Influence of Environmental Factors on Forest Understorey Species in Northern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Sampling Sites
2.2.2. Determining the Presence of Understorey Species, Soil Variables and Canopy
2.3. Data Analysis
3. Results
Relationships between the Presence of Understorey Species and Soil Variables and Lack of Association with Forest Canopy and Gaps
4. Discussion
4.1. Relationships between the Presence of Understory Species and Soil Variables
4.2. Relationships between Presence of Understorey Species, Forest Canopy and Gaps
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leathwick, J.R.; Austin, M.P. Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. Ecology 2001, 82, 2560–2573. [Google Scholar] [CrossRef]
- Graham, C.H.; Ferrier, S.; Huettman, F.; Moritz, C.; Peterson, A.T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 2004, 19, 497–503. [Google Scholar] [CrossRef]
- Diekmann, M.; Michaelis, J.; Pannek, A. Know your limits–The need for better data on species responses to soil variables. Basic Appl. Ecol. 2015, 16, 563–572. [Google Scholar] [CrossRef]
- Chaulagain, S.; Shrestha–Malla, A.M. Effects of Edaphic (Soil) Factors on Plant Distribution in Chameli Community Forest, Bhaktapur, Nepal. Int. J. Appl. Sci. Biotech. 2018, 6, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Gaitán, J.J.; López, R.C.; Bran, D.E. Vegetation composition and its relationship with the environment in mallines of north Patgagonia, Argentina. Wetlands Ecol. Manag. 2011, 19, 121–130. [Google Scholar] [CrossRef]
- Verberk, W. Explaining general patterns in species abundance and distributions. Nat. Educ. Knowl. 2011, 3, 38. [Google Scholar]
- Silva-Flores, R.; Pérez-Verdín, G.; Wehenkel, C. Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. PLoS ONE 2014, 9, e105034. [Google Scholar] [CrossRef] [PubMed]
- Kosanic, A.; Anderson, K.; Harrison, S.; Turkington, T.; Bennie, J. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS ONE 2018, 13, e0191021. [Google Scholar] [CrossRef] [Green Version]
- Walthert, L.; Meier, E.S. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 2017, 7, 9473–9484. [Google Scholar] [CrossRef]
- Yousaf, A.; Shabbir, R.; Jabeen, A.; Erum, S.; Ahmad, S.S. Linkage between herbaceous vegetation and soil characteristics along rawal dam islamabad. J. Soil Sci. Plant Nutr. 2016, 16, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Germany, M.S.; Bruelheide, H.; Erfmeier, A. Limited tree richness effects on herb layer composition, richness and productivity in experimental forest stands. J. Plant Ecol. 2017, 10, 190–200. [Google Scholar] [CrossRef]
- Magnago, L.F.S.; Rocha, M.F.; Meyer, L.; Martins, S.V.; Meira-Neto, J.A.A. Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic Forest fragments. Biodiversity Conserv. 2015, 24, 2305–2318. [Google Scholar] [CrossRef]
- Bátori ZLengyel, A.; Maróti, M.; Körmöczi, L.; Tölgyesi, C.; Bíró, A.; Tóth, M.; Kincses, Z.; Cseh, V.; Erdős, L. Microclimate-vegetation relationships in natural habitat islands: Species preservation and conservation perspectives. Időjárás/Q. J. Hung. Meteorol. Serv. 2014, 118, 257–281. [Google Scholar]
- Hart, S.A.; Chen, H.Y.H. Understory vegetation dynamics of North American Boreal Forest. Crit. Rev. Plant Sci. 2006, 25, 381–397. [Google Scholar] [CrossRef]
- Eysenrode Salvador-Van, D.; Kockelbergh, F.; Bogaert, J.; Impens, I.; Van Hecke, P. Determinación del borde de la brecha del dosel y la importancia de los bordes de la brecha para la diversidad de plantas. Web Ecol. 2002, 3, 1–5. [Google Scholar] [CrossRef]
- Chen, J.; Saunders, S.C.; Crow, T.R.; Naiman, R.J.; Brosofske, K.D.; Mroz, G.D.; Brookshire, B.L.; Franklin, J.F. Microclimate in forest ecosystem and landscape ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 1999, 49, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Hemrová, L.; Knappová, J.; Münzbergová, Z. Assessment of habitat suitability is affected by plant-soil feedback: Comparison of field and garden experiment. PLoS ONE 2016, 11, e0157800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arámbula-Salazar, J.A.; Ibarra-Salinas, B.I.; González-Laredo, R.F.; Muñoz-Galindo, O.D.; Hernández-Vela, H. Variación estacional de compuestos fenólicos foliares en Quercus sideroxyla en diferentes tipos de suelo. Madera Bosques 2010, 16, 49–59. [Google Scholar] [CrossRef]
