Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers
Abstract
:1. Introduction
- Estuarine water level and salinity negatively affect annual tree growth, and generate shifts in plant community composition and structure, with estuarine water level and salinity becoming increasingly important at driving vegetation assemblage in downriver locations within the tidal freshwater zone.
- Watershed nutrient inputs and river flow positively affect annual growth in the tree community, becoming increasingly important along the upriver portions of the longitudinal tidal river gradient.
2. Materials and Methods
2.1. Study Sites
2.2. Vegetation Composition and Structure
2.3. Tree Growth
2.4. Analyses
3. Results
3.1. Longitudinal River Gradients
3.2. Interannual Variation in Tree Growth
4. Discussion
4.1. Plant Communities and Structure
4.2. Annual Basal Area Increment Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conner, W.H.; Doyle, T.W.; Krauss, K.W. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Field, D.W.; Reyer, A.J.; Genovese, P.V.; Shearer, B.D. Coastal Wetlands of the United States, an Accounting of a Valuable National Resource; National Oceanic and Atmospheric Administration: Rockville, MD, USA, 1991; p. 58. [Google Scholar]
- Ensign, S.H.; Noe, G. Tidal extension and sea-level rise: Recommendations for a research agenda. Front. Ecol. Environ. 2018, 16, 37–43. [Google Scholar] [CrossRef]
- Brophy, L.S. Effectiveness Monitoring at Tidal Wetland Restoration and Reference Sites in the Siuslaw River Estuary: A Tidal Swamp Focus; Technical Report for Green Point Consulting: Corvallis, OR, USA, 2009. [Google Scholar]
- Brophy, L.S.; Cornu, C.; Adamus, P.R.; Christy, J.A.; Gray, A.; Huang, L.; MacClellan, M.; Doumbia, J.; Tully, R. New Tools for Tidal Wetland Restoration: Development of a Reference Conditions Database and a Temperature Sensor Method for Detecting Tidal Inundation in Least-Disturbed Tidal Wetlands of Oregon, USA. Amended Final Report; Technical Report for the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET): Durham, NH, USA, 2011. [Google Scholar]
- Diefenderfer, H.L.; Coleman, A.M.; Borde, A.B.; Sinks, I.A. Hydraulic geometry and microtopography of tidal freshwater forested wetlands and implications for restoration, Columbia River, U.S.A. Ecohydrol. Hydrobiol. 2008, 8, 339–361. [Google Scholar] [CrossRef]
- Brophy, L.S.; Greene, C.M.; Hare, V.C.; Holycross, B.; Lanier, A.; Heady, W.N.; O’Connor, K.; Imaki, H.; Haddad, T.; Dana, R. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE 2019, 14, e0218558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simenstad, C.; Ramirez, M.; Burke, J.; Logsdon, M.; Shipman, H.; Tanner, C.; Toft, J.; Craig, B.; Davis, C.; Fung, J. Historical Change of Puget Sound Shorelines: Puget Sound Nearshore Ecosystem Project Change Analysis; Puget Sound nearshore report, No. 2011-01; Washington Department of Fish and Wildlife: Olympia, WA, USA; U.S. Army Corps of Engineers: Seattle, WA, USA, 2011. Available online: https://wdfw.wa.gov/sites/default/files/publications/02186/wdfw02186.pdf (accessed on 30 August 2021).
