Antioxidant and Antibacterial Properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) Cone Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Extraction
2.3. Determination of Antioxidant Properties
2.4. HPLC-PDA-ESI-MS/MS Analyses
2.5. Antibacterial Activity Testing
2.5.1. Disc Diffusion Test (DDT)
2.5.2. Minimal Inhibitory Concentration (MIC)
2.5.3. Effect of Cone Extracts on Bacterial Growth Rate
2.6. Statistics and Scoring Evaluation
3. Results and Discussion
3.1. Identification of Cone Extractives
3.2. Norway Spruce Samples Evaluation
3.2.1. Correlation Evaluation
3.2.2. Factor Analysis Evaluation
3.2.3. Summary for Norway Spruce
3.3. Eastern Hemlock Samples Evaluation
3.3.1. Correlation Evaluation
3.3.2. Factor Analysis Evaluation
3.3.3. Summary for Eastern Hemlock
3.4. Antibacterial Effects of the Cone Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pásztory, Z.; Mohácsi-Ronyecz, I.; Gorbacheva, G.; Börcsök, Z. The utilization of tree bark. Bioresources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. J. CO2 Util. 2020, 36, 196–209. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Tümen, I.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait). J. Ethnopharm. 2018, 211, 235–246. [Google Scholar] [CrossRef]
- Jablonský, M.; Nosálová, J.; Sládková, A.; Ház, A.; Kreps, F.; Valka, J.; Miertuš, S.; Frecer, V.; Ondrejovič, M.; Šima, J.; et al. Valorisation of softwood bark through extraction of utilizable chemicals. Biotechnol. Adv. 2017, 35, 726–750. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the biological potential of pinus pinaster bark extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burčová, Z.; Kreps, F.; Greifová, M.; Jablonský, M.; Ház, A.; Schmidt, Š.; Šurina, I. Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J. Biotechnol. 2018, 282, 18–24. [Google Scholar] [CrossRef]
- Khan, I.U.; Shah, A.A.; Sahibzada, F.A.; Hayyat, A.; Nazar, M.; Mobashar, M.; Tariq, A.; Sultana, N. Carcass characteristics and serum biochemical profile of Japanese quail by the supplementation of pine needles and vitamin E powder. Biologia 2019, 74, 993–1000. [Google Scholar] [CrossRef]
- Gulsoy, S.K.; Ozturk, F. Kraft pulping properties of european black pine cone. Maderas Cienc. Y Tecnol. 2016, 17, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Tukan, S.K.; Al-Ismail, K.; Ajo, R.Y.; Al-Dabbas, M.M. Seeds and seed oil compositions of Aleppo pine (Pinus halepensis Mill.) grown in Jordan. Riv. Ital. Delle Sostanze Grasse 2013, 90, 87–93. [Google Scholar]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef]
- Dedrie, M.; Jacquet, N.; Bombeck, P.L.; Hébert, J. Oak barks as raw materials for the extraction of polyphenols for the chemical and pharmaceutical sectors: A regional case study. Ind. Crop. Prod. 2015, 70, 316–321. [Google Scholar] [CrossRef]
- Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Ind. Crop. Prod. 2016, 80, 50–58. [Google Scholar] [CrossRef]
- Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [Google Scholar] [CrossRef]
- Dzialo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols: Prevention and Treatment of Human Disease, 2nd ed.; Academic Press: London, UK, 2018; p. 484. [Google Scholar]
- Coté, J.; Caillet, S.; Doyon, G.; Dussault, D.; Sylvain, J.F.; Lacroix, M. Antimicrobial effect of cranberry juice and extracts. Food Control 2011, 22, 1413–1418. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Flaczyk, E.; Rudzińska, M.; Kmiecik, D. Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci. 2014, 97, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Frydman, A.; Weisshaus, O.; Huhman, D.V.; Sumner, L.W.; Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Metabolic engineering of plant cells for biotransformation of hesperidin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC. J. Agric. Food Chem. 2005, 53, 9708–9712. [Google Scholar] [CrossRef]
- Popa, V.I.; Dumitru, M.; Volf, I.; Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crop. Prod. 2008, 27, 144–149. [Google Scholar] [CrossRef]
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Fahimirada, S.; Ajalloueian, F.; Ghorbanpour, M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotox. Environ. Safe 2019, 168, 260–278. [Google Scholar] [CrossRef] [PubMed]
- Rolim, W.R.; Pelegrino, M.T.; Lima, B.A.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.; Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. App. Surf. Sci. 2019, 463, 66–74. [Google Scholar] [CrossRef]
- Watanabe, K.; Momose, F.; Handa, H.; Nagata, K. Interaction between influenza virus proteins and pine cone antitumor substance that inhibits the virus multiplication. Biochem. Biophys. Res. Commun. 1995, 214, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Anačkov, G.T.; Balog, K.J.; Francišković, M.M.; Mimica-Dukić, N.M. Juniperus sibirica Burgsdorf. as a novel source of antioxidant and anti-inflammatory agents. Food Chem. 2011, 124, 850–856. [Google Scholar] [CrossRef]
