasible when accounting for a minimum number of observations [54]. Irrespective
of the sampling strategy and of the number of observations taken into study, each instance
undergoes the same codding procedure, being distributed to a given action category. The
approach results in an absolute frequency on action categories which, in turn, is difficult
to interpret on whether a given action should be taken. To overcome this, a postural risk
index (PRI) was introduced and used [57] as cited by [58,59] so as to weight the relative
frequencies of instances mapped over the four action categories and to produce a metric
typically used to make a decision on improvement. The PRI (Equation (1)) may take values
in between (exactly) 100 to (exactly) 400, and those located between the minimum and
maximum ones are typically used to evaluate the closeness of the dataset to a given (final)
action category. For instance, values of exactly 200 indicate that the sampled data falls in
the action category 2 (AC2) while values of 350 need to be carefully interpreted for their
general belonging to either AC3 or AC4. Also, the relative frequencies of action categories
can be used to make comparisons based on nonparametric tests [44,45].

PRI = ((f 1 × 1) + (f 2 × 2) + (f 3 × 3) + (f 4 × 4)) × 100 (1)

where PRI is the postural risk index and f 1, f 2, f 3, and f 4 are the relative frequencies of
scores in action categories 1, 2, 3, and 4, respectively, calculated as the shares of the total
observations attributed to a given action category.

2.1.2. Similarity Metrics and Their Potential in Comparison of Working Postures

Similarity metrics, also described as indexes or coefficients, are measures of resem-
blance typically outputting a value close or equal to 1 when the compared entities are
identical, and 0 when they have no attributes in common; accordingly, the dissimilarity
metrics are defined as the complements of similarity metrics [65,66]. Such metrics have
been often used in ecology and its related sciences such as plant sociology [67], and they are
coming in a rather high number, being used for various types of applications. A thorough
description of such metrics and some examples on their applications and limitations are
given, for instance in [65,66]. Although by their mathematical foundation similarity metrics
could be rather associated to numerical classification and comparison, the rest of the paper
will treat them similarly to an application in plant sociology. This approach was chosen for
an easier understanding of the concepts, applications and output interpretation of such
metrics in postural analysis by analogy to the living world.
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Accordingly, each of the 252 possible instances that OWAS method may output could
be seen, conventionally, as species named by their four-digit code, therefore, the total
possible number of species will be m = 252. Typically, the similarity is evaluated having
as an input two samples, namely A and B. Each of the two samples (A and B) may hold a
given number of species, namely a and b, which may take a value between 1 and 252. It is
common for some work sequences to output only a limited number of species (instances)
as it is common for them to output a given type of absolute frequency for those species. In
addition, a number of the species, namely c (common species), could be found in both A
and B, respectively. Therefore, the number of common species as well as the number of
individuals belonging to a given species become important in comparison applications.

It is a fact that all the studies implementing the OWAS method rely on data codded
on species and account for the absolute frequency of individuals at the species level since
such data is used as an input for classification on action categories. Typical differences
between the studies and samples may be those resting in the number of observations used
as inputs for analysis as well as in the sampling procedure adopted to collect the data.
From this point of view, samples having the same number of observations would require
a similarity metric able to account for the number of individuals of each species, while
samples exhibiting contrasting differences between the number of observations would
have to use a similarity metric able to balance the effect of such differences.

Two similarity metrics were selected for application in this study, namely the Sørensen’s
quotient of similarity (hereafter QS) and the Canberra metric (hereafter CM). The Sørensen’s
quotient of similarity [65–67] is defined according to Equation (2) while the Canberra metric
is defined, e.g., [65,66] according to Equation (3).

QS =
2c

a + b
, (2)

where QS is the Sørensen’s quotient of similarity, a is the number of species identified in
sample A, b is the number of species identified in sample B and c is the number of species
common to (identified in both) samples A and B.

CM =
1
m ∑i=1

nAi − nBi
nAi + nBi

, (3)

where CM is the Canberra metric, m is the number of species excluding those absent from
both samples, nAi is the number of individuals of the i-th species present (identified) in the
sample A and nBi is the number of individuals of i-th species present (identified) in the
sample B.

The Sørensen’s quotient of similarity assumes that the two samples or populations (A
and B) are different units, whereas each species from sample A has one chance to coincide
with the same species in sample B and vice versa, therefore the denominator a + b stands
for the sum of chances of the individual species to coincide in the two samples separately;
the metric itself stands for the number of actual coincidences divided by the theoretical
number of coincidence possibilities of the two samples [67].

