Energy Distribution in Dowel-Type Joints in Timber Structures When Using Expansive Kits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry of the Configuration
2.2. Preliminary Materials Description
2.2.1. Timber
2.2.2. Steel
2.3. Expansive Kit
3. Finite Element Model
3.1. Contact Zone
3.2. Steel and Timber Behavior Models
3.3. User Material Subroutine for Timber
3.4. Expansion of the Dowel
4. Experimental Tests
5. Results and Discussion
5.1. Load vs. Displacement Comparison with and without the Expansive Kit
- EK: FEM model with the expansive kit used (final expanded diameter 13 mm).
- NE: FEM model without using the expansive kit.
- S1, S2 and S3: experimental results yielded by the three tested specimens.
- Mean: the curve obtained from the mean values of the three specimens.
5.2. Mechanical Energy Distribution between the Different Parts of the Joint
5.3. Ratio between the Elastic and the Plastic Mechanical Energies
5.4. Study of the Energy Distribution inside the Timber Parts
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kasal, B.; Pospisil, S.; Jirovský, I.; Heiduschke, A.; Drdacky, M.; Haller, P. Seismic performance of laminated timber frames with fiber-reinforced joints. Earthq. Eng. Struct. Dyn. 2004, 33, 633–646. [Google Scholar] [CrossRef]
- CEN/Technical Committee 124. Structural Timber—Determination of Characteristic Values of Mechanical Properties and Density EN 384:2016+A1:2018; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- CEN/Technical Committee 250. Eurocode 5: Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings EN 1995-1-1:2004/A2:2014; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- CEN/Technical Committee 124. Timber Structures—Glued Laminated Timber and Glued Solid Timber—Requirements EN 14080:2013; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- Milch, J.; Tippner, J.; Brabec, M.; Sebera, V.; Kunecký, J.; Kloiber, M.; Hasníková, H. Experimental testing and theoretical prediction of traditional dowel-type connections in tension parallel to grain. Eng. Struct. 2017, 152, 180–187. [Google Scholar] [CrossRef]
- El-Houjeyri, I.; Thi, V.-D.; Oudjene, M.; Khelifa, M.; Rogaume, Y.; Sotayo, A.; Guan, Z. Experimental investigations on adhesive free laminated oak timber beams and timber-to-timber joints assembled using thermo-mechanically compressed wood dowels. Constr. Build. Mater. 2019, 222, 288–299. [Google Scholar] [CrossRef]
- Iraola, B.; Cabrero, J.; Basterrechea-Arévalo, M.; Gracia, J. A geometrically defined stiffness contact for finite element models of wood joints. Eng. Struct. 2021, 235, 112062. [Google Scholar] [CrossRef]
- Tuhkanen, E.; Mölder, J.; Schickhofer, G. Influence of number of layers on embedment strength of dowel-type connections for glulam and cross-laminated timber. Eng. Struct. 2018, 176, 361–368. [Google Scholar] [CrossRef]
- Dourado, N.; da Silva, F.G.A.; de Moura, M. Fracture behavior of wood-steel dowel joints under quasi-static loading. Constr. Build. Mater. 2018, 176, 14–23. [Google Scholar] [CrossRef]
- Yurrita, M.; Cabrero, J.M.; Quenneville, P. Brittle failure in the parallel-to-grain direction of multiple shear softwood timber connections with slotted-in steel plates and dowel-type fasteners. Constr. Build. Mater. 2019, 216, 296–313. [Google Scholar] [CrossRef]
- Wei, P.; Wang, B.J.; Li, H.; Wang, L.; Peng, S.; Zhang, L. A comparative study of compression behaviors of cross-laminated timber and glued-laminated timber columns. Constr. Build. Mater. 2019, 222, 86–95. [Google Scholar] [CrossRef]
- Nie, Y.; Karimi-Nobandegani, A.; Valipour, H.R. Experimental behaviour and numerical modelling of timber-timber composite (TTC) joints. Constr. Build. Mater. 2021, 290, 123273. [Google Scholar] [CrossRef]
- Rad, A.R.; Burton, H.; Weinand, Y. Performance assessment of through-tenon timber joints under tension loads. Constr. Build. Mater. 2019, 207, 706–721. [Google Scholar] [CrossRef]
- Pavković, K.; Stepinac, M.; Rajčić, V. Brittle failure modes in reinforced and non-reinforced timber joint with large diameter fastener loaded parallel to grain. Eng. Struct. 2020, 222, 111104. [Google Scholar] [CrossRef]
- dos Santos, C.; Morais, J.; de Jesus, A.M. Mechanical behaviour of wood T-joints. Experimental and numerical investigation. Frat. Integrità Strutt. 2014, 31, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Vassiliou, V.; Barboutis, I.; Kamperidou, V. Strength of corner and middle joints of upholstered furniture frames constructed with black locust and beech wood. Wood Res. 2016, 61, 495–504. [Google Scholar]