- Süntar, I.; Tumen, I.; Ustün, O.; Keles, H.; Akkol, E.K. Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. J. Ethnopharmacol. 2012, 139, 533–540. [Google Scholar] [CrossRef]
- Djouahri, A.; Saka, B.; Boudarene, L.; Benseradj, F.; Aberrane, S.; Aitmoussa, S.; Chelghoum, C.; Lamari, L.; Sabaou, N.; Baaliouamer, A. In vitro synergistic/antagonistic antibacterial and anti-inflammatory effect of various extracts/essential oil from cones of Tetraclinis articulata (Vahl) Masters with antibiotic and anti-inflammatory agents. Ind. Crop. Prod. 2014, 56, 60–66. [Google Scholar] [CrossRef]
- Nagata, K.; Sakagami, H.; Harada, H.; Nonoyama, M.; Ishihama, A.; Konno, K. Inhibition of influenza virus infection by pine cone antitumor substances. Antivir. Res. 1990, 13, 11–22. [Google Scholar] [CrossRef]
- Nagasawa, H.; Sakamoto, S.; Sawaki, K. Inhibitory effect of lignin-related pine cone extract on cell proliferating enzyme activity of spontaneous mammary tumours in mice. Anticancer. Res. 1992, 12, 501–503. [Google Scholar]
- Tumen, I.; Senol, F.S.; Orhan, I.E. Evaluation of possible in vitro neurobiological effects of two varieties of Cupressus sempervirens (Mediterranean cypress) through their antioxidant and enzyme inhibition actions. Turk. J. Biochem. 2012, 37, 5–13. [Google Scholar] [CrossRef]
- Bradley, W.G.; Holm, K.N.; Tanaka, A. An orally active immune adjuvant prepared from cones of Pinus sylvestris, enhances the proliferative phase of a primary T cell response. BMC Complement. Altern. Med. 2014, 14, 163. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, X.; Wang, H. Physicochemical properties, bioaccessibility and antioxidant activity of the polyphenols from pine cones of Pinus koraiensis. Int. J. Biol. Macromol. 2019, 126, 385–391. [Google Scholar] [CrossRef]
- Hofmann, T.; Visi-Rajczi, E.; Albert, L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind. Crop. Prod. 2020, 145, 111935. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Kang, S.C.; Baek, K.H. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac. J. Trop. Med. 2014, 7, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Horiba, H.; Nakagawa, T.; Zhu, Q.; Ashour, A.; Watanabe, A.; Shimizu, K. Biological activities of extracts from different Parts of Cryptomeria japonica. Nat. Prod. Commun. 2016, 11, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Yogesh, K.; Ali, J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4 ± 1 °C) storage. J. Food Sci. Technol. 2014, 51, 1547–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilinc, M.; Canbolat, S.; Merdan, N.; Dayioglu, H.; Akin, F. Investigation of the color, fastness and antimicrobial properties of wool fabrics dyed with the natural dye extracted from the cone of Chamaecyparis lawsoniana. Procedia. Soc. Behav. Sci. 2015, 195, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Meloni, M.; Perini, D.; Binelli, G. The distribution of genetic variation in Norway spruce (Picea abies Karst.) populations in the Western Alps. J. Biogeogr. 2007, 34, 929–938. [Google Scholar] [CrossRef]
- Lamedica, S.; Lingua, E.; Popa, I.; Motta, R.; Carrer, M. Spatial structure in four Norway spruce stands with different management history in the Alps and Carpathians. Silva. Fenn. 2011, 45, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.T.; Fei, S.; Liang, L.; Rieske, R.K. Mapping eastern hemlock: Comparing classification techniques to evaluate susceptibility of a fragmented and valued resource to an exotic invader, the hemlock woolly adelgid. For. Ecol. Manag. 2012, 266, 216–222. [Google Scholar] [CrossRef]
- Mcwilliams, W.H.; Schmidt, T.L. Composition, structure, and sustainability of hemlock ecosystems in eastern North America. In Proceedings: Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America, USDA Forest Service Northeastern Forest Experiment Station General Technical Report NE-267; McManus, K.A., Shields, K.S., Souto, D.R., Eds.; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Newtown Square, PA, USA, 2000; pp. 5–10. [Google Scholar]
- Hofmann, T.; Visi-Rajczi, E.; Bocz, B.; Bocz, D.; Albert, L. Antioxidant capacity and tentative identification of polyphenolic compound of cones of selected coniferous species. Acta Silv. Lignaria. Hungarica. 2020, 16, 79–94. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 161, 144–158. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. Available online: https://eucast.org/fileadmin/src/media/PDFs/EUCAST_files/RAST/EUCAST_RAST_methodology_v1.1_Final.pdf (accessed on 1 June 2021).
- EUCAST. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Reading_guide_BMD_v_2.0_2020.pdf (accessed on 1 June 2021).