- Krauss, K.W.; Noe, G.B.; Duberstein, J.A.; Conner, W.H.; Stagg, C.L.; Cormier, N.; Jones, M.C.; Bernhardt, C.E.; Lockaby, B.G.; From, A.S.; et al. The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage and Flux. Glob. Biogeochem. Cycles 2018, 32, 817–839. [Google Scholar] [CrossRef]
- Baldwin, A.H.; Barendregt, A.; Whigham, D.F. Tidal Freshwater Wetlands, an Introduction to the Ecosystem; Margraf: Leiden, The Netherlands, 2009. [Google Scholar]
- Ensign, S.H.; Piehler, M.; Doyle, M.W. Riparian zone denitrification affects nitrogen flux through a tidal freshwater river. Biogeochemistry 2008, 91, 133–150. [Google Scholar] [CrossRef]
- Korol, A.R.; Noe, G.B. Patterns of Denitrification Potential in Tidal Freshwater Forested Wetlands. Estuaries Coasts 2020, 43, 329–346. [Google Scholar] [CrossRef]
- Ensign, S.H.; Noe, G.; Hupp, C.R.; Skalak, K.J. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries. Geophys. Res. Lett. 2015, 42, 10671–10679. [Google Scholar] [CrossRef]
- Celik, S.; Anderson, C.J.; Kalin, L.; Rezaeianzadeh, M. Long-term Salinity, Hydrology, and Forested Wetlands along a Tidal Freshwater Gradient. Estuaries Coasts 2021, 1–15. [Google Scholar] [CrossRef]
- Neubauer, S.C.; Craft, C.B. Global change and tidal freshwater wetlands: Scenarios and impacts. In Tidal Freshwater Wetlands; Barendregt, A., Whigham, D.F., Baldwin, A.H., Eds.; Margraf Publishers: Leiden, The Netherlands, 2009; pp. 253–266. [Google Scholar]
- Kirwan, M.L.; Gedan, K.B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Chang. 2019, 9, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Taillie, P.J.; Moorman, C.E.; Poulter, B.; Ardon, M.; Emanuel, R. Decadal-Scale Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems 2019, 22, 1918–1930. [Google Scholar] [CrossRef]
- Brinson, M.M.; Bradshaw, H.D.; Jones, M.N. Transitions in forested wetlands along gradients of salinity and hydroperiod. J. Elisha Mitchell Sci. Soc. 1985, 101, 76–94. [Google Scholar]
- Doumlele, D.G.; Fowler, B.K.; Silberhorn, G.M. Vegetative community structure of a tidal freshwater swamp in Virginia. Wetlands 1984, 4, 129–145. [Google Scholar] [CrossRef]
- Rheinhardt, R. A Multivariate Analysis of Vegetation Patterns in Tidal Freshwater Swamps of Lower Chesapeake Bay, U.S.A. Bull. Torrey Bot. Club 1992, 119, 192. [Google Scholar] [CrossRef]
- Baldwin, A.H. Vegetation and Seed Bank Studies of Salt-Pulsed Swamps of the Nanticoke River, Chesapeake Bay. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 139–160. [Google Scholar]
- Kroes, D.E.; Hupp, C.R.; Noe, G.B. Sediment, Nutrient, and Vegetation Trends along the Tidal, Forested Pocomoke River, Maryland. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 113–137. [Google Scholar]
- Hackney, C.T.; Avery, G.B.; Leonard, L.A.; Posey, M.; Alphin, T. Biological, Chemical, and Physical Characteristics of Tidal Freshwater Swamp Forests of the Lower Cape Fear River/Estuary, North Carolina. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 183–221. [Google Scholar]
- Conner, W.H.; Krauss, K.W.; Doyle, T.W. Ecology of Tidal Freshwater Forests in Coastal Deltaic Louisiana and Northeastern South Carolina. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 223–253. [Google Scholar]
- Duberstein, J. Composition and Ecophysiological Proficiency of Tidal Freshwater Forested Wetlands: Investigating Basin, Landscape, and Microtopographic Scales; Clemson University: Clemson, SC, USA, 2011. [Google Scholar]
- Duberstein, J.; Kitchens, W. Community Composition of Select Areas of Tidal Freshwater Forest along the Savannah River. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 321–348. [Google Scholar]
- Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, R.H.; Inabinette, L.W.; Whitbeck, J.L. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients. Wetlands 2009, 29, 505–519. [Google Scholar] [CrossRef]
- Light, H.M.; Darst, M.R.; Lewis, L.J.; Howell, D.A. Hydrology, vegetation, and soils of riverine and tidal floodplain forests of the lower Suwannee River, Florida, and potential impacts of flow reductions. U.S. Geol. Surv. Prof. Pap. 2002. [Google Scholar] [CrossRef]