The Canberra metric, on the other hand, takes into account the number of individuals
found to belong to each species of the two samples. It holds some important properties [65]
such as being the average of a series of fractions standing for inter-entity agreement of
each attribute, therefore in has a built-in attribute standardization, large-score attributes
contribute to only one of the summed fractions, therefore they do not dominate the metric,
double-zero scores (r) are commonly ignored (excluded), it takes into calculation the total
possible number of attributes (n) following the exclusion of those absent in both samples,
therefore m = n − r, and zero scores may be replaced by small values in the case of single
zero matches to ensure a greater contribution to dissimilarity (0.2 in this study according
to [66]). The metric was developed in its dissimilarity form, therefore its complement
for similarity is 1 − CM and the numerator from Equation (3) is always restricted to
positive values.
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2.2. Case Studies
2.2.1. Case Study 1: Simulation Based on the Possible Outputs of the OWAS Method and
the Use of the Sørensen’s Quotient of Similarity

Some studies implementing the OWAS method may have been reported only the
instances (species) found in the samples, lacking therefore the frequency data. In such
cases, accounting for the number of individuals is impossible to make, therefore an option
for similarity assessment would be the use of the Sørensen’s quotient of similarity (QS).

The way it works on such data has been tested in this study by making an ordered list
of all the possible species outputted by the OWAS method. Their four-digit codes were
aggregated in a single numerical code which was then used to numerically sort them in an
ascending order according to the action category to which they are typically mapped by the
method. The dataset built in this way was used as a reference for the first sample (A) which
remained unchanged during the simulations. A copy of A was made afterwards, and a data
exclusion procedure was implemented from the top to bottom (TTB) and from the bottom
to top (BTT) of the list, accounting for an exclusion step of ca. 5% of the data (252 species),
implemented from 0 (no differences between A and B) to 95% (common species accounting
for only 5% of the data). A number of 36 new datasets were generated this way to account
for potential differences in the sample B, of which 18 were built for the TTB approach and
18 for the BTT approach. Then, Equation (2) was used to compute the Sørensen’s quotient
of similarity for each of the compared datasets including that having no differences.

In addition, the postural risk index (PRI) was calculated for each sample taken into
comparison by the formula shown in Equation (1). In the case of the sample A, the
PRI has been kept at the same value for each comparison iteration since this sample
was used as a reference, and for the sample B its values were updated based on the
species frequencies on action categories for each comparison iteration and step of data
exclusion. For comparison purposes, the results were aggregated and plotted graphically,
by conventionally downsizing the PRI values by a factor of 1000.

2.2.2. Case Study 2: Comparison of Motor-Manual and Manual Job Tasks by the Use of
Sørensen’s Quotient of Similarity and of the Canberra Metric

Three fully documented datasets were available for comparison of different motor-
manual and manual work tasks (Table 1). These were documented by systematic sampling
done at an interval of one second, and were used in the studies of [20,21], covering motor-
manual felling and processing of poplar trees (TFP), as well as motor-manual willow
felling (WF) and assistance to motor-manual willow felling (AWF); for the purpose of this
study the datasets were reorganized so as to exclude the work task-based codes and other
irrelevant data.

Table 1. Characteristics of the datasets used in the second case study.

Job
(Abbreviation) Short Description Number of

Observations

Motor-manual tree felling and processing
(TFP)

Done by a chainsaw in flat
terrain to fell and process
poplar trees in clear cuts

6607

Motor-manual willow felling
(WF)

Done by a brush cutter in flat
terrain to fell willow shoots 5825

Assisting the motor-manual willow felling
(AWF)

Done by a wooden stick to
help directing the felling of

the willow
5779

The terrain was flat in all the locations used to collect the data, therefore the main
differences between these three operations from a postural point of view could be those
related to the specific tasks, tools and procedures used, as well as those related to the
characteristics of the work objects (very large vs. very small trees), work environment
(inter-tree distance) and workers’ anthropometric features. As shown in Table 1, the
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datasets covered different number of observations, and they were used to compute the
postural risk indexes of each sample, then to compute the two metrics of similarity using
the Equations (2) and (3) for each of the compared samples. Instead of Canberra metric its
complement (1 − CM) was used, and the comparisons were done by data tabulation.

