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Abstract: Urban parks have been known to form park cooling islands (PCI), which can effectively
alleviate the effect of urban heat islands (UHI) in cities. This paper presents results obtained for four
different size parks in the city of Wroclaw, which is located in a temperate continental climate. The
number of publications for urban areas located in this type of climate and cities is low compared to
sites in hot and humid areas. Land surface temperature (LST) maps were developed from Landsat 8
Thermal Infrared Sensor (TIRS) data acquired during three hottest weather periods between 2017
and 2019. Metrics and spatial statistics characterising the four parks selected for the analysis based
on their size were calculated. These included: perimeter, area, landscape shape index (LSI) and
PLC (forest area) park metrics, and Park Cooling Area (PCA), Park Cooling Efficiency (PCE), Park
Cooling Gradient (PCG), Park Cooling Island (PCI) and Extended Park Cooling Island (PCIe) spatial
indexes. The averaged PCIe values ranged from 2.0 to 3.6 ◦C, PCI from 1.9 to 3.6 ◦C, PCG from 0.7
to 2.2 ◦C, PCE from 5.3 to 11.5, and PCA from 78.8 to 691.8 ha depending on the park. The cooling
distance varied from 110 m to 925 m depending on park size, forest area and land use type in the
park’s vicinity. The study provides new insight into urban park cooling effects in a medium sized city
located in a temperate continental climate, and the role of parks in regulation of urban temperature
to mitigate the UHI effect.

Keywords: urban park; forest; cooling effect; spatial analysis; LST; temperate continental climate;
Wroclaw; Poland

1. Introduction

The urban heat island (UHI) effect has become a major issue in modern city manage-
ment and in urban ecology [1]. The phenomenon, i.e., higher air or surface temperature of
urban areas in relation to their surroundings was identified for the first time by Howard
in the early 19th Century on the example of the City of London [2]. The reasons for this
condition are due to urban surfaces being usually darker than those in the suburban and
rural areas (low albedo and reflected sunlight), vegetation cover that in urban areas is typi-
cally less than those of surrounding areas, construction materials of buildings, pavements
and other urban structures that tend to have high heat rate and store the heat through
day hours and emit it during the night, urban morphology which affects shading and air
movement, and ever-increasing rates of energy consumption [3–5]. The UHI effect has
been aggravated in cities worldwide by climate change and increasing average global
temperatures [6,7], as well as by rapid urbanisation and deforestation [8,9]. It has also been
proved that UHI effect varies with time of the day (diurnal behaviour) [10,11] and with
the season of the year [12,13]. Furthermore, it has been established that UHI influences air
pollution dispersion in cities (longer periods of high pollution levels), water usage, higher
temperature of ground waters, and bioclimatic conditions adversely affecting health and
well-being of their citizens [14–20].
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Vegetation is considered to be the most effective method to mitigate the UHI [21,22].
This is because plants reduce impervious surfaces that absorb sunlight and provide shadow,
as well as stimulate evapotranspiration that, in combination with shading, can help to
reduce high temperatures [23,24]. Vegetation in urban areas can be classified into three
main types: street trees, green roofs and walls, and urban parks [5]. The latter urban park
is considered to be the most effective way to mitigate the UHI, because a park constitutes
an area that combines many types of vegetation including forests, unpaved surfaces and
water bodies. Thus, green urban areas can improve resilience of cities to atmospheric and
surface urban heat island effects. The effectiveness of green areas, especially parks, in
reducing urban heat island has been proven through field measurements, remote sensing
and computer simulation [25–30].

An important feature of the UHI are high land surface temperatures (LST). The LST
has been widely used, e.g., to analyse change of temperature associated with land use
change, urban growth [22,28,31–33] and the urban park cool (or cooling) island (PCI)
phenomenon, i.e., lower temperature within a park in relation to its surroundings [34–39].

According to Peng et al. [40] urban park cooling studies can be divided into four types:
(1) assessment of park cooling effect [41–43], (2) monitoring of park cooling
effect [5,39,44,45], (3) identification of factors influencing park cooling effect [12,37,41,46–48],
and (4) design of parks for increased cooling effect [28,30,49,50]. In addition, human thermal
comfort assessment studies in parks and their neighbourhood have been conducted [51,52].

Various indexes have been developed or modified to measure the cooling effect of
urban parks in the spatial context. These include measures based on the cooling distance,
area or intensity, as well as indexes taking into account vegetation or the shape of green area
to quantify this effect of urban green spaces (parks) on their surroundings [12]. Research has
been conducted from the city (multiple parks) [28,47,50,53,54] to the local (individual park)
scales [11,30,38,39,44,51]. Some studies concentrate on nocturnal UHI mitigation [44,55],
whereas other ones focus on seasonal changes of this phenomenon [10,45,47,56]. The
source data for determining this effect predominately originate from satellite imagery
(e.g., Landsat missions) [28,37,40,42,48,57–59] and/or ground measurements using fixed or
mobile meteorological stations [5,38,39,51,60–62]. Citizen surveys have been performed
to determine the thermal perception and assess the thermal comfort of population in
urban parks and their neighbourhood acting as supplementary (qualitative) information
for quantitative analyses [51,52,56]. The number of studies concerning the effect of urban
green spaces (urban parks) on the UHI has been increasing in recent years. Notable
studies related to this research and classified into the type of studies, data and main
methods used have been listed in Appendix A, whereas noteworthy examples of early
studies include [34,63–65].