- Liu, X.; Conner, W.H.; Song, B.; Jayakaran, A. Forest composition and growth in a freshwater forested wetland community across a salinity gradient in South Carolina, USA. For. Ecol. Manag. 2017, 389, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Duberstein, J.A.; Conner, W.H.; Krauss, K.W. Woody vegetation communities of tidal freshwater swamps in South Carolina, Georgia and Florida (US) with comparisons to similar systems in the US and South America. J. Veg. Sci. 2013, 25, 848–862. [Google Scholar] [CrossRef]
- Duberstein, J.A.; Krauss, K.W.; Conner, W.H.; Bridges, W.C.; Shelburne, V.B. Do Hummocks Provide a Physiological Advantage to Even the Most Flood Tolerant of Tidal Freshwater Trees? Wetlands 2013, 33, 399–408. [Google Scholar] [CrossRef]
- Krauss, K.W.; Duberstein, J.A. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed. Can. J. For. Res. 2010, 40, 525–535. [Google Scholar] [CrossRef]
- Yanosky, T.M.; Hupp, C.R.; Hackney, C.T. Chloride Concentrations in Growth Rings of Taxodium Distichum in a Saltwater-Intruded Estuary. Ecol. Appl. 1995, 5, 785–792. [Google Scholar] [CrossRef]
- Zhai, L.; Krauss, K.W.; Liu, X.; Duberstein, J.A.; Conner, W.H.; deAngelis, D.L.; Sternberg, L.D. Growth stress response to sea level rise in species with contrasting functional traits: A case study in tidal freshwater forested wetlands. Environ. Exp. Bot. 2018, 155, 378–386. [Google Scholar] [CrossRef]
- Doyle, T.W.; Conner, W.H.; Ratard, M.; Inabinette, L.W. Assessing the Impact of Tidal Flooding and Salinity on Long-term Growth of Baldcypress under Changing Climate and Riverflow. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 411–445. [Google Scholar]
- Palta, M.M.; Doyle, T.W.; Jackson, C.R.; Meyer, J.L.; Sharitz, R.R. Changes in Diameter Growth of Taxodium distichum in Response to Flow Alterations in the Savannah River. Wetlands 2011, 32, 59–71. [Google Scholar] [CrossRef]
- Thomas, B.L.; Doyle, T.; Krauss, K. Annual Growth Patterns of Baldcypress (Taxodium distichum) Along Salinity Gradients. Wetlands 2015, 35, 831–839. [Google Scholar] [CrossRef]
- Young, P.J.; Keeland, B.D.; Sharitz, R.R. Growth Response of Baldcypress [Taxodium distichum (L.) Rich.] to an Altered Hydrologic Regime. Am. Midl. Nat. 1995, 133, 206. [Google Scholar] [CrossRef]
- Megonigal, J.P.; Conner, W.H.; Kroeger, S.; Sharitz, R.R. Aboveground production in southeastern floodplain forests: A test of the subsidy-stress hypothesis. Ecology 1997, 78, 370–384. [Google Scholar]
- Duberstein, J.A.; Krauss, K.W.; Baldwin, M.J.; Allen, S.T.; Conner, W.H.; Salter, J.S.; Miloshis, M. Small gradients in salinity have large effects on stand water use in freshwater wetland forests. For. Ecol. Manag. 2020, 473, 118308. [Google Scholar] [CrossRef]
- Weakley, A.S.; Ludwig, J.C.; Townsend, J.F.; Crowder, B. Flora of Virginia; Botanical Research Institute of Texas Press: Fort Worth, TX, USA, 2012. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996. [Google Scholar]
- Phipps, R.L. Collecting, Preparing, Crossdating, and Measuring Tree Increment Cores; US Department of the Interior, Geological Survey: Reston, VA, USA, 1985.
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Lucas, R.W.; Salguero-Gómez, R.; Cobb, D.B.; Waring, B.G.; Anderson, F.; McShea, W.J.; Casper, B.B. White-tailed deer (Odocoileus virginianus) positively affect the growth of mature northern red oak (Quercus rubra) trees. Ecosphere 2013, 4, 84. [Google Scholar] [CrossRef]
- CERIS. Survey Status of Emerald Ash Borer—Agrilus Planipennis; Purdue University: West Lafayette, IN, USA, 2019. [Google Scholar]
- Curtis, J.T.; McIntosh, R.P. An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Moyer, D.L. Nitrogen, Phosphorus, and Suspended-Sediment Loads and Trends measured in Nine Chesapeake Bay Tributaries: Annual Loads-Water Years 1985–2015. U.S. Geological Survey data release. 2016. Available online: http://dx.doi.org/10.5066/F7Q81B5N (accessed on 30 August 2021).