- Gilliam, F.S. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Turrill, N.L.; Adams, M.B. Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forests. Ecol. Appl. 1995, 5, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Bartels, S.F.; Chen, H.Y.H. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 2010, 91, 1931–1938. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernández, M.; Le, B.Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Goebes, P.; Schmidt, K.; Seitz, S.; Both, S.; Bruelheide, H.; Erfmeier, A.; Scholten, T.; Kühn, P. The strength of soil-plant interactions under forest is related to a Critical Soil Depth. Sci. Rep. 2019, 9, 8635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Cobos, F.; Monárrez-González, J.C.; Tecla, A.; Perez-Verdin, G.; Wehenkel, C. Effects of stand variables on stemflow and surface runoff in pine-oak forests in northern Mexico. PLoS ONE 2020, 15, e0235320. [Google Scholar] [CrossRef]
- Narváez, R. Suelo-calidad de estación en el área experimental forestal madera, chihuahua. Rev. Mex. Cienc. For. 2021, 17, 3–26. [Google Scholar]
- Alfaro, R.T.; Martínez-Vilalta, J.; Retana, J. Regeneration patterns in Mexican pine-oak forests. For. Ecosyst. 2019, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Maciel-Nájera, J.F.; Hernández-Velasco, J.; González-Elizondo, M.S.; Hernández-Díaz, J.C.; López-Sánchez, C.A.; Antúnez, P.; Bailón-Soto, C.E.; Wehenkel, C. Unexpected spatial patterns of natural regeneration in typical uneven-aged mixed pine-oak forests in the Sierra Madre Occidental, Mexico. Global Ecol. Conserv. 2020, 23, e01074. [Google Scholar] [CrossRef]
- Monarrez-Gonzalez, J.C.; Perez-Verdin, G.; Gonzalez-Elizondo, M.S.; Marquez-Linares, M.A.; Gutierrez-Yurrita, P.J. Effect of forest management on tree diversity in temperate ecosystem forests in northern Mexico. PLoS ONE 2020, 15, e0233292. [Google Scholar] [CrossRef] [PubMed]
- Galicia, L.; Potvin, C.; Messier, C. Maintaining the high diversity of pine and oak species in Mexican temperate forests: A new management approach combining functional zoning and ecosystem adaptability. Can. J. For. Res. 2015, 45, 1358–1368. [Google Scholar] [CrossRef] [Green Version]
- Arriaga, L.; Mercado, C. Seed bank dynamics and tree-fall gaps in a northwestern Mexican Quercus-Pinus forest. J. Veg. Sci. 2004, 15, 661–668. [Google Scholar] [CrossRef]
- Graciano-Ávila, G.; Alanís-Rodríguez, E.; Aguirre-Calderón, Ó.A.; González-Tagle, M.A.; Treviño-Garza, E.J.; Mora-Olivo, A. Caracterización estructural del arbolado en un ejido forestal del noroeste de México. Madera Bosques 2017, 23, 137–146. [Google Scholar] [CrossRef]
- López-Hernández, J.A.; Aguirre-Calderón, Ó.A.; Alanís-Rodríguez, E.; Monarrez-Gonzalez, J.C.; González-Tagle, M.A.; Jiménez-Pérez, J. Composición y diversidad de especies forestales en bosques templados de Puebla, México. Madera Bosques 2017, 23, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Romero-Sanchez, M.E.; Perez-Miranda, R.; Gonzalez-Hernandez, A.; Velasco-Garcia, M.V.; Velasco-Bautista, E.; Flores, A. Current and Potential Spatial Distribution of Six Endangered Pine Species of Mexico: Towards a Conservation Strategy. Forests 2018, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Rzedowski, J. (Ed.) Vegetación de México; Limusa: México City, México, 1978; p. 432. [Google Scholar]
- Granados-Sánchez, D.; López-Ríos, G.F.; Hernández-García, M.A. Ecología y silvicultura en bosques templados. Rev. Chapingo Ser. Cienc. For. Ambient. 2007, 13, 67–83. [Google Scholar]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Available online: https://www.biodiversidad.gob.mx/ecosistemas/bosqueTemplado.html (accessed on 3 November 2019).
- World Wildlife Fund. Southern North America: Western Mexico into the Southwestern United States. 2021. Available online: https://www.worldwildlife.org/ecoregions/na0302 (accessed on 23 July 2021).