- Tang, L.; Yang, H.; Crocetti, R.; Liu, J.; Shi, B.; Gustafsson, P.J.; Liu, W. Experimental and numerical investigations on the hybrid dowel and bonding steel plate joints for timber structures. Constr. Build. Mater. 2020, 265, 120847. [Google Scholar] [CrossRef]
- Lacourt, P.A.; Crisafulli, F.J.; Mirasso, A.E. Finite element modelling of hysteresis, degradation and failure of dowel type timber joints. Eng. Struct. 2016, 123, 89–96. [Google Scholar] [CrossRef]
- Bouchard, R.; Salenikovich, A.; Frenette, C.; Bedard-Blanchet, G. Experimental investigation of joints with multiple glued-in rods in glued-laminated timber under axial tensile loading. Constr. Build. Mater. 2021, 293, 122614. [Google Scholar] [CrossRef]
- Toumpanaki, E.; Ramage, M.H. Glued-in CFRP and GFRP rods in block laminated timber subjected to monotonic and cyclic loading. Compos. Struct. 2021, 272, 114201. [Google Scholar] [CrossRef]
- Xu, B.-H.; Li, D.-F.; Zhao, Y.-H.; Bouchaïr, A. Load-carrying capacity of timber joints with multiple glued-in steel rods loaded parallel to grain. Eng. Struct. 2020, 225, 111302. [Google Scholar] [CrossRef]
- Masaeli, M.; Gilbert, B.; Karampour, H.; Underhill, I.; Lyu, C.; Gunalan, S. Scaling effect on the moment and shear responses of three types of beam-to-column connectors used in mass timber buildings. Eng. Struct. 2020, 208, 110329. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, Y.; Ranzi, G.; Zhang, S. Time-dependent behaviour of expansive concrete-filled steel tubular columns. J. Constr. Steel Res. 2010, 67, 471–483. [Google Scholar] [CrossRef]
- Murakami, R.; Onoue, K.; Morimoto, K.; Hashimoto, R. Effects of expansive filler and headed rebar on the shortening of development length of mortar-filled joints. J. Build. Eng. 2021, 40, 102338. [Google Scholar] [CrossRef]
- Li, Y.-L.; Zhao, X.-L. Experimental study on stainless steel blind bolted T-stub to square hollow section connections. Thin Walled Struct. 2021, 167, 108259. [Google Scholar] [CrossRef]
- Seo, S.-Y.; Nam, B.-R.; Kim, S.-K. Tensile strength of the grout-filled head-splice-sleeve. Constr. Build. Mater. 2016, 124, 155–166. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, Z.; Guan, D.; Zhang, X. Parametric study on a novel grouted rolling pipe splice for precast concrete construction. Constr. Build. Mater. 2018, 166, 452–463. [Google Scholar] [CrossRef]
- Rodd, P.D.; Leijten, A.J.M. High-performance dowel-type joints for timber structures. Prog. Struct. Eng. Mater. 2003, 5, 77–89. [Google Scholar] [CrossRef]
- Gattesco, N. Experimental study on multiple-bolt steel-to-timber tension joints. Mater. Struct. 2004, 37, 129–138. [Google Scholar] [CrossRef]
- Meghlat, E.-M.; Oudjene, M.; Ait-Aider, H.; Batoz, J.-L. A new approach to model nailed and screwed timber joints using the finite element method. Constr. Build. Mater. 2013, 41, 263–269. [Google Scholar] [CrossRef]
- CEN/Technical Committee 175. Moisture Content of a Piece of Sawn Timber—Part 2: Estimation by Electrical Resistance Method EN 13183-2:2002/AC:2003; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- CEN/Technical Committee 250. Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings EN 1993-1-1:2005/A1:2014; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- CEN/Technical Committee 459. Hot Rolled Products of Structural Steels—Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels EN 10025-2:2019; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- Larsen, H.J.; Jensen, J.L. Influence of semi-rigidity of joints on the behaviour of timber structures. Prog. Struct. Eng. Mater. 2000, 2, 267–277. [Google Scholar] [CrossRef]
- van der Put, T.A. A continuum failure criterion applicable to wood. J. Wood Sci. 2009, 55, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Sawata, K.; Yasumura, M. Estimation of yield and ultimate strengths of bolted timber joints by nonlinear analysis and yield theory. J. Wood Sci. 2003, 49, 383–391. [Google Scholar] [CrossRef]
- Fajdiga, G.; Rajh, D.; Nečemer, B.; Glodež, S.; Šraml, M. Experimental and numerical determination of the mechanical properties of spruce wood. Forests 2019, 10, 1140. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.-L.; Guan, H.-Y.; Kei, S. Effects of moisture content and grain direction on the elastic properties of beech wood based on experiment and finite element method. Forests 2021, 12, 610. [Google Scholar] [CrossRef]