- Mendenhall, W.; Sincich, T. Statistics for Engineering and the Sciences; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ngo, T.H.D.; La Puente, C. The steps to follow in a multiple regression analysis. In Proceedings of the SAS Global Forum, Orlando, FL, USA, 22–25 April 2012. [Google Scholar]
- Fowler, B.K.; Hershner, C. Primary production in Cohoke Swamp, a tidal freshwater wetland in Virginia. In Proceedings of the Freshwater Wetlands and Wildlife Symposium: Perspectives on Natural, Managed and Degraded Ecosystems, Charleston, SC, USA, 24–27 March 1989; pp. 365–374. [Google Scholar]
- Rheinhardt, R.D. Tidal Freshwater Swamps of a Lower Chesapeake Bay Subestuary. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 161–182. [Google Scholar]
- Noe, G.B.; Krauss, K.W.; Lockaby, B.G.; Conner, W.H.; Hupp, C.R. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 2013, 114, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Duberstein, J.A.; Conner, W.H. Use of hummocks and hollows by trees in tidal freshwater forested wetlands along the Savannah River. For. Ecol. Manag. 2009, 258, 1613–1618. [Google Scholar] [CrossRef]
- Friedrichs, C.T. York River Physical Oceanography and Sediment Transport. J. Coast. Res. 2009, 10057, 17–22. [Google Scholar] [CrossRef]
- Odum, W.E.; Smith, T.J.I.; Hoover, J.K.; McIvor, C.C. The Ecology of Tidal Freshwater Marshes of the United States East Coast: A Community Profile; U.S. Fish and Wildlife Service: Washington, DC, USA, 1984.
- Hackney, C.T.; Avery, G.B. Tidal Wetland Community Response to Varying Levels of Flooding by Saline Water. Wetlands 2015, 35, 227–236. [Google Scholar] [CrossRef]
- Williams, K.; Ewel, K.C.; Stumpf, R.P.; Putz, F.E.; Workman, T.W. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 1999, 80, 2045–2063. [Google Scholar] [CrossRef]
- Williams, K.; Macdonald, M.; McPherson, K.; Mirti, T.H. Ecology of the Coastal Edge of Hydric Hammocks on the Gulf Coast of Florida. In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States; Springer: Dordrecht, The Netherlands, 2007; pp. 255–289. [Google Scholar]
- Weston, N.; Dixon, R.E.; Joye, S. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. J. Geophys. Res. Biogeosci. 2006, 111, G01009. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.J.; Lockaby, B.G. Foliar nutrient dynamics in tidal and non-tidal freshwater forested wetlands. Aquat. Bot. 2011, 95, 153–160. [Google Scholar] [CrossRef]
- Allen, S.T.; Keim, R.F.; Dean, T.J. Contrasting effects of flooding on tree growth and stand density determine aboveground production, in baldcypress forests. For. Ecol. Manag. 2019, 432, 345–355. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Rust, W.G. Tree growth responses to flooding in a bottomland forest in northeastern Illinois. For. Sci. 1984, 30, 499–510. [Google Scholar]