- González-Elizondo, M.S.; González-Elizondo, M.; Tena-Flores, J.A.; Ruacho-González, L.; López-Enríquez, I.L. Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Bot. Mex. 2012, 100, 351–403. [Google Scholar] [CrossRef] [Green Version]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots; Zachos, F.E., Habel, J.C., Eds.; Biodiversity Hotspots; Springer Publishers: London, UK, 2011; pp. 3–22. [Google Scholar]
- Guízar, E.; Benítez, A.; Bravo, O. La vegetación de la unidad de conservación y desarrollo forestal No. 2 “El Largo-Madera”, Chihuahua. In Reporte; División de Ciencias Forestales, Universidad Autónoma de Chapingo: Chapingo, Mexico, 1992; 23p. [Google Scholar]
- Instituto Nacional de Estadística, Geografía e Informática (INEGI). Carta de Uso de Suelo y Vegetación H12-9, 2016, Esc. 1:250 000, Serie V; Conjunto de datos vectoriales: Madera, CA, USA; Chihuahua, Mexico, 2016. [Google Scholar]
- Wehenkel, C. Establecimiento de Sitios Permanentes de Investigación Forestal, de Suelos y Clima en la UMAFOR No. 0802, El Largo-Madera. In Informe Técnico; Comisión Nacional Forestal: Zapopan, Mexico, 2016. [Google Scholar]
- ESRI. ArcGIS. for Desktop: Release 10.1 Esri, In Science + Business; Media B.V: Redlands, CA, USA, 2012. [Google Scholar]
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria an Associated Staff. New York Botanical Garden’s Virtual Herbarium, 2015. Available online: http://sweetgum.nybg.org/ih/ (accessed on 2 April 2020).
- Morett-Sánchez, J.C.; Cosío-Ruiz, C. Panorama de los ejidos y comunidades agrarias en México. Agric. Soc. Desarro. 2017, 14, 125–152. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Guerrero, I.K.; Mariscal-Lucero, S.R.; Hernández-Díaz, J.C.; Heinze, B.; Prieto-Ruiz, J.A.; Wehenkel, C. Discrimination of Picea chihuahuana Martinez populations on the basis of climatic, edaphic, dendrometric, genetic and population traits. PeerJ 2017, 5, e3452. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Shewhart, W.A., Wilks, S.S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R, 1st ed.; Sage Publications Ltd.: Southend Oaks, CA, USA, 2012. [Google Scholar]
- Nordberg, L. Asymptotic normality of maximum likelihood estimators based on independent, unequally distributed observations in exponential family models. Scand. J. Statist. 1980, 7, 27–32. [Google Scholar]
- Bangdiwala, S.I. Regression: Binary logistic. Int. J. Inj. Contr. and Saf. Promot. 2018, 25, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Du, J.; Nie, B.; Yu, F.; Xiong, W. Random Forest regression Based on Partial Least Squares. Connect Partial Least Squares and Random Forest. In Proceedings of the International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016); Atlantis Press: Paris, France, 2016; pp. 191–196. [Google Scholar]
- Tobias, R.D. An introduction to partial least squares regression. In Proceedings of the Twentieth Annual SAS Users Group International Conference; SAS Institute Inc.: Cary, NC, USA, 1995; p. 20. [Google Scholar]
- Ng, K.S.; A Simple Explanation of Partial Least Squares. The Australian National University, Canberra. 2013. Available online: http://users.cecs.anu.edu.au/~kee/pls.pdf (accessed on 6 June 2020).
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer Science + Business Media: New York, NY, USA, 2002; 498p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Zhang, Y.; Chen, H.Y.H.; Taylor, A. Multiple drivers of plant diversity in forest ecosystems. Glob. Ecol. Biogeogr. 2014, 23, 885–893. [Google Scholar] [CrossRef]