Literature review shows that the greatest number of publications focus on large urban
agglomerations in Asia, especially in China. The number of studies of urban park cooling
effects on the LST in cities located in temperate continental climate zones such as in the case
of Poland are limited (Appendix A). Therefore, in our study we examine the cooling effect
of urban parks on the example of the city of Wroclaw (SW Poland). We have proposed to
select representative parks from four distinct classes basing on park size, and to estimate
if the strength of the cooling effect depending on the park characteristics (especially the
size and forest area) and the type of land use in park surroundings using selected indexes
including one proposed by us.

2. Study Area

The Wroclaw city is located in south-western Poland in Central Europe, on the Silesian
Lowland, along the Odra River valley (51◦06′36” N 17◦01′20” E). It is the fourth largest city
in Poland in terms of population (643,782 inhabitants in 2020), and the fifth largest city in
terms of area (292.82 km sq.) [66]. However, studies show that the real number of people
in Wroclaw is estimated to vary between 825 thousand and 1 million [67]. The elevation
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of the city area varies from 105 m to 148 m a.s.l., thus the temperature field is practically
unaffected by altitude [68].

Wroclaw is located in a moderate, transitional, climate zone subjected to continental
and oceanic influences. An important factor affecting the city’s climate is its location in
the vicinity of areas with varied and elevated topography, i.e., the Trzebnickie Hills in the
north, and the Sudetes Foreland and the Sudetes Mountains in the south. The location
of the city in the foreground of the Sudetes and in the Odra River valley gives it thermal
privilege, known as a Wroclaw area of heat, which is a consequence of the dynamic heating
of air masses that settle on the leeward side of the mentioned mountain massif [69].

The city has temperate continental climatic conditions, with a mean annual precipi-
tation of 567 mm. The average air temperature has increased over the past years. In the
years 1946–1980 the annual mean temperature was estimated at 8.2 ◦C [70], in the next
two decades (1981–2020) it grew to 9.0 ◦C [71], and, by 2008–2019 the annual average
temperature of Wroclaw was estimated at 10.2 ◦C, with the coldest month being January
(−0.1 ◦C), and the warmest being July (20.2 ◦C) [71,72]. Warm and humid weather con-
ditions are common in the Summer; the Winter season is relatively mild with moderate
and changeable temperatures [70]. The prevailing wind directions are typically west and
south with an average speed of about 2.5 m·s−1, according to records collected by the
meteorological station located at the Copernicus Airport Wroclaw [73]. The urban heat
island phenomenon in Wroclaw has been investigated by Szymanowski and Kryza, who
describe its spatial structure as amoebic and multicellular, reflecting the land-use structure
of the city [68,74]. The highest temperature zone covers the city centre, connected mainly
with dense downtown build-up areas, with the maximum UHI intensity area characterized
by the bisection resulting from the existence of the Odra River valley [75]. The annual
mean UHI intensity in the centre of the city reaches 1.0 K. It is weaker in Autumn and
Winter (0.9 K) than in Spring and Summer (1.1–1.2 K). The magnitude of the night-time
UHI is two to three times higher than the average for daytime, as in other cities [74]. The
potential factors influencing the local climatic conditions are: transformation of land use
cover through housing and technical infrastructure development, emission of pollutants
and anthropogenic heat. These processes also influence the occurrence of the urban heat
island [70]. Approximately 34% of the Wroclaw city area is built-up, mainly with high-rise
buildings and housing estates, industrial and warehouse buildings, as well as transport
infrastructure. The urban green spaces account for 34.0%, agriculture for 25.0%, and water
for 3.0% of the total area [76]. The urban green area decreased by 2.6 percent points and
land used for agriculture by 3.9 percent points in the last two decades. The land use
map classified according to the European Union Corine Land Cover Copernicus Land
Monitoring Service methodology [77] has been shown in Figure 1.

There are 43 parks and communal forests in Wroclaw with a total area of approximately
527.6 ha. The urban parks vary in shape, size (from 0.57 ha to 78 ha), and type of their
surroundings. Location of urban parks within the city limits has been shown in Figure 2.
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Figure 1. Land use in Wroclaw based on the Corine Land Cover classification (2018).

Figure 2. Location of urban parks and built-up area in Wroclaw. Green rectangles indicate case study sites.
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3. Data and Methods
3.1. Data Sources

The detailed information on urban parks has been derived from the national Database
of Topographical Objects (BDOT10k) that contains information layers representing, among
other things, road and railways networks, buildings and installations, land cover and
land use, watercourses, and protected areas at a scale of 1:10,000 [78]. To supplement
and verify the location and extent of urban parks, an RGB ortomosaic based on aerial
images from April 2018 obtained from the Wroclaw Spatial Information System [79] has
been used. In addition, the CORINE Land Cover (CLC) inventory representing land use in
44 classes from 2018 [77] has been used to further assess the parks’ neighbourhood. The
determination of park boundaries have been verified through field reconnaissance.