- Stahle, D.W.; Cleaveland, M.K. Reconstruction and Analysis of Spring Rainfall over the Southeastern U.S. for the Past 1000 Years. Bull. Am. Meteorol. Soc. 1992, 73, 1947–1961. [Google Scholar] [CrossRef] [Green Version]
- Craft, C.B. Tidal freshwater forest accretion does not keep pace with sea level rise. Glob. Chang. Biol. 2012, 18, 3615–3623. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R.; Bernhardt, C.E.; Krauss, K.W. Contemporary Deposition and Long-Term Accumulation of Sediment and Nutrients by Tidal Freshwater Forested Wetlands Impacted by Sea Level Rise. Estuaries Coasts 2016, 39, 1006–1019. [Google Scholar] [CrossRef]
- Hupp, C.; Schenk, E.; Kroes, D.; Willard, D.; Townsend, P.; Peet, R. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales. Geomorphology 2015, 228, 666–680. [Google Scholar] [CrossRef]
- Noe, G.B.; Cashman, M.J.; Skalak, K.; Gellis, A.; Hopkins, K.G.; Moyer, D.; Webber, J.; Benthem, A.; Maloney, K.; Brakebill, J.; et al. Sediment dynamics and implications for management: State of the science from long-term research in the Chesapeake Bay watershed, USA. Wiley Interdiscip. Rev. Water 2020, 7, e1454. [Google Scholar] [CrossRef]
- Bourg, N.A.; Noe, G.B.; Hupp, C.R. Data on Tree Growth and Plant Community Composition in Mid-Atlantic Tidal Freshwater Forested Wetlands; U.S. Geological Survey data release; U.S. Geological Survey: Reston, VA, USA, 2020. [CrossRef]
TREES | |||||
---|---|---|---|---|---|
Site | S | H′ | E | Live BA (m2 ha−1) | Mean BAI of Individual Trees (cm2 yr−1) ± 1 SD |
MNT | 14 | 1.89 | 0.72 | 26.18 | 2.4 ± 1.2 |
MUT | 10 | 1.87 | 0.81 | 20.88 | 1.6 ± 1.5 |
MLT | 10 | 1.68 | 0.73 | 26.06 | 1.8 ± 1.9 |
MST * | 3 | 0.90 | 0.82 | 20.95 | 0.7 ± 0.1 |
PNT | 9 | 1.33 | 0.61 | 22.10 | 10.6 ± 6.8 |
PUT | 7 | 1.58 | 0.81 | 44.43 | 11.3 ± 8.1 |
PLT | 8 | 1.64 | 0.79 | 29.61 | 3.4 ± 1.9 |
PST | 6 | 1.43 | 0.80 | 15.57 | 4.6 ± 2.9 |
SHRUBS | |||||
Site | S | H′ | E | Live BA (m2 ha−1) | |
MNT | 6 | 1.16 | 0.65 | 1.02 | |
MUT | 7 | 1.08 | 0.56 | 1.19 | |
MLT | 9 | 1.78 | 0.81 | 1.27 | |
MST * | 6 | 1.67 | 0.93 | 1.88 | |
PNT | 5 | 1.61 | 1.00 | 0.22 | |
PUT | 6 | 1.00 | 0.56 | 0.79 | |
PLT | 8 | 1.50 | 0.72 | 1.56 | |
PST | 3 | 0.64 | 0.58 | 1.38 | |
HERBACEOUS LAYER | |||||
Site | S | H′ | E | Mean Vegetative % Cover ± 1 SD | |
MNT | 25 | 1.41 | 0.44 | 40.2 ± 28.6 | |
MUT | 36 | 2.37 | 0.66 | 62.0 ± 36.1 | |
MLT | 27 | 1.87 | 0.57 | 90.5 ± 14.3 | |
MST * | 19 | 1.65 | 0.56 | 34.3 ± 7.7 | |
PNT | 29 | 2.25 | 0.67 | 45.2 ± 24.0 | |
PUT | 27 | 2.45 | 0.74 | 73.5 ± 17.5 | |
PLT | 37 | 2.23 | 0.62 | 67.0 ± 27.8 | |
PST | 31 | 2.62 | 0.76 | 88.8 ± 8.8 |