- Finzi, A.C.; Canham, C.D.; Van Bremeen, N. Canopy tree-soilinteractions whitin temperate forest: Species effects on pH and cations. Ecol. Appl. 1998, 8, 447–454. [Google Scholar]
- Falkengren-Grerup, U. Soil Acidification and Its Impact on Ground Vegetation. Ambio 1989, 18, 179–183. [Google Scholar] [CrossRef]
- Encina-Domínguez, J.A.; Arévalo, S.J.R.; Estrada-Castillon, E.; Mellado, B.M. Environmental and soil variables affecting the structure and floristic woody composition of oak forests of northeastern Mexico. Turk. J. Agric. For. 2018, 42, 262–271. [Google Scholar] [CrossRef]
- Buriánek, V.; Novotný, R.; Hellebrandová, K.; Šrámek, V. Ground vegetation as an important factor in the biodiversity of forest ecosystems and its evaluation in regard to nitrogen deposition. J. For. Sci. 2013, 59, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Aber, J.; McDowell, W.; Nadelhoffer, K.; Magil, A.; Berntson, G.; Kamakea, M.; McNulty, S.; Currie, W.; Rustad, L.; Fernandez, I. Nitrogen Saturation in Temperate Forest Ecosystems, Hypotheses revisited. BioScience 1998, 48, 921–934. [Google Scholar] [CrossRef]
- Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef] [Green Version]
- Weil, R.R.; Brady, N.C. Nitrogen and Sulfur Economy of Soils. In The Nature and Properties of Soils; Weil, R.R., Brady, N.C., Eds.; Pearson: Columbus, OH, USA, 2017; pp. 584–642. [Google Scholar] [CrossRef]
- Zamora, N.J.F.; Zapata, H.I.; Villalvazo, H.A. Fijación biológica del nitrógeno en tres especies silvestres del género Lupinus (Leguminosae, Papilionoideae) en México. Acta Bot. Mex. 2019, 126, e1543. [Google Scholar] [CrossRef]
- Gundersen, P.; Schmidt, I.K.; Raulund-Rasmussen, K. Leaching of nitrate from temperate forests—Effects of air pollution and forest management. Environ. Rev. 2006, 14, 1–57. [Google Scholar] [CrossRef]
- Fenn, M.E.; Geiser, L.H. Temperate sierras. In Assessment of Nitrogen Deposition Effects and Empirical Critical Loads of Nitrogen for Ecoregions of the United States; Pardo, L.H., Robin-Abbott, M.J., Driscoll, C.T., Eds.; Gen. Tech. Rep. NRS-80; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011; Volume 80, pp. 175–180. [Google Scholar]
- Calderón de Rzedowski, G.; Rzedowski, J. Flora Fanerogámica del Valle de México, 2nd ed.; Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro, Michoacán, Mexico, 2005; p. 1406. [Google Scholar]
- Zheng, J.G.; Chen, Y.W.; Wu, G.X. Association of vegetation patterns and environmental factors on the arid western slopes of the Helan Mountains, China. Mt. Res. Dev. 2013, 33, 323–332. [Google Scholar] [CrossRef]
- Chafjiri, A.N.S.; Abkenar, K.T.; Navroudi, I.H.; Pourbabaei, H. Distribution of Plant Species and Their Relation to Soil Properties in Protected and Degraded Stands of Quercus macranthera in Northern Iran. Ecol. Balk. 2016, 8, 53–63. [Google Scholar]
- Hedwall, P.-O.; Gustafsson, L.; Brunet, J.; Lindbladh, M.; Axelsson, A.-L.; Strengbom, J. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl. 2019, 29, e01874. [Google Scholar] [CrossRef]
- Freeman, C.C.; Barkley, T.M. A synopsis of the genus Packera (Asteraceae: Senecioneae) in Mexico. SIDA Contrib. Bot. 1995, 16, 699–709. [Google Scholar]