- Hofmann, T.; Tálos-Nebehaj, E.; Albert, L.; Németh, L. Antioxidant efficiency of beech (Fagus sylvatica L.) bark polyphenols assessed by chemometric methods. Ind. Crop. Prod. 2017, 108, 26–35. [Google Scholar] [CrossRef]
- Prior, R.; Cao, G. In vivo total antioxidant capacity: Comparison of different analytical methods. Free Radic. Biol. Med. 1999, 27, 1173–1181. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Cadahía, E.; Fernández De Simón, B.; Aranda, I.; Sanz, M.; Sánchez-Gómez, D.; Pint, E. Non-targeted metabolomic profile of Fagus sylvatica L. leaves using liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry. Phytochem. Anal. 2015, 26, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Visi-Rajczi, E.; Hofmann, T.; Albert, L.; Mátyás, C. Tracing the acclimation of European beech (Fagus sylvatica L.) populations to climatic stress by analyzing the antioxidant system. iForest 2021, 14, 95–103. [Google Scholar] [CrossRef]
- Lindberg, M.; Lundgren, R.; Gref, R.; Johansson, M. Stilbenes and resin acids in relation to the penetration of Heterobasidion annosum through the bark of Picea abies. Eur. J. For. Path. 1992, 22, 95–106. [Google Scholar] [CrossRef]
- Metsämuuronen, S.; Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev. 2019, 18, 623–664. [Google Scholar] [CrossRef] [Green Version]
- Aritomi, M.; Donnelly, D.M.X. Stilbene glycosides in the bark of Picea sitchensis. Phytochemistry 1976, 15, 2006–2008. [Google Scholar] [CrossRef]
- Underwood, C.D.T.; Pearce, R.B. Astringin and isorhapontin distribution in Sitka Spruce trees. Phytochemistry 1991, 30, 2183–2189. [Google Scholar] [CrossRef]
- Guerro, R.F.; Aliano-González, M.J.; Puertas, B.; Richard, T.; Cantos-Villar, E. Comparative analysis of stilbene concentration in grapevine shoots of thirteen Vitis during a three-year study. Ind. Crop. Prod. 2020, 156, 112852. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Hornedo-Ortega, R.; Garcia, F.; Khawand, T.E.; Saucier, C.; Richard, T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci. Technol. 2021, 112, 362–381. [Google Scholar] [CrossRef]
- Jyske, T.; Laakso, T.; Latva-Maenpaa, H.; Tapanila, T. Yield of stilbene glucosides from the bark of young and old Norway spruce stems. Biomass Bioenerg. 2014, 71, 216–227. [Google Scholar] [CrossRef]
- Valimaa, A.L.; Raitanen, J.E.; Tienaho, J.; Sarjala, T.; Nakayama, E.; Korpinen, R.; Makinen, S.; Eklund, P.; Willför, S.; Jyske, T. Enhancement of Norway spruce bark side-streams: Modification of bioactive and protective properties of stilbenoid-rich extracts by UVA-irradiation. Ind. Crop. Prod. 2020, 145, 112150. [Google Scholar] [CrossRef]
- Gabaston, J.; Richard, T.; Biais, B.; Waffo-Teguo, P.; Pedrot, E.; Jourdes, M.; Corio-Costet, M.F.; Mérillon, J.M. Stilbenes from common spruce (Picea abies) bark as natural antifungal agent against downy mildew (Plasmopara viticola). Ind. Crop. Prod. 2017, 103, 267–273. [Google Scholar] [CrossRef]
- Le, T.K.; Jang, H.H.; Nguyen, H.T.H.; Doan, T.T.M.; Lee, G.J.; Park, K.D.; Ahn, T.; Joung, Y.H.; Kang, H.S.; Yun, C.H. Highly regioselective hydroxylation of polydatin, a resveratrol glucoside, for one-step synthesis of astringin, a piceatannol glucoside, by P450 BM3. Enzym. Microb. Technol. 2017, 97, 34–42. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Park, S.; Seok, J.K.; Liu, K.H.; Boo, Y.C. Ascorbyl coumarates as multifunctional cosmeceutical agents that inhibit melanogenesis and enhance collagen synthesis. Arch. Dermatol. Res. 2015, 307, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn. 2014, 1, 35–40. [Google Scholar]