TREES | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | MNT | MUT | MLT | MST | PNT | PUT | PLT | PST | ||||||||
BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | |
Acer rubrum | 3.90 | 30.3 | 2.22 | 21.5 | 1.94 | 27.8 | 2.00 | 67.9 | 11.61 | 92.6 | 17.76 | 79.7 | 3.23 | 46.9 | 2.22 | 51.6 |
Betula nigra | 0.20 | 7.6 | 0.44 | 13.0 | 6.34 | 100.6 | ||||||||||
Carpinus caroliniana | 1.35 | 20.5 | 2.92 | 59.8 | 0.64 | 13.5 | 2.21 | 46.3 | 0.39 | 28.1 | ||||||
Carya cordiformis | 2.50 | 24.9 | ||||||||||||||
Fagus grandifolia | 6.69 | 50.6 | 4.89 | 36.1 | 0.71 | 10.3 | ||||||||||
Fraxinus pennsylvanica | 1.44 | 30.4 | 7.64 | 87.4 | 9.47 | 141.1 | 1.37 | 25.9 | 16.42 | 76.7 | 7.47 | 72.0 | 4.56 | 97.5 | ||
Ilex opaca | 2.14 | 65.5 | 2.01 | 44.3 | 0.07 | 14.5 | 0.35 | 15.5 | ||||||||
Ilex verticillata | 0.07 | 19.6 | ||||||||||||||
Liquidambar styraciflua | 0.33 | 8.1 | 1.61 | 26.5 | 0.45 | 11.2 | 0.30 | 10.4 | ||||||||
Magnolia virginiana | 1.39 | 30.7 | ||||||||||||||
Nyssa biflora | A | 11.87 | 83.3 | 6.55 | 73.5 | |||||||||||
Nyssa sylvatica | 0.44 | 11.8 | 4.86 | 57.9 | 8.84 | 56.3 | 9.48 | 91.1 | 7.64 | 57.6 | 6.45 | 52.9 | 1.53 | 23.3 | ||
Platanus occidentalis | 0.05 | 9.2 | 1.20 | 17.5 | ||||||||||||
Quercus phellos | 4.18 | 29.3 | 1.00 | 13.8 | 1.61 | 18.3 | ||||||||||
Ulmus rubra | 0.35 | 19.9 | ||||||||||||||
SHRUBS | ||||||||||||||||
Species | MNT | MUT | MLT | MST | PNT | PUT | PLT | PST | ||||||||
BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | BA (m2 ha−1) | IV | |
Acer rubrum | 0.83 | 79.9 | ||||||||||||||
Alnus serrulata | 0.90 | 173.4 | 0.06 | 11.8 | 1.03 | 135.6 | ||||||||||
Betula nigra | 0.02 | 51.0 | ||||||||||||||
Carpinus caroliniana | 0.08 | 24.1 | 0.02 | 18.2 | 0.15 | 106.6 | 19.8 | |||||||||
Campsis radicans | 0.01 | 45.2 | 0.02 | 27.4 | ||||||||||||
Celtis occidentalis | 0.06 | 39.5 | ||||||||||||||
Cornus sp. | 0.05 | 22.5 | 0.05 | 31.1 | 0.2 | 46.9 | ||||||||||
Diospyros virginiana | 0.01 | 45.2 | 0.12 | 21.6 | ||||||||||||
Fraxinus pennsylvanica | 0.05 | 20.3 | 0.11 | 22.3 | 0.59 | 67.2 | 0.03 | 13.2 | ||||||||
Ilex opaca | 0.68 | 167.1 | 0.15 | 22.6 | 0.15 | 29.5 | 0.06 | 26.2 | 0.02 | 36.2 | ||||||
Ilex decidua | 0.08 | 26.6 | ||||||||||||||
Ilex verticillata | 0.22 | 69.0 | 0.57 | 186.1 | 0.06 | 15.2 | ||||||||||
Lindera benzoin | 0.04 | 27.8 | ||||||||||||||
Lyonia ligustrina | 0.03 | 19.0 | ||||||||||||||
Magnolia virginiana | 0.57 | 97.4 | ||||||||||||||
Morella cerifera | 1.30 | 224.3 | ||||||||||||||
Nyssa sylvatica | 0.08 | 24.7 | 0.12 | 16.4 | ||||||||||||
Parthenocissus quinquefolia | 0.03 | 52.1 | ||||||||||||||
Rhododendron periclymenoides | 0.10 | 24.5 | ||||||||||||||
Vaccinium corymbosum | 0.01 | 17.6 | ||||||||||||||
Vaccinium stamineum | 0.16 | 49.1 | ||||||||||||||