2.2.3. Case Study 3: Comparison among 14 Workers Performing Manual Cultivation
Operations by the Use of Sørensen’s Quotient of Similarity and Canberra Metric

In this last case, the data used in the paper of [45] was refined and adapted to the
comparison requirements of this study. It covered a number of 14 workers carrying on
the same operation (manual cultivation operations in poplar stands), therefore a relative
control was maintained over the work object (rows of poplar trees), tool used (hoe) and
terrain slope (flat). Accordingly, the potential differences in terms of working postures
could be those related to the anthropometric features and to the work behavior as specific
to different subjects taken into study. Since the observations were done for several days
and locations, for simplicity, each of the available dataset was considered to be a sample
(17 samples in total).

The number of observations varied quite widely in this last set of samples, from 258 to
1409 (Table 2). However, the dominance in terms of number of observations per instances
found in all the datasets was rather similar (data not shown herein). The instances were
extracted from media files as images, by a randomized approach [45]. Given the data
shown in Tables 1 and 2, the last two case studies reflect also the differences that may occur
between samples in terms of size.

Table 2. Characteristics of the datasets used in the third case study.

Sample Number of Observations

1 560
2 258
3 922
4 919
5 1077
6 1188
7 1409
8 1046
9 755

10 887
11 974
12 557
13 603
14 496
15 407
16 270
17 269

Postural risk indexes were calculated for each sample according to Equation (1).
Then, Equations (2) and (3) were used to calculate the QS and CM metrics for each of the
compared sample. The CM metric was used in its complement form (1 − CM). Each sample
was compared against each other, resulting in a number of 136 comparisons. To enhance
the comparison between the postural risk indexes and the similarity metrics at the level of
each compared pair, Equation (4) was used to compute the absolute positive differences
between the postural risk indexes of each of the compared samples.

∆PRI = (PRIA − PRIB)/100 (4)

where ∆PRI is the absolute positive difference of the postural risk indexes of two compared
samples (A and B), PRIA is the postural risk index computed for sample A, PRIB is the
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postural risk index computed for sample B, 100 is a downscaling factor used for graphical
comparison purposes.

Comparison results were numerically ordered in descending order using as an input
the results of Equation (4), then they were plotted, analyzed and compared graphically. As
the number of comparisons was quite large, the first and last 10 sets were selected from the
data and plotted against the labels describing the compared samples. The data supporting
this last case study is included in Tables A1–A4 in Appendix A, while supplementary
statistics are given in Figure A1.

3. Results
3.1. Case Study 1

Figure 1 shows the aggregated results of the first case study. The stepwise procedure
used to exclude the data from sample B from top to bottom (TTB) and from the bottom
to the top (BTT) of the list, which ordered the species numerically according to their
belonging to action categories, has resulted in postural risk indexes which increased from
250 (reference, sample A) to 400 in the first case and which decreased from 250 (reference,
sample A) to 100 in the second case.
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The QS metric has presented a decreasing trend from the comparison of the reference
sample (A) against its non-changed counterpart (B), for which the similarity metric has
outputted its maximum value (1.000, indicating a perfect similarity) to the rightmost part
of the Figure 1, where the maximum differences in terms postural risk indexes occurred.

In the first case, the postural risk indexes values were the same, given the use of the
same datasets to compute them for samples A and B. Therefore, the two samples were both,
similar and have led to the same postural risk index. By excluding the data so as to keep
the common species (c) in both samples at less than 30% (rightmost part of the Figure 1),
the postural risk indexes have reached their maximum (400) and minimum (100) values
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for the TTB and BTT approaches, which were kept constant in the x-axis interval from
between 75% and 95%. However, they also shown different degrees of similarities among
the species included in the samples. While for a share of only 5% of common species the
two samples outputted a high dissimilarity (close to 0.1—or 10% for the value of 95% on
the x-axis), for the same postural risk indexes, the similarity between the two samples has
reached to 0.4 (40%, for the value of 75% on the x-axis).

PRI values of 357, 364, 371, 382, and 395 (located in between 50% and 70% as differences
shown on the x-axis, PRI_B_TTB), or at least the last three of them, would advise one to
interpret them as being close to the action category 4. Compared to the reference sample
(A) their values were found to increase. However, the comparison of the two samples
have outputted contrasting values of the similarity (QS), with differences reaching as much
as 0.204 (20% if the metric would be given in percentage). The same holds true if one
compares the data shown for BTT approach in the same range.