- Gobin, R.; Korboulewsky, N.; Dumas, Y.; Balandier, B. Transpiration of four common understorey plant species according to drought intensity in temperate forests. Ann. For. Sci. 2015, 72, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Canham, C.D.; Denslow, J.S.; Platt, W.J.; Runkle, J.R.; Spies, T.A.; White, P.S. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 1990, 20, 620–631. [Google Scholar] [CrossRef]
- Kelemen, K.; Mihók, B.; Gálhidy, L.; Standovár, T. Dynamic response of herbaceous vegetation to gap opening in a Central European beech stand. Silva Fenn. 2012, 46, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Mejía, C.A.; Franco-Maass, S.; Endara, A.A.R.; Ávila, A.V. Caracterización del sotobosque en bosques densos de pino y oyamel en el Nevado de Toluca, México. Madera Bosques 2018, 24, e2431656. [Google Scholar] [CrossRef]
- Kern, C.C.; Montgomery, R.A.; Reich, P.B.; Strong, T.F. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. J. Plant Ecol. 2013, 6, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Bolton, N.W.; D’Amato, A.W. Herbaceous vegetation responses to gap size within natural disturbance-based silvicultural systems in Northeastern Minnesota, USA. Forests 2019, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Vockenhuber, E.A.; Scherber, C.; Langenbruch, C.; Meißner, M.; Seidel, D.; Tscharntke, T. Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect. Plant Ecol. 2011, 13, 111–119. [Google Scholar] [CrossRef]
- De Assis, A.; Coelho, R.; Da Silva, P.E.; Durigan, G. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol. 2011, 212, 1135–1147. [Google Scholar] [CrossRef]
- Hedwall, P.-O.; Holmström, E.; Lindbladh, M.; Felton, A. Concealed by darkness: How stand density can override the biodiversity benefits of mixed forests. Ecosphere 2019, 10, e02835. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Quan, W.; Li, C.; Huang, X.; Wu, X.; Yang, Q.; Pan, Y.; Xu, T.; Qian, C.; Gu, Y. Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 1919. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.T.; Dobrowski, S.Z.; Holden, Z.A.; Higuera, P.A.; Abatzoglou, J.T. Microclimatic buffering in forests of the future: The role of local water balance. Ecography 2018, 42. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.; Comrie, A. The North American Monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2213. [Google Scholar] [CrossRef] [Green Version]
- Villers, R.L.; García, D.V.L.; López, B.J. Evaluación de los bosques templados en México: Una aplicación en el parque nacional Nevado de Toluca. Investg. Geog. 1998, 36, 7–19. [Google Scholar] [CrossRef]
- Fernández Nava, R. Rhamnaceae. In Flora del Bajío y de Regiones Adyacentes; Fascículo 43; Instituto de Ecología, A.C.: Pátzcuaro, Michoacán, México, 1996; pp. 5–12. [Google Scholar]
- Obiri, J.A.; Lawes, M.J. Chance versus determinism in canopy gap regeneration in coastal scarp forest in South Africa. J. Veg. Sci. 2004, 15, 539–547. [Google Scholar] [CrossRef]
- Hull, J.C. Plant Ecology. Encyclopedia of Ecology. Elsevier 2008, 3, 528–548. [Google Scholar] [CrossRef]
- Mattioli, W.; Pinelli, A.; Filibeck, G.; Portoghesi, L.; Scoppola, A.; Corona, P. Relazioni tra gestione selvicolturale, tipo forestale e diversità floristica in cedui castanili. Forest@-Rev. Selv. Ecol. For. 2008, 5, 136–150. [Google Scholar]