- Peyrat-Maillard, M.; Cuvelier, M.; Berset, C. Antioxidant activity of phenolic compounds in 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 2003, 80, 1007–1012. [Google Scholar] [CrossRef]
- Vertuani, S.; Angusti, A.; Manfredini, S. The antioxidants and pro-antioxidants network: An overview. Curr. Pharm. Des. 2004, 10, 1677–1694. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Sofic, E.; Prior, R. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Wu, L. Effect of chlorogenic acid on antioxidant activity of Flos Lonicerae extracts. J. Zhejiang Univ. Sci. B 2007, 8, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Olthof, M.R.; Hollman, P.C.H.; Buijsman, M.N.C.P.; van Amelsvoort, J.M.M.; Katan, M.B. Chlorogenic Acid, Quercetin-3-Rutinoside and Black Tea Phenols Are Extensively Metabolized in Humans. J. Nutr. 2003, 133, 1806–1814. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef]
- Mellou, F.; Lazari, D.; Skaltsa, H.; Tselepis, A.D.; Kolisis, F.N.; Stamatis, H. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J. Biotechnol. 2005, 116, 295–304. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Rautio, M.; Sipponen, A.; Peltola, R.; Lohi, J.; Jokinen, J.J.; Papp, A.; Carlson, P.; Sipponen, P. Antibacterial effects of home-made resin salve from Norway spruce (Picea abies). Apmis 2007, 115, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Vainio-Kaila, T.; Kyyhkynen, A.; Rautkari, L.; Siitonen, A. Antibacterial effects of extracts of Pinus sylvestris and Picea abies against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Streptococcus pneumoniae. BioResources 2015, 10, 7763–7771. [Google Scholar] [CrossRef]
- Sipponen, A.; Laitinen, K. Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. Apmis 2011, 119, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, P.; Virjamo, V.; Hiltunen, E.; Julkunen-Tiitto, R. Epidihydropinidine, the main piperidine alkaloid compound of Norway spruce (Picea abies) shows promising antibacterial and anti-Candida activity. Fitoterapia 2017, 117, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Vainio-Kaila, T.; Zhang, X.; Hänninen, T.; Kyyhkynen, A.; Johansson, L.S.; Willför, S.; Österberg, M.; Siitonen, A.; Rautkari, L. Antibacterial Effects of Wood Structural Components and Extractives from Pinus sylvestris and Picea abies on Methicillin-Resistant Staphylococcus aureus and Escherichia coli O157:H7. BioResources 2017, 12, 7601–7614. [Google Scholar] [CrossRef]
- Tanase, C.; Cosarca, S.; Toma, F.; Mare, A.; Cosarca, A.; Man, A.; Miklos, A.; Imre, S. Antibacterial Activities of Spruce Bark (Picea abies L.) Extract and Its Components Against Human Pathogens. Rev. Chim. 2018, 69, 1462–1467. [Google Scholar] [CrossRef]
- Haman, N.; Morozova, K.; Tonon, G.; Scampicchio, M.; Ferrentino, G. Antimicrobial Effect of Picea abies Extracts on E. coli Growth. Molecules 2019, 24, 4053. [Google Scholar] [CrossRef] [Green Version]
- Semerci, A.B.; İnceçayir, D.; Konca, T.; Tunca, H.; Tunç, K. Phenolic constituents, antioxidant and antimicrobial activities of methanolic extracts of some female cones of gymnosperm plant. IJBB 2020, 57, 298–303. [Google Scholar]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.C.; Mihajilov-Krstev, T.; Stojanović-Radić, Z.Z.; Cvetković, V.J.; Mitrović, T.L.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Comparative study of the essential oils of four Pinus species: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crop. Prod. 2018, 111, 55–62. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Ait-Ouazzou, A.; Cherrat, L.; Espina, L.; Lorán, S.; Rota, C.; Pagán, R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. IFSET 2011, 12, 320–329. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 3, 56–60. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