3.2. Case Study 2

Table 3 is showing the comparison results for the case study 2. In terms of postural risk
indexes, the TFP operation stands apart of the WF and AWF operations, with a difference
of PRI accounting for ca. 77 points. PRI values calculated for the WF and AWF operations
were almost the same (difference of ca. 1 point), suggesting that the operations under
question would fit in action category 2 from a postural analysis point of view. In the case
of TFP, the PRI value would suggest a closeness to the action category 3.

Table 3. Results of comparison for the case study 2.

Job Description
(Abbreviation) PRI

Comparisons

Pairs QS 1 − CM

Motor-manual tree felling and processing
(TFP) 268.67 TFP-WF 0.426 0.158

Motor-manual willow felling
(WF) 191.11 TFP-AWF 0.391 0.154

Assisting the motor-manual willow felling
(AWF) 192.02 WF-AWF 0.519 0.317

However, the two willow harvesting operations (WF and AWF) were rather dissimilar,
both in the number of species and frequency of individuals. In terms of species, their
comparison outputted a value of QS = 0.519 (52%) and in terms of individuals the similarity
outputted a value of 1 − CM = 0.317 (32%). In addition, TFP was characterized by a rather
the same similarity in terms of number of species and individuals, respectively, when
compared against WF and AWF (QS of ca 43% and 39%, respectively, and 1 − CM of ca.
16% and 15%, respectively). From these comparison results, it is obvious that PRI is helpful
for choosing the right action category but not in characterizing the similarity in terms of
postures taken in different operations.

3.3. Case Study 3

Figure 2 is showing the comparison results in terms of QS, 1 − CM and ∆PRI for all the
datasets taken into study (136 compared pairs). The difference between the postural risk
indexes (∆PRI) was highly variable and it ranged from 64.8 points, which may stand for a
very high difference, to 0.7 points, which is, indeed, a very small difference. However, the
QS metric varied between ca. 0.40 to ca. 0.93 and the 1 − CM metric varied between ca. 0.40
and ca. 0.95, with these lower and upper variation limits being non-coincident for the two
metrics for a given set of samples under comparison. Although the values of the similarity
metrics were variable, by calculation, they were mapped in a certain range (Figure 2,
Figure A1), which was from ca. 0.40 to ca. 0.95, therefore, the compared samples were
found to be medium to highly similar. Nevertheless, the differences in terms of postural
risk indexes were non-associated with the variation of similarity metrics. As shown in
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Figure 2 (leftmost side), for some of the compared pairs, there were high differences in
terms of postural risk indexes, and still, the compared pairs were rather similar (values
of over 0.55 for QS and 1 − CM), a trend which was kept also for the rightmost part of
the Figure 2, were it seems that there was an agreement between the differences in terms
of postural risk indexes and the values of similarity metrics. For instance, in the case of
the last two datapoints, for which the ∆PRI was very small, the values of QS and 1 − CM
were close to those shown on the left part of the figure, where the values of ∆PRI were
the highest.
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A better interpretation of the results can be made based on the data plotted in Figure 3,
which shows the usefulness of using the similarity metrics to compare between two
alternatives, and which plots only the data for the first and last 10 compared datasets, as
numerically ordered by the values of ∆PRI. The right part of the figure shows the datasets
for which the ∆PRI were the lowest, while the left part of the figure shows the datasets
for which the ∆PRI were the highest. The lowest values of the QS metric were above 0.42
irrespective of the case while the highest ones reached at 0.86. A similar trend was found
for the values of 1 − CM metric, which ranged between ca. 0.5 and ca. 0.78. There were
comparison events in which the values of QS and 1 − CM were quite contrasting (for
instance, W3–W16 and W14–W17, respectively, as well as other examples shown on the
right part of the figure, where the differences between the postural risk indexes were minor).
In these cases, however, the differences in terms of PRIs were similar if one compares the
values for the two pairs taken as an example. Nevertheless, the differences in terms of QS
and 1 − CM metrics show dissimilarities among the compared examples. For instance, in
W3–W16, the number of common species could have been less as compared to W14–W17,
but the number of common individuals per species could have been higher. In contrast,
W14–W17, had a higher number of common species but a lower number of common
individuals for the same species.
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4. Discussion

Although the use of similarity metrics is common to other scientific disciplines, this
study introduces them to the use in comparisons of postural data with the aim of providing
a way for quantifying the similarity of work tasks. Some metrics for evaluating the job
diversity were proposed by [68] but, in our knowledge, no attempts were made to use
similarity metrics in the comparison of working postures. Accordingly, it was intended to
evaluate their use by a comparison to the commonly used postural risk indexes so as to
describe the differences that may occur as using both classes of metrics.