Viburnum prunifolium | 0.09 | 26.5 | ||||||||||||||
Vitis sp. | 0.05 | 21.2 | ||||||||||||||
HERBACEOUS LAYER | ||||||||||||||||
Species | MNT | MUT | MLT | MST | PNT | PUT | PLT | PST | ||||||||
Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | Mean Cover (%) ± 1 SD | IV | |
Boehmeria cylindrica | 5.0 ± 7.6 | 26.0 | 1.7 ± 3.7 | 6.4 | ||||||||||||
Carex sp. 1 | 0.8 ± 1.9 | 3.4 | 3.7 ± 7.3 | 20.1 | 11.7 ± 14.6 | 39.0 | 2.5 ± 5.6 | 6.8 | ||||||||
Chasmanthium latifoilum | 11.8 ± 16.4 | 37.9 | 0.5 ± 1.1 | 4.5 | ||||||||||||
Cicuta maculata | 3.2 ± 3.5 | 13.4 | 0.02 ± 0.04 | 1.5 | 8.0 ± 8.2 | 23.9 | ||||||||||
Clethra alnifolia | 25.0 ± 26.3 | 129.9 | 14.2 ± 13.7 | 54.6 | 0.2 ± 0.4 | 3.6 | ||||||||||
Cyperaceae sp. fine-leaved | 5.4 ± 11.1 | 22.6 | ||||||||||||||
Liquidambar styraciflua | 1.1 ± 1.8 | 13.9 | 0.2 ± 0.4 | 6.1 | 0.8 ± 1.9 | 3.4 | ||||||||||
Mitchella repens | 5.0 ± 7.1 | 33.5 | 2.0 ± 3.6 | 11.9 | ||||||||||||
Murdannia keisak | 13.4 ± 29.8 | 46.5 | 43.7 ± 21.5 | 105.9 | 0.4 ± 0.5 | 8.8 | 0.9 ± 1.9 | 7.7 | 14.2 ± 23.9 | 42.3 | 21.7 ± 21.9 | 70.3 | 12.9 ± 9.9 | 36.1 | ||
Persicaria sagittata | 0.2 ± 0.4 | 4.2 | 11.5 ± 9.5 | 35.0 | 3.7 ± 4.5 | 27.9 | 0.2 ± 0.4 | 2.7 | 4.4 ± 9.2 | 17.6 | 6.2 ± 9.1 | 24.2 | 4.5 ± 2.8 | 17.2 | ||
Peltandra virginica | 0.02 ± 0.04 | 1.9 | 3.7 ± 3.9 | 12.9 | 3.0 ± 2.9 | 24.0 | 2.0 ± 3.7 | 12.8 | 9.3 ± 11.6 | 33.0 | 11.0 ± 7.1 | 41.5 | 17.5 ± 8.0 | 46.6 | ||
Poaceae sp. 1 | 0.2 ± 0.4 | 2.4 | 0.7 ± 0.9 | 14.2 | 5.0 ± 7.6 | 26.0 | 0.02 ± 0.04 | 1.5 | 0.8 ± 0.7 | 6.6 | ||||||
Ptilimnium capillaceum | 7.5 ± 11.5 | 19.3 | ||||||||||||||
Saururus cernuus | 3.3 ± 7.5 | 12.5 | 6.7 ± 4.9 | 22.8 | 3.3 ± 4.7 | 22.6 | 15.0 ± 16.8 | 76.0 | 5.8 ± 10.9 | 21.6 | 1.3 ± 1.4 | 8.4 | 1.3 ± 1.8 | 6.5 | ||
Typha latifolia | 1.7 ± 3.7 | 5.3 | 12.5 ± 18.1 | 34.1 | ||||||||||||
Viburnum nudum | 7.7 ± 8.7 | 54.3 | 0.8 ± 1.9 | 3.9 |
Nontidal | Upper Tidal | Lower Tidal | Stressed Tidal | |||||
---|---|---|---|---|---|---|---|---|
Terms | Sign and Sig. | Terms | Sign and Sig. | Terms | Sign and Sig. | Terms | Sign and Sig. | |
River TN | - ** | Estuarine Water Level | + **** | River TN | - **** | Estuarine Water Level | + * | |
River flow | + * | Max Salinity TF4.4 | + | Max Salinity RET4.2 | + | |||
Mattaponi | Estuarine Water Level | - * | ||||||
mean BAIs: | ||||||||
all species | (n = 31, p = 0.0085, R2 = 0.35, Adj. R2 = 0.27) | (n = 31, p < 0.0001, R2 = 0.69, Adj. R2 = 0.68) | (n = 26, p < 0.0001, R2 = 0.77, Adj. R2 = 0.75) | (n = 26, p = 0.006, R2 = 0.53, Adj. R2 = 0.48) | ||||
Estuarine Water Level | + *** | River Flow | + ** | River TP | + | Estuarine Water Level | + *** | |
River Flow | - | Estuarine Water Level | - ^ | Max Salinity RET4.1 | + | River TP | - * | |
Pamunkey | River Flow | + | Max Salinity TF4.2 | +^ | ||||