To obtain a map of the LST in the study area, Landsat 8 Thermal Infrared Sensor
(TIRS) images retrieved from the USGS (United States Geological Survey) website [80]
and resampled to 30 m have been used. The dates of satellite imagery acquisition have
been selected to closely match the hottest periods in Wroclaw, which have been identified
through the analysis of historical data from the Wroclaw Airport Meteorological Station.
The following cloud free images with a spatial resolution of 30 m have been used in the
study (date and time of acquisition, maximum recorded temperature in the city have been
given, respectively):

• 28 May 2017, 9:43 GMT, 27.4 ◦C,
• 3 August 2018, at 9:43 GMT, 32.8 ◦C,
• 3 June 2019, 9:44 GMT, 28.9 ◦C.

Geospatial calculations using Map Algebra and cartographic compositions have been
conducted in ESRI ArcGIS Pro software [81] licensed to the Wroclaw University of Science
and Technology.

3.2. Image Pre-Processing and Retrieval of LST

The Land Surface Temperature (LST) was retrieved from the cloud-free sub-scenes of
Landsat 8, path 190 and row 24 obtained from the United States Geological Survey (USGS).
The Landsat 8 data acquired by both the Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) are delivered in 16-bit unsigned integer format. The LST retrieval
followed the procedures described inter alias in [80,82–85].

The Land Surface Temperature (LST) index was calculated using the Landsat-8 thermal
bands, band 10 to estimate the brightness temperature and bands 4 and 5 to calculate
the Normalized Vegetation Index (NDVI). The process of LST calculation involved the
following main steps:

1. calculating the Top of Atmospheric Spectral Radiance,
2. conversion of the Radiance to Sensor Temperature,
3. calculating the NDVI,
4. calculating the Land Surface Emissivity, and
5. LST retrieval.

The first step involved conversion to Top of Atmospheric (TOA) Radiance. The OLI
and TIRS bands were used to calculate the spectral luminance (Lλ). At this stage, the values
measured by the sensor for each pixel were recalculated using the parameters contained in
the satellite image metadata file (MLT file) (1) [80,82–84]:

Lλ = MLQcal + AL (1)

where ML is the band specific multiplicative scale factor for a given band, AL is the band
specific additive scaling factor and Qcal is the quantized and calibrated standard pixel
values of the band 10 product.



Forests 2021, 12, 1136 6 of 20

The next step included conversion of radiance to radiation temperature (BT). The TIRS
data were converted from spectral luminance to radiation temperature. In this step, the
radiant temperature unit was corrected, from Kelvin to Celsius degrees (2) [80,82–84]:

BT =
K2

ln
[(

K1
Lλ

)
+ 1
] − 237.15 (2)

where K1 and K2 are the thermal conversion constants characteristic of the given band
taken from the metadata file.

Based on the radiation properties of chlorophyll, which strongly absorbs radiation in
the near infrared and weakly in the visible range, the Normalized Differential Vegetation
Index (NDVI) was calculated following the equation proposed by, e.g., [83,84]. The index
enables us to determine the general condition of vegetation, and thus allows for the
calculation of the vegetation part (Pv) (3) [80,82–84]:

Pv = (
NDVI−NDVImin

NDVImax −NDVImin
)

2
(3)

To estimate the temperature of the land surface, the emissivity of the surface (ε) was
calculated (4) [80,82–84]:

ε = 0.004× Pv + 0.986 (4)

The final step involved calculation of the emissivity corrected temperature of the land
surface (Ts) in Celsius (◦C) from (5) [80,82–84]:

Ts =
BT{

1 +
[(
λ×BT
ρ

)
lnε
]} (5)

where λ is the average wavelength of the emitted radiation and ρ is given by (6) [80,82–84]:

ρ = h
c
σ

(6)

where h is the Planck’s constant (6.626 × 10−34 J s), c is the speed of light (2.998 × 108 m/s)
and σ is the Boltzmann constant (1.38 × 10−23 J/K).

3.3. Urban Park Metrics

The landscape metrics are parameters that define specific spatial features for any
area [13,86]. In this study, the following metrics were calculated for each of the analysed parks:

1. Park perimeter (PP),
2. Park area (PA),
3. Landscape shape index (LSI), which was designed by Patton (1975) and describes the

compactness of a patch shape [37], in our case compactness of a park shape (7),

LSI =
PP

2
√
π× PA

(7)

The closer the LSI value is to 1.0, the more the shape of the park resembles a circle.

4. Park land cover (PLC) is the structure of a park’s land cover types expressed as a
percentage of the total park area.

3.4. Spatial Statistics

Spatial statistics provide methods for describing spatial structures and their rela-
tionships. These methods allow the analysis of both geographic data and other types of
information that have the property of being located in a certain space [87]. In this work,
the parks’ cooling efficiency was determined in GIS, using the following indexes:
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1. Park Cooling Area (PCA), which is the buffer area, formed on the basis of the longest-
range distance of the park’s influence (the largest cooling distance) [37,40,41].

2. Park Cooling Efficiency (PCE) is the ratio of the maximum cooling area (Smax) to the
park area (PA) [37,40] (8):

PCE =
Smax

PA
(8)

3. Park Cooling Gradient (PCG), which determines the temperature rise per unit of
distance increment (100 m) from the park boundary [11,40,54].