The postural risk index is being successfully used to map a given work sequence
(task, job, operation) into a final action category, based on the dominance of the analyzed
instances (species) within the four action categories of the OWAS method. Assuming the
analysis of two work samples, the postural risk index metric will tell much about the
actions to be taken but very few about how similar or dissimilar the two work samples
are, making it difficult to understand more clearly the differences in terms of working
postures. This holds true irrespective of the resolution of data analysis, as shown in Figure
1, where the QS metric was used to check the differences in similarity compared to the
values returned by the postural risk indexes, and in Table 3 and Figures 2 and 3, where
both metrics (QS and 1 − CM) were used, showing contrasting results compared to those
related to the postural risk indexes or their difference.

In this paper, the usefulness of similarity metrics was described by the three case
studies. Their use may depend on the data availability and its type, and may help in better
understanding the changes brought by the features characterizing the humans, technology
used and operating environment in the postural diversity, providing a useful tool for such
pairwise evaluations. For instance, the first case study resembles an application of similarity
metrics under the constraints of having documented only the types of postures (species)
without any background frequency data. In such cases, the use of Sørensen’s quotient of
similarity to compare among the existing data makes lot of sense, enabling one to compare
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between two alternatives even in the absence of the frequency data. The second and third
case studies, on the other hand, are proving how comparisons can be made when absolute
frequency data is available for the individuals (number of observations) belonging to given
types of postures. Accordingly, there are many potential applications in which the use of
similarity metrics could add value. In relation to the human-related features, one could use
them to check the postural differences brought by anthropometric diversity and working
behavior when assuming the same conditions related to the used technology, equipment,
and operating environment. One good example of such an application is the third case
study described in this paper which has shown the differences between several workers
carrying on the same job, with the same tools and in the same operating environment. Even
though one would have been expected to have similar working postures, the reality was
that they varied quite widely as an effect of the human-related factors. Similar practical
applications could be those aiming to emphasize the effect of technology progress (e.g., new
tools or new work methods) on the working postures as well as those aiming to evaluate
how changing operating environments could affect the diversity of working postures. In
addition, the usefulness of similarity metrics in postural analysis may span over other
applications such as comparing or testing the intra- and inter-reliability of the methods
used in postural assessment, assuming that they share a similar codding procedure. Such
reliability-checking studies were developed so far, e.g., [69,70], although they have used
other evaluation methods.

Although the focus of this study was on forest operations, the OWAS method was
found to be trustworthy and used in most of the industrial sectors [62], therefore the
procedures described herein are transferable to any industry. Furthermore, they would
enable the comparison between the job tasks as specific to different industrial sectors so as
to be able to critically and impartially evaluate the associated difficulties and risks, with
an obvious outcome of either designing improvements or finding appropriate ways of
compensation. A typical example is the second case study of this paper which proves
how the similarity metrics could be used to compare three different jobs coming from two
industries (traditional and short-rotation forestry).

Eventually, the science will come up with a ‘best-fit’ postural profile for the daily
activity, therefore the deviance from it will need measurement and metrics for comparisons
in the search for improvement; the use of similarity metrics for such endeavors, as described
in this study, has a lot of potential, being supported by the advancement in automation and
machine learning techniques applied to postural analysis [51–53], which by improvement
will be able to collect and process high amounts of data, eventually resembling at very fine
rates the continuum of a work sequence [49]. As such, they will remove the current barriers
of limited data samples and will be able to systematically collect it for large time domains.
By the use of temporal labels or sequenced IDs added to the codes of given instances to
resemble their occurrence in a work sequence, comparisons of the work similarity in the
time domain would be enabled by the use of similarity metrics since the species created in
this way will have to share the time IDs in addition to the codes characterizing the body
posture. Similarly, the addition of codes to describe work elements or tasks would enable
large-scale intra- and inter-task comparison in the time domain.

This study has evaluated only two metrics of similarity which is one of the study’s
limitations. Indeed, there are many such metrics [65,66] from which one may choose, and
the authors acknowledge the potential of other metrics in comparing working postures.
However, the choice of the QS and 1 − CM metrics was based on their main mathematical
foundations of properly dealing with data at the species and individual level under the
assumption of a fixed set of species. Nevertheless, caution should be taken in their use, and
several other metrics should be evaluated based on other findings on their properties [71].

