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Abstract: Spotted gum (Corymbia citriodora spp. variegata; CCV) has been widely planted, has a
wide natural distribution, and is the most important commercially harvested hardwood species in
Queensland, Australia. It has a great capacity to sequester carbon, thus reducing the impact of CO2

emissions on climate. Belowground root biomass (BGB) plays an important role as a carbon sink in
terrestrial ecosystems. To explore the potential of biomass and carbon accumulation belowground,
we developed and validated models for CCV plantations in Queensland. The roots of twenty-three
individual trees (size range 11.8–42.0 cm diameter at breast height) from three sites were excavated
to a 1-m depth and were weighed to obtain BGB. Weighted nonlinear regression models were most
reliable for estimating BGB. To evaluate the candidate models, the data set was cross-validated
with 70% of the data used for training and 30% of the data used for testing. The cross-validation
process was repeated 23 times and the validation of the models were averaged over 23 iterations.
The best model for predicting spotted gum BGB was based on a single parameter, with the diameter
at breast height (D) as an independent variable. The best equation BGB = 0.02933 × D2.5805 had
an adjusted R2 of 0.854 and a mean absolute percentage error of 0.090%. This equation was tested
against published BGB equations; the findings from this are discussed. Our equation is recommended
to allow improved estimates of BGB for this species.

Keywords: allometric equation; belowground root biomass; cross-validation; spotted gum planta-
tions; weighted nonlinear models

1. Introduction

The contribution of forest ecosystems has been widely recognized for conserving and
enhancing carbon sinks and reducing global warming [1–4]. Although plantation forests
comprise 3% of the world’s total forest area [5], they play an important role in climate
change mitigation through their capacity to absorb and store carbon [6], particularly where
plantation forests are established on previously cleared land. Accurate estimation of forest
biomass is important, as it provides data on ecosystem productivity, nutrient flows, and
their contribution to the global carbon cycle [3]. However, accurate estimates of biomass
is limited for many sites and species due to the lack of specific allometric equations, the
most common methods used for biomass estimations [7]. A robust regression for carbon
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sequestration is therefore needed to provide plantation owners with confidence and allow
trading of carbon credits.

Root systems contribute approximately half of the carbon being cycled annually in
various forests and they account for 33% of global net primary production [8]. Belowground
biomass (BGB) is defined as the biomass of living roots, including coarse roots (>2 mm
diameter) and fine roots (≤2 mm diameter) [9]. Understanding the interactions and
relative distribution of the belowground and aboveground biomass is a key requirement
to understanding plant productivity [10–12]. Roots are considered a vital carbon sink in
terrestrial ecosystems [13,14]. Root systems contribute 10–45% of the total tree biomass,
depending on species [15,16], with biomass located mainly in root crowns and coarse
roots [16]. Hence, if root biomass is underestimated at a site (e.g., through the use of
inappropriate biomass estimating equations) in forestry carbon projects, the terrestrial
carbon stocks can also be greatly underestimated [17].

BGB can be estimated using a range of methodologies, including destructive sampling,
non-destructive sampling, inferential measurements, modelling, and ground penetrating
radar [18]. While destructive sampling allows the most precise and accurate predictions of
biomass, this approach is relatively rare in forest ecosystems due to challenges associated
with sampling roots [10,17,19]. Destructive sampling involving harvesting of roots is
time-consuming and costly. Sampling BGB of large trees is particularly challenging as
large roots can penetrate deeply into the soil and be widespread, thus requiring a large
area of excavation [12,13,17,19–23]. Consequently, in most cases, BGB is predicted based
on aboveground biomass (AGB) and pre-existing allometric equations or root-to-shoot
ratios (RS) [18,19]. However, these approaches have limitations. The RS in forests varies
considerably, for example Snowdon et al. [18] reports RS of 0.25 to 0.70 for open-medium
forest and woodlands, whereas Keith et al. [24] reports RS of 0.154 to 0.199 for P. radiata.
Thus, the RS may not be appropriate for specific species and site conditions. As highlighted
by Paul et al. [19], the BGB estimated using predictions based on AGB led to an increase in
mean absolute prediction error of 13% at the individual stand level in comparison to the
use of allometric equations. The obvious limitations here indicate that, where high levels of
accuracy are required, allometric equations must be established and root biomass derived
through destructive harvesting, rather than applying RS [25–27].