4. Park Cooling Island (PCI), which is the difference between the mean LST outside the
park on an urban area (TU) (in a buffer 500 m from the border) and the mean LST
inside the park (TP) [37,47] (9):

PCI = TU − TP (9)

5. Extended Park Cooling Island (PCIe), which we propose as the difference between
the mean LST in the buffer of maximum cooling area (TR) and the mean LST inside
the park (TP) (10):

PCIe = TR − TP (10)

4. Results

The LST maps for Wroclaw have been used to determine the influence of urban parks
on the land surface temperature distribution. The LST maps for selected dates in 2017, 2018
and 2019 have been included in Appendix B. The satellite imagery acquisition dates were
selected based on cloud free image availability corresponding to highest recorded daily
ambient air temperatures in the city. The highest LST values were observed for 2017 and
the lowest for 2018. The basic temperature statistics derived from these maps have been
given in Table 1. The mean LSTs for the area of Wroclaw range from 27.6 ◦C to 28.6 ◦C.
Two maps (for 2017 and 2019) show similar temperature distribution and statistics, with
the 2018 one values lower by about 1.0 ◦C on average. In all the three cases, the obtained
spatial distribution of LST corresponds to the spatial structure of UHI in Wroclaw described
in [68,71] and presented in the study area section.

Table 1. Basic LST statistics for the area of Wroclaw city.

Value/Year 2017 2018 2019

Min. 19.9 ◦C 16.0 ◦C 19.9 ◦C
Max. 43.9 ◦C 39.2 ◦C 43.1 ◦C
Mean 28.3 ◦C 27.6 ◦C 28.6 ◦C

4.1. Analysis of Urban Park Metrics

The urban parks have been divided into classes depending on the area of each park
using the natural breaks classification method. Four distinct classes have been determined
with the following value ranges: 0.57–14.78, 21.28–25.11, 37.72–46.22, and 73.44–78.03 ha.
The distribution of urban parks sizes has been shown in Figure 3. For the purpose of this
study, four representative parks, one from each class, have been selected. The parks have
been named: A, B, C and D, where the A Park represents the lowest class and D Park the
highest class. In the case of the lowest class, two parks constituting one continuous green
area and referred to as A Park (Table 2) were selected for the analysis. The selected parks
are located in different parts of the city, as shown in Figure 2.
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Figure 3. Distribution of urban parks for the city of Wroclaw according to their size. The first two
(grey) points denote Park A.

Table 2. Urban park metrics.

Park Area (ha) Perimeter (m) LSI PLC Geometry (Not to Scale)

A Park 8.84 1669 1.58

F 7.8%
G 71.4%
W 7.6%
O 13.2%

B Park 27.57 2845 1.53

F 63.6%
G 19.5%
W 5.3%
O 11.6%

C Park 45.23 3722 1.43

F 73.2%
G 19.3%
W 0.0%
O 7.5%

D Park 76.87 6310 2.61

F 92.1%
G 7.7%
W 0.0%
O 0.2%

Abbreviations: LSI—Landscape Shape Index, PLC—Park Land Cover. Park land cover types: F—Forest, G—Grass,
W—Water, O—Other.

Parks with an area of 2 ha or larger were considered in this study only. This is
because the size of a single LST map pixel is equal to 900 m2 or 0.09 ha. This approach
has been suggested by other authors, e.g., [13,64]. The average size of all parks in the
city is 12.6 ha, whereas the average area of the analysed parks is 39.63 ha. Park metrics
have been presented in Table 2. These include: area, perimeter, landscape shape index
(LSI) as described in Section 3.3, and proportion of park land cover types including forest,
green areas (i.e., grassland, bushes, etc. constituting low and medium sized vegetation),
water and other uses such as paths and playgrounds (PLC). Three parks (B, C and D) are
predominately covered with high vegetation, with forest areas constituting from 63.6% to
92.1% of their total area. The A Park is dominated by low–medium vegetation (84.6%).
Two parks, A and B, have water bodies that cover 7.6% and 5.3% of their area, respectively.
Other land uses constitute up to 11.6% of a given park. Three parks (A, B and C) have low
LSI index values (1.43 to 1.58) pointing to their generally compact shape, whereas the D
Park is more fragmented, with an LSI value of 2.61.
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4.2. Spatial Statistics of the Urban Park Effect on LST

The statistics describing the effect of urban parks on the LST distribution and calculated
according to the methods stated in Section 3.3 have been presented in Table 3. The values
have been calculated for each analysed period, i.e., 2017, 2018 and 2019 independently.

Table 3. Mean park LST and spatial statistics of urban park effect on LST.

Statistics Park 2017 2018 2019

Mean LST
[◦C]

A Park 28.2 27.7 28.8
B Park 25.8 26.7 26.9
C Park 25.6 25.2 26.3
D Park 25.7 25.9 26.4

PCA
[ha]

A Park 101.6 89.9 78.8
B Park 199.1 182.4 181.0
C Park 287.9 312.8 308.3
D Park 691.8 688.7 660.5

PCE

A Park 11.5 10.2 8.9
B Park 7.2 6.6 6.6
C Park 5.3 5.8 5.7
D Park 9.4 9.4 9.0

PCG
[◦C/100 m]

A Park 1.3 1.0 1.8
B Park 1.6 1.2 1.7
C Park 1.0 0.7 1.0
D Park 2.1 1.4 2.0

PCI
[◦C]

A Park 3.1 1.9 2.8
B Park 3.6 2.1 3.0
C Park 3.4 2.2 3.0
D Park 2.9 2.0 2.2

PCIe
[◦C]

A Park 3.1 2.0 3.0
B Park 3.6 2.1 3.1
C Park 3.4 2.3 3.1
D Park 3.1 2.1 2.3

Abbreviations: LST—Land Surface Temperature, PCA—Park Cooling Area, PCE—Park Cooling Efficiency,
PCG—Park Cooling Gradient, PCI—Park Cooling Island, PCIe—Extended Park Cooling Island.