5. Conclusions

Based on the three case studies of this paper, the main conclusion is that the two classes
of metrics (postural risk indexes and similarity indexes) have their own, well-framed utility
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in postural assessment by the use of the OWAS method. Postural risk indexes are helpful
in evaluating the work and mapping the ergonomic actions to be taken while the use of
similarity metrics will help in better comparing two work alternatives, therefore in reaching
a deeper understanding on changes brought by the human-, technology-, and operating
environment-related factors. Both classes of metrics could be successfully integrated in
big data analytics under the assumption that machine learning techniques would become
readily available and reliable, which is expected in the near future. However, more research
is needed to check the usefulness and drawbacks of other similarity metrics, as more
research is needed to check the drawbacks of the similarity metrics used in this study.
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Marogel-Popa for providing the raw data needed for the last two case studies. The authors acknowl-
edge the logistical support provided to support this study by the Department of Forest Engineering,
Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest
Engineering, Transilvania University of Braşov.
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Appendix A

Table A1. Data supporting the case study 3.

Samples Compared a b c m QS 1 − CM ∆PRI

W1–W2 22 15 12 25 0.649 0.637 0.341

W1–W3 22 23 16 29 0.711 0.679 0.040

W1–W4 22 15 13 24 0.703 0.712 0.296

W1–W5 22 22 14 30 0.636 0.659 0.085

W1–W6 22 13 12 23 0.686 0.713 0.210

W1–W7 22 18 16 24 0.800 0.677 0.168

W1–W8 22 26 18 30 0.750 0.552 0.303

W1–W9 22 28 18 32 0.720 0.596 0.466

W1–W10 22 23 18 27 0.800 0.549 0.185

W1–W11 22 17 12 27 0.615 0.687 0.531

W1–W12 22 14 11 25 0.611 0.734 0.030

W1–W13 22 17 14 25 0.718 0.672 0.253

W1–W14 22 19 12 29 0.585 0.719 0.608

W1–W15 22 17 12 27 0.615 0.729 0.403

W1–W16 22 11 7 26 0.424 0.783 0.505

W1–W17 22 16 10 28 0.526 0.732 0.067
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Table A1. Cont.

Samples Compared a b c m QS 1 − CM ∆PRI

W2–W3 15 23 11 27 0.579 0.711 0.380

W2–W4 15 15 13 17 0.867 0.663 0.045

W2–W5 15 22 13 24 0.703 0.603 0.256

W2–W6 15 13 13 15 0.929 0.478 0.131

W2–W7 15 18 13 20 0.788 0.591 0.173

W2–W8 15 26 15 26 0.732 0.564 0.038

Table A2. Data supporting the case study 3—continued.

Samples Compared a b c m QS 1 − CM ∆PRI

W2–W9 15 28 14 29 0.651 0.639 0.126

W2–W10 15 23 14 24 0.737 0.608 0.155

W2–W11 15 17 13 19 0.813 0.659 0.190

W2–W12 15 14 10 19 0.690 0.623 0.311

W2–W13 15 17 12 20 0.750 0.659 0.088

W2–W14 15 19 12 22 0.706 0.556 0.267

W2–W15 15 17 13 19 0.813 0.624 0.062

W2–W16 15 11 7 19 0.538 0.672 0.164

W2–W17 15 16 11 20 0.710 0.619 0.274

W3–W4 23 15 13 25 0.684 0.646 0.336

W3–W5 23 22 17 28 0.756 0.525 0.124

W3–W6 23 13 11 25 0.611 0.650 0.249

W3–W7 23 18 13 28 0.634 0.635 0.208

W3–W8 23 26 15 34 0.612 0.604 0.343

W3–W9 23 28 16 35 0.627 0.654 0.506

W3–W10 23 23 17 29 0.739 0.641 0.225

W3–W11 23 17 12 28 0.600 0.722 0.571

W3–W12 23 14 9 28 0.486 0.699 0.069

W3–W13 23 17 13 27 0.650 0.632 0.293

W3–W14 23 19 14 28 0.667 0.691 0.648

W3–W15 23 17 13 27 0.650 0.661 0.443

W3–W16 23 11 8 26 0.471 0.757 0.545

W3–W17 23 16 12 27 0.615 0.733 0.106

W4–W5 15 22 14 23 0.757 0.571 0.211

W4–W6 15 13 12 16 0.857 0.619 0.086

W4–W7 15 18 13 20 0.788 0.504 0.128

W4–W8 15 26 13 28 0.634 0.636 0.007

W4–W9 15 28 15 28 0.698 0.665 0.170

W4–W10 15 23 15 23 0.789 0.692 0.111

W4–W11 15 17 11 21 0.688 0.729 0.235

W4–W12 15 14 10 19 0.690 0.615 0.266
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Table A2. Cont.