Peak | tr (min) | Compound | Tag | S | H | [M-H]− m/z | MS/MS m/z |
---|---|---|---|---|---|---|---|
1 | 15.10 | Procianidin dimer | PBd1 | x | x | 577 | 425, 407, 289, 245, 125 |
2 | 15.50 | (+)-Catechin | (+)-Cat | x | x | 289 | 245, 203, 125, 123, 109 |
3 | 16.10 | Procianidin dimer | PBd2 | x | x | 577 | 425, 407, 289, 245, 125 |
4 | 17.23 | Unidentified | Ui10 | x | 369 | 255, 207, 179, 135 | |
5 | 17.75 | Procianidin trimer | PCt1 | x | x | 865 | 739, 695, 577, 407, 289, 125 |
6 | 18.38 | Chlorogenic acid isomer | Cha1 | x | 353 | 191, 179, 161, 135 | |
7 | 19.00 | Chlorogenic acid isomer | Cha2 | x | 353 | 191, 179, 161, 135 | |
8 | 19.80 | Procianidin dimer | PBd3 | x | 577 | 425, 407, 289, 245, 125 | |
9 | 19.80 | Procianidin trimer | PCt2 | x | 865 | 739, 695, 577, 407, 289, 125 | |
10 | 20.20 | (−)-Epicatechin | (−)-Epi | x | x | 289 | 245, 203, 125, 123, 109 |
11 | 20.80 | Unidentified | Ui11 | x | n.i | n.i | |
12 | 22.17 | Unidentified | Ui1 | x | n.i | n.i | |
13 | 24.35 | Unidentified | Ui12 | x | 335 | 291, 179, 161, 135, 111 | |
14 | 24.70 | Piceatannol-O-hexoside | PtanHex | x | 405 | 243, 225, 201 | |
15 | 25.50 | Taxifolin-O-hexoside | Th | x | x | 465 | 447, 437, 303, 285, 259, 217, 179, 125 |
16 | 28.50 | Unidentified | Ui2 | x | n.i | n.i | |
17 | 29.50 | Unidentified | Ui3 | x | n.i | n.i | |
18 | 30.80 | Piceatannol | Ptan | x | 243 | 225, 201, 175, 174 | |
19 | 30.90 | Unidentified | Ui13 | x | 567 | 409, 329 | |
20 | 32.70 | Unidentified | Ui14 | x | 451 | 381, 341, 231, 217, 189 | |
21 | 33.30 | Quercetin-O-hexoside | Qh | x | x | 463 | 301, 300, 271, 255, 179 |
22 | 35.30 | Coumaric acid derivative | Cou1 | x | 359 | 341, 311, 297, 282, 195, 163, 145 | |
23 | 35.40 | Quercetin-O-pentoside | Qp | x | 433 | 301, 300, 271, 255, 243, 179 | |
24 | 36.00 | Kaempferol-O-rutinoside | Kr1 | x | 593 | 447, 285, 284, 255, 227 | |
25 | 36.62 | Kaempferol-O-hexoside | Kh | x | x | 447 | 285, 284, 255, 227 |
26 | 37.30 | Unidentified-O-hexoside | Uh | x | 431 | 269, 268 | |
27 | 37.80 | Isorhamnetin-O-hexoside | Ih | x | 477 | 315, 314, 300, 299, 271 | |
28 | 38.00 | Kaempferol-O-pentoside | Kp1 | x | 417 | 285, 284, 255, 227 | |
29 | 38.60 | Kaempferol-O-pentoside | Kp2 | x | 417 | 285, 284, 255, 227 | |
30 | 39.20 | Kaempferol-O-pentoside | Kp3 | x | 417 | 285, 284, 255, 227 | |
31 | 41.20 | Kaempferol-acetyl-hexoside | Kah | x | 489 | 429, 285, 284, 255, 227 | |
32 | 42.00 | Unidentified | Ui4 | x | n.i | n.i. | |
33 | 44.30 | Unidentified | Ui5 | x | 351 | 333, 315, 275, 251 | |
34 | 46.00 | Kaempferol-O-rutinoside | Kr2 | x | 593 | 447, 285, 284, 255, 227 | |
35 | 51.10 | Coumaric acid derivative | Cou2 | x | 341 | 326, 311, 297, 263, 239, 163, 145, 119 | |
36 | 52.70 | Unidentified | Ui6 | x | 401 | 333, 315, 257 | |
37 | 53.80 | Coumaric acid derivative | Cou3 | x | 445 | 427, 397, 349, 277, 251, 163, 145, 119 | |
38 | 54.20 | Unidentified | Ui7 | x | 521 | 473, 195, 179, 165, 150, 119 | |
39 | 54.40 | Coumaric acid derivative | Cou4 | x | 475 | 457, 427, 281, 163, 145, 119 | |
40 | 55.00 | Coumaric acid derivative | Cou5 | x | 505 | 487, 457, 311, 163, 145, 119 | |
41 | 55.90 | Kaempferol-coumaric acid derivative | KCou1 | x | 739 | 593, 453, 285, 284, 255, 227, 163, 145, 119 | |
42 | 56.00 | Coumaric acid derivative | Cou6 | x | 505 | 491, 477, 341, 327, 177, 163, 145, 119 | |