The B, C and D parks have the mean LST in the range of 25.2 ◦C to 26.9 ◦C, whereas
the mean LST in the smallest A Park ranges from 27.7 ◦C to 28.8 ◦C, approximately 2 ◦C
higher. The mean LST is the lowest in the two parks with the largest forest area (parks C
and D).

The PCA statistic, i.e., the largest cooling area produced by parks, has been determined
for the largest D Park, being on average 660.5 ha to 691.8 ha, and the smallest one for the A
Park 78.8 ha to 101.6 ha depending on the year of data acquisition.

In the case of the PCE statistic, i.e., the ratio of the maximum cooling area outside the
park to the park area, the lowest values have been determined for the C and B Parks, 5.3 to
5.8 and 6.6 to 7.2, respectively. The highest ratio has been determined for the A Park, 8.9 to
11.5, and the second highest for the D Park. The A Park is the only one surrounded by a
densely built-up area from all sides. This indicates that parks influence the temperature on
an area approximately five to eleven times that of their size.

The PCG statistic, i.e., the temperature rise per unit of the distance increment (100 m)
from the park boundary, has been shown graphically in Figure 4 in the four main geograph-
ical directions, as it differs depending on the type of land use in the park’s surroundings.
The highest values have been obtained for the D Park (1.4 to 2.1 ◦C/100 m on average),
and the lowest for the C Park (0.7 to 1.0 ◦C/100 m on the average). The A and B parks
produced comparable results in the range of 1.0 to 1.8 ◦C/100 m.
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Figure 4. Radar diagrams of park cooling gradient (PCG) (◦C/100 m) for (a) 2017, (b) 2018, and (c) 2019.

For the PCI index, representing the difference between the mean LST outside the park
in a buffer of 500 m from the park’s border and the mean LST inside the park, the values
ranged from 1.9 to 3.6 ◦C. The B and C parks produced the highest PCI values and the A and
D parks the lowest. The A Park is surrounded by dense urban development, whereas the
D Park by loose urban development and mixed type green areas, which correspond with
the obtained values. The B and C parks have mixed type land use in their surroundings
and large share of forest, which influences the higher values of the PCI statistic.

For the proposed PCIe statistic, which is the difference between the mean LST outside
the park in the buffer zone defined by the maximum cooling range of the park from
its border and the mean LST inside the park, the values ranged from 2.0 to 3.6 ◦C with
differences between particular parks in the range of 0.3–0.8 ◦C.

The range of park influence that determines the PCA shape has been shown in
Figure 5 in four main geographical directions. Meanwhile, the graphs of the LST measured
from park boundary to edge of the cooling distance, i.e., the distance at which the increase
of the LST, as we move away from the park boundary, becomes zero, also known as the
first turning point [40,41], have been shown in Figure 6.

4.2.1. A Park

The smallest A Park’s cooling effect can be observed from approx. 130 m in the north
direction to approx. 325 m in the west direction with the LST difference from 1.9 ◦C to 5.1 ◦C
depending on the analysed year. The A Park is located in the city centre and is surrounded
from all sides predominately by multi-storey residential buildings more densely situated in
the north and east parts (Appendix C). The park produced the most uniform spatial picture
of PCG. The park’s PCA varies from 78.8 ha to 101.6 ha as compared to its size (8.84 ha).
This indicates that it has a cooling effect on an area approx. 10 times its size.
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Figure 5. Radar diagrams of the distance (in meters) of the park’s cooling influence on surrounding LST for (a) 2017, (b)
2018, (c) 2019.

Figure 6. Graphs of LST measured from park boundary to edge of the cooling distance.
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4.2.2. B Park

The B Park’s cooling effect is from approx. 140–175 m in the west direction to
460–500 m in the east direction with the LST difference from 1.8–2.5 ◦C/100 to max.
5.8 ◦C/100 m. The PCG values are up to 3.3 ◦C in the west direction and lower in the
other three directions (1.0 to 1.3 ◦C). The park is situated in the southern part of the city
and its surroundings are characterized by loose urban development on the northern, south-
ern and western sides. In the east, the park is surrounded by single-family housing and
industrial and commercial zones. The forest constitutes more than half of its total area
(63.6%). The PCA produced by B Park varies from 181 ha to 199 ha.