- Xu, B.-H.; Bouchair, A.; Taazount, M.; Racher, P. Numerical 3D finite element modelling and experimental tests of rounded dovetail connection. Eur. J. Environ. Civ. Eng. 2013, 17, 564–578. [Google Scholar] [CrossRef]
- Guan, Z.; Zhu, E. Finite element modelling of anisotropic elasto-plastic timber composite beams with openings. Eng. Struct. 2009, 31, 394–403. [Google Scholar] [CrossRef]
- Schoenmakers, J.; Jorissen, A. Failure mechanisms of dowel-type fastener connections perpendicular to grain. Eng. Struct. 2011, 33, 3054–3063. [Google Scholar] [CrossRef]
- Reiterer, A.; Stanzl-Tschegg, S.E. Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech. Mater. 2001, 33, 705–715. [Google Scholar] [CrossRef]
- Iraola, B.; Cabrero, J.M. An algorithm to model wood accounting for different tension and compression elastic and failure behaviors. Eng. Struct. 2016, 117, 332–343. [Google Scholar] [CrossRef]
- Kharouf, N.; McClure, G.; Smith, I. Elasto-plastic modeling of wood bolted connections. Comput. Struct. 2003, 81, 747–754. [Google Scholar] [CrossRef]
- de Borst, R.; Feenstra, P.H. Studies in anisotropic plasticity with reference to the Hill criterion. Int. J. Numer. Methods Eng. 1990, 29, 315–336. [Google Scholar] [CrossRef]
- Holmberg, S.; Persson, K.; Petersson, H. Nonlinear mechanical behaviour and analysis of wood and fibre materials. Comput. Struct. 1999, 72, 459–480. [Google Scholar] [CrossRef]
- Chen, D.J.; Han, W.F. Plasticity for Structural Engineers; J Ross Publishing: Plantation, FL, USA, 2007. [Google Scholar]
- CEN/Technical Committee 124. Timber Structures—Joints Made with Mechanical Fasteners—General Principles for the Determination of Strength and Deformation Characteristics EN 26891:1991; European Committee for Standardization: Brussels, Belgium, 1991. [Google Scholar]
- Dorn, M.; de Borst, K.; Eberhardsteiner, J. Experiments on dowel-type timber connections. Eng. Struct. 2013, 47, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Schweigler, M.; Bader, T.K.; Hochreiner, G. Engineering modeling of semi-rigid joints with dowel-type fasteners for nonlinear analysis of timber structures. Eng. Struct. 2018, 171, 123–139. [Google Scholar] [CrossRef]
- Xu, B.-H.; Taazount, M.; Bouchair, A.; Racher, P. Numerical 3D finite element modelling and experimental tests for dowel-type timber joints. Constr. Build. Mater. 2009, 23, 3043–3052. [Google Scholar] [CrossRef]
- Simulia. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/ (accessed on 22 August 2021).
- Sadd, M.H. Elasticity: Theory, Applications, and Numerics; Elsevier Inc.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Guan, Z.; Rodd, P. Hollow steel dowels—A new application in semi-rigid timber connections. Eng. Struct. 2001, 23, 110–119. [Google Scholar] [CrossRef]
Properties | Symbol | Value |
---|---|---|
Bending strength (N/mm2) | fm,g | 29.8 |
Tensile strength parallel to grain (N/mm2) | ft,0,g | 23.8 |
Tensile strength perpendicular to grain (N/mm2) | ft,90,g | 0.6 |
Compressive strength parallel to grain (N/mm2) | fc,0,g | 29.8 |
Compressive strength perpendicular to grain (N/mm2) | fc,90,g | 3.1 |
Shear strength parallel to grain (N/mm2) | fv,g | 4.3 |
Modulus of elasticity parallel to grain (N/mm2) | E0,g | 11,500 |
Modulus of elasticity perpendicular to grain (N/mm2) | E90,g | 300 |
Poisson’s ratio LT | νLT | 0.41 |
Poisson’s ratio LR | νLR | 0.41 |
Poisson’s ratio RT | νRT | 0.51 |
Shear modulus (N/mm2) | Gg | 650 |
Density (kg/mm3) | ρg | 420 |
Internal strain energy (ALLIE) | Lateral | 44% |
Central | 26% | |
Sleeve | 11% | |
Rod | 7% | |
Block | ~0 | |
Frictional dissipation (ALLFD) | 12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fueyo, J.G.; Cabezas, J.A.; Domínguez, M.; Antón, N.; Villarino, A. Energy Distribution in Dowel-Type Joints in Timber Structures When Using Expansive Kits. Forests 2021, 12, 1200. https://doi.org/10.3390/f12091200
Fueyo JG, Cabezas JA, Domínguez M, Antón N, Villarino A. Energy Distribution in Dowel-Type Joints in Timber Structures When Using Expansive Kits. Forests. 2021; 12(9):1200. https://doi.org/10.3390/f12091200
Chicago/Turabian StyleFueyo, Jose G., Jose A. Cabezas, Manuel Domínguez, Natividad Antón, and Alberto Villarino. 2021. "Energy Distribution in Dowel-Type Joints in Timber Structures When Using Expansive Kits" Forests 12, no. 9: 1200. https://doi.org/10.3390/f12091200
APA StyleFueyo, J. G., Cabezas, J. A., Domínguez, M., Antón, N., & Villarino, A. (2021). Energy Distribution in Dowel-Type Joints in Timber Structures When Using Expansive Kits. Forests, 12(9), 1200. https://doi.org/10.3390/f12091200