Samples Compared a b c m QS 1 − CM ∆PRI

W4–W13 15 17 14 18 0.875 0.669 0.043

W4–W14 15 19 11 23 0.647 0.651 0.312

W4–W15 15 17 12 20 0.750 0.724 0.107

W4–W16 15 11 8 18 0.615 0.694 0.209

W4–W17 15 16 11 20 0.710 0.738 0.229

W5–W6 22 13 12 23 0.686 0.580 0.125

W5–W7 22 18 15 25 0.750 0.558 0.083

W5–W8 22 26 16 32 0.667 0.549 0.218

W5–W9 22 28 18 32 0.720 0.596 0.382

W5–W10 22 23 18 27 0.800 0.675 0.101

W5–W11 22 17 14 25 0.718 0.627 0.446

W5–W12 22 14 10 26 0.556 0.636 0.055

W5–W13 22 17 14 25 0.718 0.679 0.168

W5–W14 22 19 12 29 0.585 0.656 0.524

W5–W15 22 17 13 26 0.667 0.670 0.318

Table A3. Data supporting the case study 3—continued.

Samples Compared a b c m QS 1 − CM ∆PRI

W5–W16 22 11 7 26 0.424 0.755 0.420

W5–W17 22 16 12 26 0.632 0.673 0.018

W6–W7 13 18 12 19 0.774 0.494 0.041

W6–W8 13 26 13 26 0.667 0.621 0.094

W6–W9 13 28 13 28 0.634 0.719 0.257

W6–W10 13 23 13 23 0.722 0.755 0.024

W6–W11 13 17 12 18 0.800 0.619 0.321

W6–W12 13 14 9 18 0.667 0.488 0.180

W6–W13 13 17 11 19 0.733 0.639 0.043

W6–W14 13 19 11 21 0.688 0.599 0.399

W6–W15 13 17 12 18 0.800 0.598 0.193

W6–W16 13 11 7 17 0.583 0.757 0.296

W6–W17 13 16 11 18 0.759 0.593 0.143

W7–W8 18 26 16 28 0.727 0.578 0.135

W7–W9 18 28 18 28 0.783 0.624 0.298

W7–W10 18 23 17 24 0.829 0.671 0.017

W7–W11 18 17 12 23 0.686 0.555 0.363

W7–W12 18 14 11 21 0.688 0.494 0.138

W7–W13 18 17 14 21 0.800 0.594 0.085

W7–W14 18 19 12 25 0.649 0.644 0.440

W7–W15 18 17 12 23 0.686 0.673 0.235
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Table A3. Cont.

Samples Compared a b c m QS 1 − CM ∆PRI

W7–W16 18 11 7 22 0.483 0.749 0.337

W7–W17 18 16 11 23 0.647 0.711 0.101

W8–W9 26 28 20 34 0.741 0.502 0.163

W8–W10 26 23 20 29 0.816 0.565 0.118

W8–W11 26 17 16 27 0.744 0.592 0.228

W8–W12 26 14 13 27 0.650 0.615 0.273

W8–W13 26 17 16 27 0.744 0.514 0.050

W8–W14 26 19 15 30 0.667 0.585 0.305

W8–W15 26 17 15 28 0.698 0.645 0.100

W8–W16 26 11 8 29 0.432 0.719 0.202

W8–W17 26 16 13 29 0.619 0.694 0.236

W9–W10 28 23 21 30 0.824 0.415 0.281

W9–W11 28 17 16 29 0.711 0.637 0.065

W9–W12 28 14 11 31 0.524 0.727 0.437

W9–W13 28 17 17 28 0.756 0.575 0.213

W9–W14 28 19 17 30 0.723 0.576 0.142

W9–W15 28 17 17 28 0.756 0.616 0.063

W9–W16 28 11 10 29 0.513 0.740 0.039

W9–W17 28 16 15 29 0.682 0.717 0.400

W10–W11 23 17 16 24 0.800 0.676 0.346

W10–W12 23 14 11 26 0.595 0.786 0.156

W10–W13 23 17 17 23 0.850 0.598 0.068

W10–W14 23 19 15 27 0.714 0.687 0.423

W10–W15 23 17 16 24 0.800 0.667 0.218

W10–W16 23 11 9 25 0.529 0.766 0.320

W10–W17 23 16 14 25 0.718 0.731 0.119

Table A4. Data supporting the case study 3—continued.