4.2.3. C Park

The C Park’s cooling effect is from approx. 150 m in the east direction to max. 585 m
in the south direction, with the LST difference from 0.7–1.2 ◦C to max. 5.0 ◦C. The corre-
sponding PCG values range from a low 0.3 ◦C/100 m to 1.9 ◦C/100 m. The park is situated
in the southern part of the city and the forest makes up 73.2% of its total area. The land
use in its surroundings is of mixed type; to the north the park borders with relatively
dense residential multi-storey buildings, commercial and industrial areas, to the east with
residential zone (mostly semi-detached houses), to the south, first, with low vegetation
green spaces, tributary of the Odra River and further away with mixed housing, and to
the west with a cemetery (green space) and residential buildings (multi-storey). The PCA
produced by this park varies from 287.9 ha to 308.3 ha, whereas its size is 45.23 ha and it
has the smallest LSI value of 1.43 (Table 3).

4.2.4. D Park

The D Park’s cooling effect is from approx. 130–170 to max. 895–925 m, with the
LST difference from 2.4–3.2 ◦C to as much as 15 ◦C. The park produces the lowest PCG
in the north direction (0.6–0.8 ◦C/100 m) and the highest, up to 3.4 ◦C/100 m in the west
direction. The D Park is located in the western part of the city and its surroundings are
characterized by loose urban development with a small share of commercial and industrial
areas and sports grounds in the west. The park is in the vicinity of the Odra River, which
flows near the north-east boundary. The area of the park is 75 ha and is mostly covered
with forest (92.1%). It is the least compact park, with an LSI index of 2.61 (Table 3). The
D Park has the most varied spatial picture of the PCA, with values from 660 ha to 691 ha.
This spatial difference may be also caused by the closeness of the Odra River, clearly visible
in the picture of the city’s LST map.

5. Discussion

Based on the classification of urban park sizes in the city of Wroclaw we have identified
four distinct classes and selected one representative park from each class. This is a different
approach to those presented in the literature. The other studies range from research of
the effect of a single park [11,30,56] through selection of a subset of urban parks based on
different criteria [37] to comprehensive studies of all parks in urban area, e.g., [54].

The results show that park characteristics, such as area, shape and forest area, influence
the character of the urban park cooling effect. Larger parks are performing better in terms
of the cooling efficiency than smaller, compact parks. The same applies to parks with
larger forest areas. We have confirmed that the size of forest area in the park increases
the cooling distance from the park boundary and the park cooling efficiency, as well as
increases the lowering of the LST inside the park. The parks selected for our study are
located in different parts of the city and have mixed and different types of land use in
their surroundings, ranging from dense urban development to low vegetation and open
space. This has also allowed us to analyse the effect of land use type on the cooling
efficiency of parks. The cooling efficiency is the lowest for densely built-up residential
areas and the highest for open spaces. It should also be noted that the cooling effect of
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urban parks may be dependent on the background temperature, which can be nonlinear,
as observed in [51,87].

We have used two park metrics to assess the urban park efficiency on lowering the
LST, i.e., the LSI, which describes compactness of a given shape and PLC (forest area). There
are studies that investigate, e.g., area of water bodies [30,40,50,88] or type of park [40,45].
The other park metrics that can be used include, e.g., area to perimeter ratio [48,55] or
more complex indexes such as Fractal Dimension Index, which reflects the extent of shape
complexity across a range of spatial scales [89] and has been used in study by [65]. In our
study we did not analyse linear parks, such as the one along the city old moat, due to their
small sizes (i.e., width). According to the literature, such parks create small LST difference
between the park area and its surroundings [54].

Comparison with other studies in comparable geographical and climatic conditions is
hindered by the limited number of publications. For example, in the case of [90] the UHI
pattern was predominately determined for the city of Leipzig in Germany, whereas in the
case of Stockholm (Sweden) [38] ambient air temperature inside one of the parks and in its
surroundings were analysed. Our results confirm that, in the case of Wroclaw, located in a
temperate continental climate, urban parks produce significant cooling effects. This is in
accordance with other studies of cities located in comparable and in different climate zones,
e.g., [13,45,48,51,55]. For example, for the city of Changchun (China) located in a cold
temperate zone, the strongest PCI was determined for large parks with a cooling extent of
approx. 480 m for parks larger than 30 ha [13]. This is comparable with results obtained for
medium sized parks (B and C) in Wroclaw. Cao et al. [37] found that the max. PCI intensity
was 6.8 degrees for a park size of 41.9 ha in Nagoya (Japan) located in a temperature humid
climate, as compared to 3.6 ◦C in our case. In a study conducted in London (UK), it was
determined that the distance over which cooling is experienced increases linearly with
increasing green areas. However, the relationships between the amount of cooling and
areas are non-linear [51]. Compact and larger forest area lower the park’s mean LST and
improve the cooling effect; see also [30,44,55]. In our case, the magnitude of this influence
and size and shape of PCA differs for each of the analysed parks, as it is determined by
park size, forest area, as well as being connected with the type of land use in the vicinity.

These findings have significant implications, as the average temperature in Wroclaw
has risen by two degrees in the last few decades. Sustainable urban policy that takes into
account the role of parks in regulation of urban temperature may help to mitigate the UHI
effect and make it more resilient to the observed climate change.