43 | 56.31 | Coumaric acid derivative | Cou7 | x | x | 505 | 491, 477, 341, 327, 177, 163, 145, 119 |
44 | 57.20 | Ferulic acid derivative | Fea | x | 535 | 520, 491, 341, 207, 193, 179, 163, 149, 134 | |
45 | 60.62 | Kaempferol-coumaric acid derivative | KCou2 | x | 723 | 577, 559, 437, 285, 284, 255, 227, 163, 145, 119 | |
46 | 61.30 | Unidentified | Ui15 | x | 249 | 205 | |
47 | 61.60 | Unidentified | Ui8 | x | 385 | 317, 299, 253 | |
48 | 62.50 | Coumaric acid derivative | Cou8 | x | 667 | 521, 403, 323, 163, 145, 119 | |
49 | 64.14 | Unidentified | Ui16 | x | 315 | 297 | |
50 | 64.30 | Unidentified | Ui9 | x | 383 | 315, 299, 269 | |
51 | 68.00 | Unidentified | Ui17 | x | n.i | n.i | |
52 | 68.81 | Unidentified | Ui18 | x | n.i | n.i | |
53 | 74.00 | Unidentified | Ui19 | x | n.i | n.i |
Tag | FRAP | TPC | |||
---|---|---|---|---|---|
R | Score | R | Score | Sum | |
PtanHex | 0.92 * | 0.92 | 0.91 * | 0.91 | 1.83 |
Cou1 | 0.93 * | 0.93 | 0.79 * | 0.79 | 1.72 |
Ui2 | 0.92 * | 0.92 | 0.75 * | 0.75 | 1.67 |
Cou2 | 0.79 * | 0.79 | 0.85 * | 0.85 | 1.64 |
Cou4 | 0.78 * | 0.78 | 0.84 * | 0.84 | 1.62 |
Fea | 0.75 * | 0.75 | 0.86 * | 0.86 | 1.60 |
Cou7 | 0.84 * | 0.84 | 0.76 * | 0.76 | 1.60 |
Cou3 | 0.74 * | 0.74 | 0.85 * | 0.85 | 1.60 |
Ptan | 0.90 * | 0.90 | 0.69 * | 0.69 | 1.59 |
Ui6 | 0.73 * | 0.73 | 0.85 * | 0.85 | 1.58 |
Ui4 | 0.84 * | 0.84 | 0.68 * | 0.68 | 1.52 |
Ui1 | 0.84 * | 0.84 | 0.67 * | 0.67 | 1.51 |
Ih | 0.81 * | 0.81 | 0.65 * | 0.65 | 1.46 |
Ui9 | 0.66 * | 0.66 | 0.79 * | 0.79 | 1.45 |
Kh | 0.82 * | 0.82 | 0.60 * | 0.60 | 1.43 |
Ui7 | 0.64 * | 0.64 | 0.76 * | 0.76 | 1.39 |
(+)-Cat | 0.77 * | 0.77 | 0.55 | 0.55 | 1.31 |
Cou5 | 0.55 | 0.55 | 0.69 * | 0.69 | 1.23 |
Qh | 0.74 * | 0.74 | 0.44 | 0.44 | 1.18 |
Th | 0.70 * | 0.70 | 0.41 | 0.41 | 1.11 |
Ui3 | 0.64 * | 0.64 | 0.40 | 0.40 | 1.05 |
PBd1 | 0.61 * | 0.61 | 0.37 | 0.37 | 0.98 |
Ui10 | 0.43 | 0.43 | 0.54 | 0.54 | 0.98 |
Cou6 | 0.34 | 0.34 | 0.55 | 0.55 | 0.88 |
PBd2 | 0.52 | 0.52 | 0.22 | 0.22 | 0.74 |
Cou8 | 0.22 | 0.22 | 0.50 | 0.50 | 0.72 |
(−)-Epi | 0.48 | 0.48 | 0.20 | 0.20 | 0.68 |
Ui5 | 0.44 | 0.44 | 0.18 | 0.18 | 0.62 |
PCt1 | 0.44 | 0.44 | 0.15 | 0.15 | 0.59 |
PBd3 | 0.40 | 0.40 | 0.13 | 0.13 | 0.53 |
Tag | FRAP | TPC | Factor | |||
---|---|---|---|---|---|---|
Dist. | Score | Dist. | Score | Sum | ||
PtanHex | 0.24 | 0.81 | 0.12 | 0.91 | 1.72 | 1 |
Cou7 | 0.15 | 0.88 | 0.29 | 0.77 | 1.65 | 1 |
Cou4 | 0.47 | 0.62 | 0.28 | 0.78 | 1.41 | 1 |
Cou2 | 0.46 | 0.63 | 0.30 | 0.77 | 1.39 | 1 |
Ui6 | 0.56 | 0.55 | 0.27 | 0.79 | 1.34 | 1 |
Cou1 | 0.32 | 0.75 | 0.60 | 0.53 | 1.28 | - |
Ui2 | 0.34 | 0.73 | 0.61 | 0.53 | 1.25 | - |
Cou3 | 0.60 | 0.51 | 0.37 | 0.71 | 1.22 | 1 |
Ptan | 0.39 | 0.69 | 0.70 | 0.46 | 1.15 | - |
Ui1 | 0.45 | 0.64 | 0.65 | 0.50 | 1.14 | 2 |
Fea | 0.68 | 0.45 | 0.42 | 0.67 | 1.13 | 1 |
Ui9 | 0.70 | 0.44 | 0.42 | 0.67 | 1.11 | 1 |
Ui4 | 0.47 | 0.62 | 0.69 | 0.46 | 1.08 | - |
Ih | 0.53 | 0.57 | 0.74 | 0.42 | 0.99 | - |
Ui7 | 0.76 | 0.38 | 0.54 | 0.58 | 0.96 | 1 |
Kh | 0.53 | 0.57 | 0.83 | 0.36 | 0.93 | - |
Cou5 | 0.86 | 0.31 | 0.62 | 0.51 | 0.82 | 1 |
(+)-Cat | 0.62 | 0.50 | 0.90 | 0.30 | 0.80 | 2 |
Qh | 0.65 | 0.47 | 0.95 | 0.26 | 0.74 | 2 |
Th | 0.75 | 0.40 | 1.05 | 0.19 | 0.58 | 2 |
Ui3 | 0.76 | 0.38 | 1.05 | 0.19 | 0.57 | 2 |
Ui10 | 1.00 | 0.19 | 0.82 | 0.36 | 0.55 | 1 |
PBd1 | 0.83 | 0.33 | 1.05 | 0.19 | 0.51 | 2 |
Cou6 | 1.11 | 0.10 | 0.87 | 0.32 | 0.43 | 1 |
(−)-Epi | 0.88 | 0.29 | 1.12 | 0.13 | 0.41 | 2 |
Ui5 | 0.95 | 0.24 | 1.19 | 0.07 | 0.31 | 3 |
PBd2 | 0.95 | 0.23 | 1.20 | 0.06 | 0.30 | 2 |