Samples Compared a b c m QS 1 − CM ∆PRI

W11–W12 17 14 10 21 0.645 0.662 0.501

W11–W13 17 17 13 21 0.765 0.714 0.278

W11–W14 17 19 14 22 0.778 0.575 0.077

W11–W15 17 17 15 19 0.882 0.494 0.128

W11–W16 17 11 8 20 0.571 0.741 0.026

W11–W17 17 16 14 19 0.848 0.608 0.464

W12–W13 14 19 11 22 0.667 0.557 0.223

W12–W14 14 17 10 21 0.645 0.680 0.578

W12–W15 14 11 10 15 0.800 0.945 0.373

W12–W16 14 16 6 24 0.400 0.566 0.475

W12–W17 14 16 8 22 0.533 0.698 0.037

W13–W14 17 19 12 24 0.667 0.613 0.355
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Table A4. Cont.

Samples Compared a b c m QS 1 − CM ∆PRI

W13–W15 17 17 13 21 0.765 0.641 0.150

W13–W16 17 12 8 21 0.552 0.642 0.252

W13–W17 17 16 10 23 0.606 0.724 0.186

W14–W15 19 17 16 20 0.889 0.396 0.205

W14–W16 19 11 10 20 0.667 0.586 0.103

W14–W17 19 16 15 20 0.857 0.496 0.542

W15–W16 17 11 9 19 0.643 0.575 0.102

W15–W17 17 16 14 19 0.848 0.440 0.336

W16–W17 11 16 10 17 0.741 0.537 0.438
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21. Borz, S.A.; Talagai, N.; Cheţa, M.; Chiriloiu, D.; Gavilanes Montoya, A.V.; Castillo Vizuete, D.D.; Marcu, M.V. Physical strain,
exposure to noise and postural assessment in motor-manual felling of willow short rotation coppice: Results of a preliminary
study. Croat. J. For. Eng. 2019, 40, 377–388. [CrossRef]

22. Arman, Z.; Nikooy, M.; Tsioras, P.A.; Heidari, M.; Majnounian, B. Physiological workload evaluation by means of heart rate
monitoring during motor-manual clearcutting operations. Int. J. For. Eng. 1998, 9, 25–31. [CrossRef]

23. Zurita Vintimilla, M.C.; Castro Pérez, S.N.; Borz, S.A. Processing small-sized trees at landing by a double-grip machine: A case
study on productivity, cardiovascular workload and exposure to noise. Forests 2021, 12, 213. [CrossRef]

24. Spinelli, R.; Magagnotti, N.; Labelle, E.R. The effect of new silvicultural trends on the mental workload of harvester operators.
Croat. J. For. Eng. 2020, 41, 177–190. [CrossRef]

25. Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Mitka, B.; Tylek, P.; Kulak, D.; Adamski, K. Perception of the harvester operator’s
working environment in windthrow stands. Forests 2021, 12, 168. [CrossRef]

26. Neitzel, R.; Yost, M. Task-based assessment of occupational vibration and noise exposure in forestry workers. AIHA J. 2002, 63,
617–627. [CrossRef]

27. Tunay, M.; Melemez, K. Noise induced hearing loss of forest workers in Turkey. Pak. J. Biol. Sci. 2008, 1, 2144–2148. [CrossRef]
[PubMed]

28. Rottensteiner, C.; Tsioras, P.; Stampfer, K. Wood density impact on hand-arm vibration. Croat. J. For. Eng. 2012, 33, 303–312.
29. Fonseca, A.; Aghazadeh, F.; de Hoop, C.; Ikuma, L.; Al-Qaisi, S. Effect of noise emitted by forestry equipment on workers’ hearing

capacity. Int. J. Ind. Ergon. 2015, 46, 105–112. [CrossRef]
30. Poje, A.; Spinelli, R.; Magagnotti, N.; Mihelic, M. Exposure to noise in wood chipping operations under the conditions of

agro-forestry. Int. J. Ind. Ergon. 2015, 50, 151–157. [CrossRef]
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