We have carried out the research for day periods of the highest temperatures. The
published studies also indicate that the park cooling efficiency varies depending on the
time of the year and between day and night [44,55]. We have used three different datasets
(Landsat 8 imagery) acquired during the hottest weather spells in the 2017–2019 period
to analyse, repeatedly, the cooling effect of urban parks on the LST in their surroundings.
Many publications report studies based on a single satellite dataset only [47,53,54,59], while
other ones are based on a set of such images in different configurations, e.g., representing
different seasons [13,37] or acquired at monthly intervals [13]. Our observation is that
a park cooling island effect should be confirmed by several datasets representing the
distribution of the LST.

Analysis of LST distribution based on satellite imagery has the advantage of providing
continuous information for the study area in contrast to discrete and usually irregularly
spaced ground-based measurements. At the same time, it has limitations set by spatial
resolution of the satellite imagery that can reduce the LST retrieval accuracy (land cover
product 30 m, water vapor 1 km, TIRS 100 m, and FVC data 30 m) [83]. This eliminates the
smallest urban parks from analysis, e.g., [13] suggests that parks smaller than 2 ha should
not be considered, whereas [59] included parks larger than 1 ha.

Interpretation of park cooling efficiency and park cooling area should take this aspect
into consideration, as the pixel size may lead to value averaging, especially in park bound-
ary zones [37], resulting in a smoother picture of the LST distribution. In general, remotely
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sensed data should be accompanied by field measurements of ambient air temperature
for reference, however in cases of historical studies it may not be possible to obtain such
data. In addition, field measurements are usually limited to point locations or transects.
We have applied LST retrieval procedures proposed and successfully used by other au-
thors [82,83]. In future studies, it is better to combine remotely sensed satellite data with in
situ observations to examine the cooling effect of urban parks in a more comprehensive
way. Additionally, it should be noted that factors such as wind velocity may influence the
cooling effect and should be taken into account in future research.

Nonetheless, the advantages of satellite derived LST, such as continuous spatial
information and possibility of backward analysis, outweigh these limitations, and it is the
most commonly used source of data for LST based studies of urban park cooling effects
(Appendix A).

6. Conclusions

This is probably one of the few studies analysing urban park cooling effects on the
LST distribution for a medium sized city located in a temperate continental climate, as well
as the first study for the city of Wroclaw and foundation for further research. The Wroclaw
city has experienced growth of the average ambient air temperature in recent decades, as
well as the UHI phenomenon.

We have conducted the study for four parks representative of four distinct classes
based on park size. The parks also differ in terms of forest area and location in the city.

This study of the urban park cooling island efficiency has been based on a sequence of
LST maps derived from Landsat imagery for three hot weather periods. The land surface
temperatures derived from satellite-borne remotely sensed thermal imagery are not the
same as ambient air temperatures, and the accuracy of the LST spatial pattern is determined
by resolution of the satellite imagery products, which may cause a smoothing effect in
the data.

We have determined that the cooling effect of parks varies with park size, forest area,
as well as with type of land use in the park surroundings. The cooling distance is the
greatest (up to 925 m) for open spaces and the smallest (110–130 m) for densely spaced
multi-storey buildings and industrial zones. The average PCG values range from 0.7 to
2.1 ◦C/100 m, and the PCA values from as low as 78.8 ha (the smallest park surrounded
by multi-storey buildings) to 691.8 ha (the largest park with varied land use in its vicinity).
Thus, the park cooling effect is heterogenous and differs also with respect to the type of
park neighbourhood.

Results of this study have the potential to contribute to the understanding of how
urban parks can alleviate the urban heat island phenomenon in continental climate zones.
This has significant urban management and planning implications, as sustainable urban
development policies that take into account the role of parks in regulation of ambient air
temperature may help to mitigate the UHI effect and make the city more resilient to the
processes associated with climate change.

Therefore, the findings suggest solutions for urban planners and decision makers fac-
ing a developing and modernizing city to choose appropriate sustainable urban strategies
by considering locations for new parks and their vegetation composition.
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Appendix A

Table A1. Selected recent studies of urban park cooling effect in chronological order.

Authors
(Year of Publication) Study Type Source Data Main Methods Region, Climate

Jansson et al. (2007) [38] (1, 2) Ground based measurements
Temperature difference between the

built-up area and the urban park,
descriptive statistics

Stockholm
(Sweden)/Continental

Cao et al. (2010) [37] (1, 3) Aster and Ikonos Vegetation and shape indexes Nagoya (Japan)/
Temperate humid

Hamada and Ohta (2010) [42] (1) Ground based measurements Descriptive statistics, bivariate correlation Nagoya (Japan)/
Temperate humid

Oliveira et al. (2011) [39] (2) Ground based measurements

Park cooling intensity (maximum difference
between the measured values inside and

outside of green area), distance index,
influence of the solar exposure

Lisbon
(Portugal)/Mediterranean

Mahmoud (2011) [51] (2, 4) Ground based measurements,
Questionnaire surveys

Thermal comfort indices, regression
analysis, descriptive statistics

Cairo (Egypt)
/Desert

Cohen et al. (2012) [52] (4) Ground based measurements Physiological Equivalent Temperature,
regression analysis, human thermal comfort

Tel Aviv (Israel)/Subtropical
Mediterranean

Choi et al. (2012) [43] (1) Landsat 7 Kriging, spatial-autocorrelation, inverse
distance squared weighting analysis