Cou8 | 1.24 | 0.00 | 0.97 | 0.24 | 0.24 | 1 |
PCt1 | 1.00 | 0.19 | 1.22 | 0.05 | 0.24 | 2 |
PBd3 | 1.06 | 0.14 | 1.29 | 0.00 | 0.14 | 2 |
Tag | FRAP | TPC | |||
---|---|---|---|---|---|
Score | Sign | Score | Sign | Sum | |
PtanHex | 1.73 * | + | 1.82 * | + | 3.55 |
Cou7 | 1.71 * | + | 1.53 * | + | 3.25 |
Cou2 | 1.42 * | + | 1.62 * | + | 3.04 |
Cou4 | 1.41 * | + | 1.62 * | + | 3.03 |
Cou1 | 1.68 * | + | 1.32 * | + | 3.00 |
Ui2 | 1.65 * | + | 1.27 * | + | 2.92 |
Ui6 | 1.28 * | + | 1.64 * | + | 2.92 |
Cou3 | 1.25 * | + | 1.56 * | + | 2.82 |
Ptan | 1.59 * | + | 1.15 * | + | 2.73 |
Fea | 1.20 * | + | 1.53 * | + | 2.73 |
Ui1 | 1.48 * | + | 1.17 * | + | 2.65 |
Ui4 | 1.46 * | + | 1.14 * | + | 2.60 |
Ui9 | 1.09 * | + | 1.46 * | + | 2.56 |
Ih | 1.39 * | + | 1.07 * | + | 2.45 |
Kh | 1.39 * | + | 0.96 * | + | 2.36 |
Ui7 | 1.02 * | + | 1.33 * | + | 2.35 |
(+)-Cat | 1.27 * | + | 0.85 | 2.12 | |
Cou5 | 0.85 | 1.20 * | + | 2.05 | |
Qh | 1.21 * | + | 0.71 | 1.92 | |
Th | 1.09 * | + | 0.60 | 1.69 | |
Ui3 | 1.03 * | + | 0.59 | 1.62 | |
Ui10 | 0.62 | 0.91 | 1.53 | ||
PBd1 | 0.94 * | + | 0.55 | 1.49 | |
Cou6 | 0.44 | 0.87 | 1.31 | ||
(−)-Epi | 0.77 | 0.32 | 1.09 | ||
PBd2 | 0.76 | 0.29 | 1.04 | ||
Cou8 | 0.22 | 0.75 | 0.96 | ||
Ui5 | 0.68 | 0.25 | 0.92 | ||
PCt1 | 0.63 | 0.20 | 0.83 | ||
PBd3 | 0.54 | 0.13 | 0.67 |
Tag | FRAP | TPC | |||
---|---|---|---|---|---|
R | Score | R | Score | Sum | |
Kr2 | 0.88 * | 0.88 | 0.82 * | 0.82 | 1.71 |
Ui14 | 0.88 * | 0.88 | 0.74 * | 0.74 | 1.61 |
Kp2 | 0.83 * | 0.83 | 0.62 * | 0.62 | 1.45 |
Kah | 0.79 * | 0.79 | 0.65 * | 0.65 | 1.44 |
Kr1 | 0.76 * | 0.76 | 0.60 | 0.60 | 1.36 |
PCt2 | 0.78 * | 0.78 | 0.57 | 0.57 | 1.36 |
KCou1 | 0.49 | 0.49 | 0.78 * | 0.78 | 1.27 |
Cou7 | 0.76 * | 0.76 | 0.51 | 0.51 | 1.27 |
Kh | 0.75 * | 0.75 | 0.51 | 0.51 | 1.26 |
Kp1 | 0.73 * | 0.73 | 0.53 | 0.53 | 1.26 |
Kp3 | 0.75 * | 0.75 | 0.49 | 0.49 | 1.24 |
PBd1 | −0.48 | 0.48 | −0.75 * | 0.75 | 1.22 |
Cha2 | 0.63 * | 0.63 | 0.53 | 0.53 | 1.17 |
KCou2 | 0.41 | 0.41 | 0.74 * | 0.74 | 1.16 |
Qp | 0.71 * | 0.71 | 0.34 | 0.34 | 1.05 |
Qh | 0.66 * | 0.66 | 0.25 | 0.25 | 0.90 |
Uh | 0.62 * | 0.62 | 0.20 | 0.20 | 0.82 |
PBd2 | −0.21 | 0.21 | −0.59 | 0.60 | 0.81 |
Ui19 | −0.39 | 0.39 | −0.41 | 0.41 | 0.80 |
PCt1 | −0.21 | 0.21 | −0.58 | 0.58 | 0.79 |
(+)-Cat | −0.06 | 0.06 | −0.51 | 0.51 | 0.56 |
Ui17 | 0.32 | 0.32 | 0.19 | 0.19 | 0.51 |
(−)-Epi | 0.31 | 0.31 | −0.17 | 0.17 | 0.47 |
Ui10 | 0.06 | 0.06 | −0.41 | 0.41 | 0.47 |
Ui11 | 0.25 | 0.25 | −0.21 | 0.21 | 0.46 |
Cha1 | 0.29 | 0.29 | −0.17 | 0.17 | 0.45 |
Ui13 | 0.32 | 0.32 | −0.12 | 0.12 | 0.45 |
Ui18 | −0.34 | 0.34 | −0.10 | 0.10 | 0.44 |
Ui15 | 0.22 | 0.22 | 0.21 | 0.21 | 0.43 |
Ui16 | −0.33 | 0.33 | 0.09 | 0.09 | 0.42 |
Ui12 | 0.19 | 0.19 | −0.21 | 0.21 | 0.40 |
Th | 0.28 | 0.28 | −0.12 | 0.12 | 0.40 |
Tag | FRAP | TPC | Factor | |||
---|---|---|---|---|---|---|
Dist. | Score | Dist. | Score | Sum | ||
Kr2 | 0.10 | 0.94 | 0.46 | 0.75 | 1.68 | 1 |
Ui14 | 0.21 | 0.87 | 0.56 | 0.69 | 1.56 | 1 |
Kah | 0.27 | 0.83 | 0.68 | 0.63 | 1.46 | 1 |
Kp2 | 0.39 | 0.76 | 0.80 | 0.56 | 1.32 | 1 |
Kh | 0.44 | 0.73 | 0.89 | 0.51 | 1.24 | 1 |
Kr1 | 0.52 | 0.68 | 0.83 | 0.54 | 1.22 | 1 |
PCt2 | 0.52 | 0.68 | 0.84 | 0.54 | 1.22 | 1 |
Kp1 | 0.51 | 0.68 | 0.86 | 0.52 | 1.21 | 1 |
Kp3 | 0.53 | 0.67 | 0.92 | 0.49 | 1.17 | 1 |
Cou7 | 0.60 | 0.63 | 0.95 | 0.48 | 1.11 | 1 |
KCou1 | 0.95 | 0.42 | 0.58 | 0.68 | 1.10 | −2 |
Cha2 | 0.69 | 0.58 | 0.90 | 0.51 | 1.08 | 3 |
Qp | 0.65 | 0.60 | 1.05 | 0.42 | 1.02 | 1 |
KCou2 | 1.03 | 0.37 | 0.67 | 0.63 | 1.00 | −2 |
Qh | 0.77 | 0.53 | 1.18 | 0.35 | 0.88 | 1 |