- Atkins, J.W.; Fahey, R.T.; Hardiman, B.S.; Gough, C.M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 2018, 123, 1387–1405. [Google Scholar] [CrossRef]
Plot | Geographical Coordinates | MAP (mm) | MAT (°C) | Elevation (m) | Geographical Exposure |
---|---|---|---|---|---|
Ejido Madera | 29°12′15.92″ N,–108°11′04.20″ W | 827 | 9.7 | 2481 | E |
Ejido La Norteña | 29°39′04.50″ N,–108°24′51.70″ W | 821 | 10.9 | 2189 | SW |
Ejido El Oso, La Avena y Anexos | 29°36′29.40″ N,–108°21′15.50″ W | 801 | 10.7 | 2212 | N |
Colonia Nicolás Bravo 2 | 29°25′46.60″ N,–108°11.0′42.2″ W | 849 | 9.3 | 2580 | N |
Ejido Socorro Rivera | 29°17′54.57″ N,–108° 08′21.0″ W | 650 | 11.1 | 2210 | W |
Mean | 789.6 | 10.34 | 2334 |
Species | Gap (n) | Canopy (n) | Mean | Gap (n in %) | Canopy (n in %) | Chi-Square Statistics | p-Value |
---|---|---|---|---|---|---|---|
Viola grahamii Benth. | 19 | 28 | 23.5 | 4.85 | 5.27 | 0.15 | 0.70 |
Phaseolus parvulus Greene | 19 | 49 | 34.00 | 4.85 | 9.23 | 2.23 | 0.14 |
Stevia serrata Cav. | 105 | 122 | 113.5 | 26.79 | 22.98 | 0.04 | 0.84 |
Lupinusdiehlii M.E. Jones | 8 | 14 | 11.00 | 0.87 | 1.52 | 0.11 | 0.74 |
Cologaniaobovata Schltdl. | 159 | 200 | 179.5 | 17.23 | 21.67 | 0.09 | 0.77 |
Cologaniaangustifolia Kunth | 75 | 112 | 93.5 | 8.13 | 12.13 | 0.16 | 0.69 |
Chimaphilamaculata (L.) Pursh | 0 | 3 | 1.50 | 0.00 | 0.33 | 3.16 | 0.08 |
Oxalis metcalfei (Small) R. Knuth + O. hernandezii DC. | 45 | 72 | 58.5 | 4.88 | 7.80 | 0.51 | 0.48 |
Geranium wislizeni S. Watson | 25 | 13 | 19.00 | 2.71 | 1.41 | 0.11 | 0.74 |
Commelinadianthifolia Delile | 96 | 94 | 95.00 | 10.4 | 10.18 | 0.01 | 0.93 |
Acmisponwrightii (A. Gray) Brouillet | 7 | 15 | 11.00 | 0.76 | 1.63 | 0.09 | 0.77 |
Cyperus sphaerolepis Boeck. | 56 | 28 | 42.00 | 6.07 | 3.03 | 2.40 | 0.12 |
Pseudognaphaliumarizonicum (A. Gray) Anderb. | 33 | 11 | 22.00 | 3.58 | 1.19 | 1.94 | 0.16 |
Verbesinaparviflora S.F. Blake | 0 | 1 | 0.50 | 0.00 | 0.11 | 1.00 | 0.32 |
Penstemon miniatus var. townsendianus (Straw) C.C.Freeman | 0 | 6 | 3.00 | 0.00 | 0.65 | 4.32 | 0.04 |
Agastache pallida (Lindl.) Cory | 13 | 1 | 7.00 | 1.41 | 0.11 | 4.69 | 0.03 |
Packeracandidissima (Greene) W.A. Weber & A. Löve | 103 | 134 | 118.50 | 11.16 | 14.52 | 0.05 | 0.82 |
Milla biflora Cav. | 5 | 0 | 2.50 | 0.54 | 0.00 | 1.00 | 0.32 |
Ratibidamexicana (S. Watson) W.M. Sharp | 42 | 15 | 28.50 | 4.55 | 1.63 | 0.11 | 0.74 |
Arctostaphylos pungens Kunth | 8 | 3 | 6.50 | 0.86 | 0.54 | 0.01 | 0.92 |
Ceanothus depressus Benth. | 55 | 128 | 91.50 | 5.96 | 13.87 | 0.82 | 0.36 |
Ceanothus coeruleus Lag. | 25 | 29 | 27.00 | 2.71 | 3.14 | 0.01 | 0.91 |
Species | EC | P | Ca | Mg | K | Fe | Zn | Cu | OM | Sat | Sand | Silt | Clay | %Ca | %K | %Mg | CEC | HC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Viola grahamii | 0.01 | 0.52 | –0.39 | –0.31 | –0.36 | –0.25 | 0.17 | –0.23 | –0.24 | –0.31 | –0.06 | 0.04 | 0.05 | –0.24 | 0.03 | 0.02 | –0.38 | –0.12 |
Phaseolus parvulus | –0.58 | –0.56 | –0.55 | –0.37 | 0.45 | –0.45 | –0.49 | –0.27 | 0.37 | 0.47 | 0.31 | 0.03 | –0.66 | –0.68 | 0.72 | 0.09 | –0.47 | 0.07 |
Stevia serrata | –0.24 | –0.28 | –0.03 | 0.26 | –0.07 | –0.49 | –0.52 | –0.3 | –0.37 | –0.23 | –0.26 | 0.39 | –0.13 | –0.43 | 0.1 | 0.63 | 0.03 | –0.06 |
Lupinusdiehlii | –0.2 | –0.29 | –0.11 | –0.29 | 0.55 | 0.27 | –0.02 | 0.37 | 0.53 | 0.62 | 0.26 | –0.1 | –0.33 | 0.09 | 0.43 | –0.49 | –0.13 | –0.06 |