Seoul (Korea)/Humid
continental

Siti Nor Afzan Buyadi et al.
(2013) [29] (4) Landsat 5 LST transect profiles, Temperature

distribution of land use types
Shah Alam, Selangor
(Malaysia)/Tropical

Ren et al. (2013) [47] (3) Landsat 5, SPOT Descriptive statistics, correlation of Park
Cooling Intensity and forest structure

Changchun, Jilin province
(China)/Humid continental

with monsoon influence

Kong et al. (2014) [46] (1, 3) Landsat 5, Ikonos Multiple linear regression analysis of
vegetation influence on PCI intensity

Nanjing, Jiangsu Province
(China)/Subtropical

Chang and Li (2014) [62] (4) Ground based measurements Classification and Regression Tree analysis,
regression analysis

Taipei (Taiwan)/Subtropical
monsoon

Feyisa et al. (2014) [60] (1) Landsat 7, ground based
measurements

Park cooling distance, and intensity,
regression Addis Ababa (Ethiopia)/Desert

Skoulika et al. (2014) [11] (1) Ground based measurements Nocturnal and daytime cool island intensity Athens (Greece)/
Mediterranean

Anjos and Lopes (2014) [61] (4) Ground based measurements Cluster analysis Aracaju (Brasil)/
Tropical/subtropical

Doick et al. (2014) [44] (1, 2) Ground based measurements Descriptive statistics, distance-temperature
ratio, frequency distribution

London (UK)/Temperate
oceanic

Cheng et al. (2015) [41] (1) Landsat Correlation of LST and park size Shanghai, China
/Subtropical monsoon

Chen et al. (2015) [56] (4) Ground based measurements,
Questionnaire surveys Descriptive statistics, linear regression Shanghai, China

/Subtropical monsoon

Monteiro et al. (2016) [55] (1, 4) Ground based measurements Size metric, regression analysis London (UK)/Temperate
oceanic

Bao et al. (2016) [48] (1) Landsat 5, 8 Landscape metrics, park cooling distance
and direction

Baotou, Inner Mongolia
Province (China)/Continental

Yang et al. (2016) [10] (1) Ground based measurements Diurnal UHI index, frequency distribution
of UHI index differences

Beijing (China)/Humid
continental

Anguluri and Narayanan
(2017) [57] (4) Geo-eye Per capita and proportional green indexes,

GIS

Kalaburagi, North Karnataka
(India)/

Tropical/subtropical

Du et al. (2017) [59] (1, 3) Landsat 8, Google Earth Green cool indexes: range, amplitude of
temperature drop, temperature gradient

Shanghai (China)
Subtropical

Park et al. (2017) [45] (2, 4) Ground based measurements Descriptive statistics/
linear regression analysis

Seoul (Korea)/Humid
continental climate

Sun et al. (2017) [30] (4) Ground based measurements
Relationship between landscape parameters
and thermal comfort, Numerical simulation

modelling, bivariate regression

Beijing (China)/Humid
continental
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Table A1. Cont.

Authors
(Year of Publication) Study Type Source Data Main Methods Region, Climate

Xu et al. (2017) [49] (4) Landsat 5 QuickBird Landscape structure index, woodland
aggregation index, regression analysis

Beijing (China)/Humid
continental

Yang et al. (2017) [12] (3) Landsat 8,
Area, perimeter, area to perimeter ratio,
shape, total area and number of patches

metrics

Changchun, Jilin Province
(China)/Continental

Yang et al. (2017) [13] (1, 4) Landsat 8, GF-2 Urban park metrics (area, perimeter, shape,
patch density), cooling effect extent

Changchun/Changchun, Jilin
Province (China)/Continental

Yu et al. (2017) [50] (4) Landsat 7, 8, SPOT 5, PCI extent, intensity, efficiency, and TVoE Fuzhou, Fujian Province
(China)/Subtropical

Yu et al. (2018) [28] (4) Landsat 7, 8, SPOT 5, Google
Earth

Land cover change effect on LST
distribution

Fuzhou, Fujian Province
(China)/Subtropical

Wang et al. (2018) [54] (1, 4) Landsat 8
Temperature Drop Amplitude, Temperature

Drop Range, Pearson correlation,
regression analysis

Changzhou, Jiangsu Province
(China)/Subtropical

Algretawee et al. (2019) [5] (2) Ground measurements
(handheld devices)

Park cooling magnitude and distance
indexes

Melbourne
(Australia)/temperate oceanic

Li et al. (2020) [65] (1, 2, 3) Landsat 8 Landscape metrics Zhengzhou (China)/Humid
subtropical

Peng et al. (2020) [40] (1, 3) Landsat 8 Four park cooling indexes: intensity,
gradient, area and efficiency Shenzen (China)/Subtropical

Qiu and Jia, (2020) [58] (1) Landsat 8
PCI range, amplitude of temperature

difference, temperature gradient, regression
analysis

Beijing (China)/Humid
continental

Study types: (1) assessment of park cooling effect, (2) monitoring of park cooling effect, (3) identification of factors influencing park cooling
effect], (4) design of parks for increased cooling effect. Abbreviations: LST—land surface temperature, PCI—park cool island, UHI—urban
heat island.

Appendix B

Figure A1. LST maps in Wroclaw for the analysed 2017–2019 periods.
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Appendix C

Figure A2. LST maps in the analysed parks.
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