mean BAIs: | ||||||||
all species | (n = 31, p = 0.0002, R2 = 0.56, Adj. R2 = 0.53) | (n = 31, p = 0.027, R2 = 0.31, Adj. R2 = 0.26) | (n = 28, p = 0.006, R2 = 0.53, Adj. R2 = 0.47) | (n = 28, p = 0.005, R2 = 0.49, Adj. R2 = 0.43) | ||||
River TN | + | River TN | - ** | Estuarine Water Level | + * | |||
Estuarine Water Level | - ** | Max Salinity RET4.2 | + | |||||
Mattaponi | N/A | Max Salinity TF4.4 | - | |||||
mean BAIs: F. pennsylvanica | ||||||||
(n = 31, p = 0.27, R2 = 0.09, Adj. R2 = 0.06) | (n = 26, p = 0.024, R2 = 0.45, Adj. R2 = 0.37) | (n = 26, p = 0.007, R2 = 0.49, Adj. R2 = 0.44) | ||||||
River TP | - *** | Estuarine Water Level | - ** | River Flow | + * | Estuarine Water Level | +^ | |
Estuarine Water Level | + | River TP | - ** | River TP | + | Max Salinity TF4.2 | - | |
Pamunkey | River Flow | + | River Flow | + * | Max Salinity RET4.1 | + | ||
mean BAIs: F. pennsylvanica | (n = 15, p < 0.0001, R2 = 0.90, Adj. R2 = 0.87) | (n = 31, p < 0.0001, R2 = 0.74, Adj. R2 = 0.71) | (n = 28, p = 0.007, R2 = 0.53, Adj. R2 = 0.47) | (n = 28, p = 0.25, R2 = 0.25, Adj. R2 = 0.19) | ||||
Estuarine Water Level | - | River Flow | - | Estuarine Water Level | + * | |||
River TN | + * | |||||||
Mattaponi | N/A | Max Salinity RET4.2 | + | |||||
mean BAIs: | ||||||||
A. rubrum | (n = 31, p = 0.0489, R2 = 0.23, Adj. R2 = 0.20) | (n = 16, p = 0.62, R2 = 0.22, Adj. R2 = 0.16) | (n = 26, p = 0.042, R2 = 0.38, Adj. R2 = 0.30) | |||||
Estuarine Water Level | + ** | River Flow | + * | Max Salinity RET4.1 | +^ | Max Salinity RET4.1 | - * | |
River Flow | - | River TP | +^ | River TP | + | Estuarine Water Level | + | |
Pamunkey | River TP | + | River TN | + | ||||
mean BAIs: | ||||||||
A. rubrum | (n = 31, p < 0.0001, R2 = 0.62, Adj. R2 = 0.58) | (n = 31, p = 0.031, R2 = 0.31, Adj. R2 = 0.26) | (n = 28, p = 0.023, R2 = 0.46, Adj. R2 = 0.41) | (n = 28, p = 0.020, R2 = 0.45, Adj. R2 = 0.38) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noe, G.B.; Bourg, N.A.; Krauss, K.W.; Duberstein, J.A.; Hupp, C.R. Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers. Forests 2021, 12, 1182. https://doi.org/10.3390/f12091182
Noe GB, Bourg NA, Krauss KW, Duberstein JA, Hupp CR. Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers. Forests. 2021; 12(9):1182. https://doi.org/10.3390/f12091182
Chicago/Turabian StyleNoe, Gregory B., Norman A. Bourg, Ken W. Krauss, Jamie A. Duberstein, and Cliff R. Hupp. 2021. "Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers" Forests 12, no. 9: 1182. https://doi.org/10.3390/f12091182
APA StyleNoe, G. B., Bourg, N. A., Krauss, K. W., Duberstein, J. A., & Hupp, C. R. (2021). Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers. Forests, 12(9), 1182. https://doi.org/10.3390/f12091182