Uh | 0.78 | 0.52 | 1.21 | 0.34 | 0.85 | - |
Ui17 | 0.93 | 0.42 | 1.12 | 0.38 | 0.81 | 4 |
Ui15 | 1.10 | 0.32 | 1.16 | 0.36 | 0.68 | 4 |
Ui13 | 1.10 | 0.32 | 1.46 | 0.20 | 0.52 | 2 |
Th | 1.14 | 0.30 | 1.47 | 0.19 | 0.49 | 2 |
Cha1 | 1.14 | 0.30 | 1.50 | 0.17 | 0.47 | 2 |
(−)-Epi | 1.16 | 0.28 | 1.52 | 0.17 | 0.45 | 2 |
Ui12 | 1.17 | 0.28 | 1.52 | 0.16 | 0.44 | 2 |
Ui11 | 1.20 | 0.26 | 1.53 | 0.16 | 0.42 | 2 |
Ui16 | 1.58 | 0.02 | 1.30 | 0.28 | 0.31 | −2 |
Ui10 | 1.32 | 0.18 | 1.65 | 0.09 | 0.28 | 2 |
Ui18 | 1.58 | 0.02 | 1.43 | 0.22 | 0.24 | −3 |
(+)-Cat | 1.43 | 0.12 | 1.72 | 0.05 | 0.17 | 2 |
Ui19 | 1.62 | 0.00 | 1.60 | 0.12 | 0.12 | - |
PCt1 | 1.50 | 0.07 | 1.75 | 0.04 | 0.11 | 2 |
PBd2 | 1.51 | 0.07 | 1.76 | 0.03 | 0.10 | 2 |
PBd1 | 1.62 | 0.00 | 1.82 | 0.00 | 0.00 | 2 |
Tag | FRAP | TPC | |||
---|---|---|---|---|---|
Score | Sign | Score | Sign | Sum | |
Kr2 | 1.82 * | + | 1.57 * | + | 3.39 |
Ui14 | 1.75 * | + | 1.43 * | + | 3.17 |
Kah | 1.62 * | + | 1.28 * | + | 2.90 |
Kp2 | 1.59 * | + | 1.17 * | + | 2.77 |
Kr1 | 1.44 * | + | 1.14 | 2.59 | |
PCt2 | 1.46 * | + | 1.11 | 2.57 | |
Kh | 1.48 * | + | 1.02 | 2.50 | |
Kp1 | 1.41 * | + | 1.05 | 2.47 | |
Kp3 | 1.42 * | + | 0.98 | 2.40 | |
Cou7 | 1.38 * | + | 0.99 | 2.37 | |
KCou1 | 0.90 | 1.46 * | + | 2.37 | |
Cha2 | 1.21 * | + | 1.04 | 2.25 | |
KCou2 | 0.78 | 1.37 * | + | 2.16 | |
Qp | 1.31 * | + | 0.76 | 2.07 | |
Qh | 1.18 * | + | 0.60 | 1.78 | |
Uh | 1.14 * | + | 0.53 | 1.68 | |
Ui17 | 0.75 | 0.58 | 1.32 | ||
PBd1 | 0.48 | 0.75 | - | 1.22 | |
Ui15 | 0.54 | 0.58 | 1.11 | ||
Ui13 | 0.64 | 0.32 | 0.96 | ||
Cha1 | 0.59 | 0.34 | 0.93 | ||
Ui19 | 0.39 | 0.53 | 0.92 | ||
(−)-Epi | 0.59 | 0.33 | 0.92 | ||
PBd2 | 0.28 | 0.63 | 0.91 | ||
PCt1 | 0.28 | 0.61 | 0.90 | ||
Th | 0.58 | 0.31 | 0.89 | ||
Ui11 | 0.51 | 0.36 | 0.87 | ||
Ui12 | 0.46 | 0.38 | 0.84 | ||
Ui10 | 0.25 | 0.50 | 0.75 | ||
(+)-Cat | 0.18 | 0.56 | 0.74 | ||
Ui16 | 0.35 | 0.38 | 0.73 | ||
Ui18 | 0.36 | 0.31 | 0.68 |
Bacterial Strain | Positive Control | EHGC | EHMC | NSGC | NSMC |
---|---|---|---|---|---|
S. aureus | ++++ | + | + | + | + |
E. coli | ++++ | - | - | - | - |
Bacterial Strain | IC50 (mg/mL) | |||
---|---|---|---|---|
EHGC | EHMC | NSGC | NSMC | |
S. aureus | 0.50 | 0.50 | - | 0.25 |
E. coli | - | - | - | - |
Bacterial Strain | MIC (mg/mL) | |||
---|---|---|---|---|
EHGC | EHMC | NSGC | NSMC | |
S. aureus | 0.125 | 0.004 | 1.000 | 0.008 |
E. coli | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, T.; Albert, L.; Németh, L.; Vršanská, M.; Schlosserová, N.; Voběrková, S.; Visi-Rajczi, E. Antioxidant and Antibacterial Properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) Cone Extracts. Forests 2021, 12, 1189. https://doi.org/10.3390/f12091189
Hofmann T, Albert L, Németh L, Vršanská M, Schlosserová N, Voběrková S, Visi-Rajczi E. Antioxidant and Antibacterial Properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) Cone Extracts. Forests. 2021; 12(9):1189. https://doi.org/10.3390/f12091189
Chicago/Turabian StyleHofmann, Tamás, Levente Albert, László Németh, Martina Vršanská, Nikola Schlosserová, Stanislava Voběrková, and Eszter Visi-Rajczi. 2021. "Antioxidant and Antibacterial Properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) Cone Extracts" Forests 12, no. 9: 1189. https://doi.org/10.3390/f12091189
APA StyleHofmann, T., Albert, L., Németh, L., Vršanská, M., Schlosserová, N., Voběrková, S., & Visi-Rajczi, E. (2021). Antioxidant and Antibacterial Properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) Cone Extracts. Forests, 12(9), 1189. https://doi.org/10.3390/f12091189