Cologaniaobovata | 0.28 | 0.71 | 0.09 | 0.03 | –0.57 | 0.15 | 0.51 | 0.07 | –0.42 | –0.54 | –0.03 | –0.27 | 0.5 | 0.43 | –0.47 | 0.01 | 0.01 | –0.3 |
Cologaniaangustifolia | 0.54 | 0.34 | 0.22 | –0.03 | –0.12 | 0.36 | 0.55 | 0.35 | –0.06 | –0.22 | 0.26 | –0.49 | 0.32 | 0.69 | –0.35 | –0.26 | 0.11 | –0.15 |
Chimaphilamaculata | –0.51 | –0.38 | –0.57 | –0.3 | –0.12 | –0.47 | –0.52 | –0.55 | –0.11 | –0.03 | 0.21 | 0.04 | –0.47 | –0.67 | 0.45 | 0.36 | –0.52 | –0.15 |
Oxalis spp. | 0.66 | 0.39 | 0.32 | 0.28 | –0.29 | 0.4 | 0.52 | 0.23 | –0.38 | –0.53 | 0.05 | –0.3 | 0.39 | 0.51 | –0.46 | 0.25 | 0.25 | –0.15 |
Geranium wislizeni | 0.25 | 0.21 | 0.56 | 0.66 | 0.2 | –0.14 | 0.00 | 0.27 | –0.14 | –0.09 | –0.79 | 0.74 | 0.3 | –0.13 | –0.23 | 0.4 | 0.65 | 0.62 |
Commelinadianthifolia | 0.51 | 0.61 | 0.53 | 0.47 | –0.08 | 0.42 | 0.51 | 0.62 | –0.17 | –0.24 | –0.67 | 0.38 | 0.65 | 0.3 | –0.47 | 0.08 | 0.54 | 0.11 |
Acmisponwrightii | –0.27 | –0.45 | –0.23 | –0.4 | 0.69 | 0.24 | –0.02 | 0.35 | 0.82 | 0.84 | 0.39 | –0.1 | –0.58 | –0.06 | 0.57 | –0.53 | –0.23 | 0.01 |
Cyperussphaerolepis | 0.65 | 0.54 | 0.42 | 0.35 | –0.29 | 0.36 | 0.66 | 0.47 | –0.32 | –0.44 | –0.3 | –0.01 | 0.6 | 0.5 | –0.54 | 0.13 | 0.38 | –0.04 |
Pseudognaphaliumarizonicum | 0.49 | 0.45 | 0.4 | 0.24 | 0.21 | 0.34 | 0.62 | 0.56 | 0.23 | 0.13 | –0.37 | 0.32 | 0.17 | 0.34 | –0.19 | –0.11 | 0.39 | 0.35 |
Verbesinaparviflora | –0.58 | –0.32 | –0.65 | –0.37 | 0.05 | –0.69 | –0.52 | –0.57 | 0.00 | 0.15 | 0.13 | 0.24 | –0.65 | –0.79 | 0.62 | 0.28 | –0.58 | –0.13 |
Penstemon miniatus var. townsendianus | 0.39 | 0.59 | 0.00 | –0.12 | –0.21 | 0.06 | 0.33 | –0.12 | –0.16 | –0.25 | –0.1 | 0.03 | 0.15 | 0.15 | –0.19 | –0.23 | –0.03 | 0.11 |
Agastache pallida | –0.06 | –0.31 | –0.04 | –0.27 | 0.67 | 0.44 | 0.12 | 0.43 | 0.81 | 0.78 | 0.24 | –0.03 | –0.41 | 0.05 | 0.42 | –0.59 | –0.04 | 0.16 |
Packeracandidissima | 0.19 | 0.03 | 0.7 | 0.65 | 0.44 | 0.11 | 0.14 | 0.64 | 0.08 | 0.17 | –0.55 | 0.42 | 0.35 | 0.21 | –0.18 | 0.12 | 0.74 | 0.03 |
Milla biflora | 0.02 | –0.14 | –0.02 | –0.07 | –0.38 | –0.1 | –0.12 | –0.19 | –0.21 | –0.25 | 0.16 | –0.25 | 0.1 | 0.13 | –0.27 | –0.06 | –0.05 | 0.00 |
Ratibidamexicana | 0.42 | 0.24 | 0.6 | 0.53 | 0.35 | 0.25 | 0.16 | 0.44 | 0.12 | 0.11 | –0.76 | 0.74 | 0.25 | 0.04 | –0.19 | 0.05 | 0.66 | 0.66 |
Arctostaphylos pungens | –0.01 | –0.25 | 0.03 | 0.05 | –0.45 | –0.12 | –0.2 | –0.1 | –0.31 | –0.36 | 0.15 | –0.31 | 0.22 | 0.26 | –0.33 | 0.22 | –0.03 | –0.13 |
Ceanothus depressus | –0.37 | –0.53 | –0.32 | –0.5 | 0.69 | 0.26 | –0.13 | 0.19 | 0.82 | 0.9 | 0.41 | –0.09 | –0.64 | –0.13 | 0.68 | –0.67 | –0.32 | 0.06 |
Ceanothus coeruleus | –0.54 | –0.29 | –0.54 | –0.34 | –0.05 | –0.64 | –0.5 | –0.54 | –0.06 | 0.09 | 0.13 | 0.17 | –0.53 | –0.56 | 0.43 | 0.09 | –0.49 | –0.12 |
Species | Estimate | Std. Error | p-Value | ND | RD | AIC | PoP | |
---|---|---|---|---|---|---|---|---|
Viola grahamii | Intercept | 33.91 | 15.42 | * 0.03 | 27.53 | 11.29 | 19.29 | 0.98 |
Sand | −0.50 | 0.23 | * 0.03 | |||||
Ca | −0.01 | 0.00 | * 0.03 | |||||
Phaseolus parvulus | Intercept | −2.01 | 1.55 | 0.19 | 25.90 | 22.05 | 26.05 | 0.65 |
Na | 0.02 | 0.01 | 0.09 | |||||
Stevia serrata | Intercept | 0.61 | 1.51 | 0.69 | 25.90 | 19.80 | 25.80 | 0.94 |
EC | −20.78 | 11.49 | 0.07 | |||||
Ca | 0.00 | 0.00 | 0.06 | |||||
Lupinusdiehlii | Intercept | −6.22 | 2.94 | * 0.03 | 22.49 | 16.38 | 20.38 | 0.99 |
K | 0.01 | 0.01 | 0.05 | |||||
Chimaphilamaculata | Intercept | −22.72 | 12.18 | 0.06 | 24.43 | 24.43 | 25.75 | 0.99 |
Sand | 0.276 | 0.15 | 0.07 | |||||
Silt | 0.22 | 0.144 | 0.12 | |||||
Oxalis metcalfei +O. hernandezii | Intercept | −3.13 | 1.75 | . 0.07 | 25.90 | 19.01 | 23.01 | 0.82 |
EC | 17.57 | 8.23 | * 0.03 | |||||
Geranium wislizeni | Intercept | 1.25 | 2.44 | 0.61 | 22.49 | 12.62 | 18.62 | 0.98 |
Fe | −0.14 | 0.08 | 0.07 | |||||
Cu | 27.24 | 14.28 | 0.06 | |||||
Acmisponwrightii | Intercept | −17.09 | 9.92 | 0.08 | 25.90 | 8.09 | 12.09 | 0.99 |
Sat | 0.34 | 0.20 | 0.09 | |||||
Cyperus sphaerolepis | Intercept | −4.64 | 2.72 | 0.09 | 20.02 | 12.31 | 16.31 | 0.81 |
Fe | 0.08 | 0.04 | * 0.04 | |||||
Pseudognaphaliumarizonicum | Intercept | −2.73 | 1.99 | 0.17 | 20.02 | 13.84 | 17.84 | 0.69 |
EC | 21.65 | 11.51 | 0.06 | |||||
Penstemon miniatus var. townsendianus | Intercept | −2.97 | 1.21 | * 0.01 | 20.02 | 15.93 | 19.93 | 0.95 |
P | 0.08 | 0.04 | 0.06 | |||||
Agastache pallida | Intercept | −7.50 | 3.33 | * 0.02 | 26.92 | 15.24 | 19.24 | 0.99 |
Sat | 0.15 | 0.07 | * 0.03 | |||||
Verbesinaparviflora | Intercept | −0.16 | 2.18 | 0.94 | 26.92 | 19.67 | 25.67 | 0.99 |
Sat | 0.07 | 0.04 | * 0.04 | |||||
Fe | −0.05 | 0.03 | 0.07 | |||||
Ratibidamexicana | Intercept | 6.66 | 4.95 | 0.18 | 26.92 | 16.08 | 22.08 | 0.98 |
Sat | 0.09 | 0.04 | * 0.04 | |||||
Sand | −0.21 | 0.10 | * 0.04 | |||||
Ceanothus depressus | Intercept | 3.63 | 1.48 | * 0.01 | 26.92 | 10.28 | 14.27 | 1 |
P | −0.25 | 0.14 | . 0.06 | |||||
Ceanothus coeruleus | Intercept | −31.54 | 15.29 | * 0.04 | 22.49 | 16.21 | 22.21 | 1 |
Sand | 0.34 | 0.17 | * 0.05 | |||||
Silt | 0.37 | 0.19 | . 0.06 |
Species | ROC | Sens | Spec | TSS | OOB (%) |
---|---|---|---|---|---|
Lupinusdiehlii | 0.60 | 0.87 | 0.40 | 0.27 | 20 |
Commelinadianthifolia | 1.00 | 1.00 | 0.93 | 0.93 | 5 |
Acmisponwrightii | 0.93 | 0.93 | 0.80 | 0.73 | 10 |
Agastache pallida | 0.85 | 0.80 | 0.50 | 0.30 | 10 |
Ceanothus coeruleus | 0.87 | 0.93 | 0.80 | 0.73 | 15 |
Arctostaphylos pungens | 0.79 | 0.87 | 0.25 | 0.12 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel-Nájera, J.F.; González-Elizondo, M.S.; Hernández-Díaz, J.C.; López-Sánchez, C.A.; Bailón-Soto, C.E.; Carrillo-Parra, A.; Wehenkel, C. Influence of Environmental Factors on Forest Understorey Species in Northern Mexico. Forests 2021, 12, 1198. https://doi.org/10.3390/f12091198
Maciel-Nájera JF, González-Elizondo MS, Hernández-Díaz JC, López-Sánchez CA, Bailón-Soto CE, Carrillo-Parra A, Wehenkel C. Influence of Environmental Factors on Forest Understorey Species in Northern Mexico. Forests. 2021; 12(9):1198. https://doi.org/10.3390/f12091198
Chicago/Turabian StyleMaciel-Nájera, Juan F., M. Socorro González-Elizondo, José Ciro Hernández-Díaz, Carlos A. López-Sánchez, Claudia Edith Bailón-Soto, Artemio Carrillo-Parra, and Christian Wehenkel. 2021. "Influence of Environmental Factors on Forest Understorey Species in Northern Mexico" Forests 12, no. 9: 1198. https://doi.org/10.3390/f12091198
APA StyleMaciel-Nájera, J. F., González-Elizondo, M. S., Hernández-Díaz, J. C., López-Sánchez, C. A., Bailón-Soto, C. E., Carrillo-Parra, A., & Wehenkel, C. (2021). Influence of Environmental Factors on Forest Understorey Species in Northern Mexico. Forests, 12(9), 1198. https://doi.org/10.3390/f12091198