Accuracy of biomass estimation depends on the availability of reliable regression
equations to utilize forest inventory data [28]. There are a number of allometric equations
that have been developed for estimating BGB in Australian forests, mostly based on
destructive sampling in native eucalypt forests and environmental plantings [10,19,29–31].
There are, however, no available species-specific equations to allow prediction of BGB of
spotted gum (Corymbia citriodora subsp. variegata, CCV), despite this species being widely
planted in South Africa, Brazil, and Israel [32] and having a widespread natural distribution
along the eastern seaboard of Australia. CCV has been planted in Queensland and northern
New South Wales and is the most important commercial native hardwood species for high-
quality timber in Queensland [33,34] with great potential for commercial purposes. The
species is more likely to thrive and adapt to the variable changes of climate compared to
other eucalypts [35]. Research trials have shown that due to superior adaptability, CCV
displays desirable characteristics relative to other Eucalyptus and Corymbia species, such as
growth, wood properties, a relatively high tolerance to drought, and resistance to pests and
diseases [34,35]. They also grow on nutrient-poor soils and in rainfall regimes that fluctuate
from 600 to 2000 mm [36]. CCV is also a fast-growing tree on marginal areas on coastal
sites in South Africa. This species indicated excellent potential for commercial forestry on
the Zululand coastal plain [37]. Therefore, formulating a species specific BGB model will
provide a simple way for plantation owners (e.g., farmers, investors, and government) to
reap the dual benefits of timber production and carbon storage (trading carbon credits).
In this paper we aimed to: (i) develop allometric equations for Corymbia citriodora subsp.
variegata to estimate belowground biomass in spotted gum plantations, using independent
variables including diameter at breast height and tree height and empirical data measured
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by destructively sampled trees; (ii) determine the most appropriate equation to allow
accurate estimates of BGB for this species; and (iii) test the application of these equations
against an independent dataset.

2. Materials and Methods
2.1. Study Sites and Plantation Establishment

The study was conducted at three CCV research trials (451D, 451G and 13PHY)
established by Queensland Government between 2000 and 2002 on contrasting soil types
(Table 1) in southeast Queensland, Australia (Figure 1).
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Figure 1. Locations of sampling sites in spotted gum plantations in Queensland, Australia. The site
of 451D (1), 451G (2), and 13 PHY (3) are located in Tiaro, St Mary, and Coolabunia, respectively.

Table 1. Description of three plantation sites of Corymbia citriodora subsp. variegate.

Description 451D 451G 13PHY

Planting year 2000 2002 2001
Latitude 25◦45′45′ ′ S 25◦40′24′ ′ S 26◦37′4′ ′ S

Longitude 152◦40′30′ ′ E 152◦31′22′ ′ E 151◦55′46′ ′ E
Mean annual rainfall (mmyear−1) 1111 949 725

Initial stocking (stemsha−1)
Current sampling (stemsha−1)

1000
206

1111
240

1000
300

Soil type [38] Grey Kurosol Red Ferrosol Red Ferrosol and Brown Dermosol
Initial spacing (m) 5 × 2 5 × 1.8 5 × 2

Site 451D is located in Bakers Logging Area, Tiaro State Forest, near Tiaro and was
established in July 2000, covering an area of 10.75 ha. The soil type is a Grey Kurosol [38];
this acid, grey, texture-contrast soil is characterized by an apedal, lighter-textured A horizon
overlying a structured heavy clay B horizon.

Site 451G is located in St Mary State Forest, covering an area of 5.5 ha. The soil type is
a Red Ferrosol [38], which is an acid, red, well-structed soil without a clear texture contrast
between A and B horizons.
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Site 13 PHY is located within a 200 ha plantation established in May 2001, in the
Burnett Valley at Coolabunia. This site presents two types of soil: Red Ferrosol (as per site
451G) and Brown Dermosol [38], which is an acid, brown, texture-contrast soil characterized
by a weakly structed A horizon overlying as structured medium clay B horizon.

2.2. Sample Size

This study involved sampling belowground biomass of 23 trees (Table 2) from the most
commonly planted provenance of the species (from the Gympie region). Sampling BGB
across three sites aimed to capture the variability in tree sizes in terms of diameter at breast
height (D) and total height (H). In 2009, 12 trees were sampled from experiments 451D,
451G, and 13PHY ranging from 7–9 years of age and from 11.8 to 18.2 cm D. In 2020, 11 trees
were destructively sampled at sites 451D, with diameters ranging from 17.7–42.0 cm. The
trees sampled in 2020 were divided into six diameter classes: (1) 15–20 cm; (2) 20.1–25 cm;
(3) 25.1–30 cm; (4) 30.1–35 cm; (5) 35.1–40 cm; and (6) 40.1–45 cm to achieve an adequate
spread of diameter classes in the sample [10,39,40]. In each diameter class, 2–3 individual
trees were randomly chosen for sampling. Therefore, the total sample size comprised trees
from across a wide range of D (11.8–42.0 cm), age classes (8–20 years old), and across three
sites with different growth rates. An overview of the D and H distribution of the trees on
these sites is given in Figure 2. The trees sampled were healthy and with single stems [41].

Table 2. Field sites, species information and descriptive statistics for predictor and response variables of 23 selected trees:
D, diameter at breast height (1.3 m); H, tree height; RB, rootball; MR, medium roots; BGB, total belowground biomass; N,
number of samples.

Location (Age) N
D (cm) H (m) RB (kg) MR (kg) BGB (kg)

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

451D (20) 11 17.7 42.0 20.2 32.0 48.0 319.8 16.4 67.7 64.4 387.6
451D (9) 3 12.0 17.8 16.5 17.5 13.1 49.6 2.8 5.8 16.0 55.4
451G (7) 3 11.8 17.6 16.6 20.4 10.3 29.1 1.0 2.9 11.2 30.3

13 PHY (8) 6 12.5 18.2 13.1 16.4 15.6 51.9 0.7 18.4 18.1 70.2

Total 23 11.8 42.0 13.1 32.0 10.3 319.8 0.7 67.7 11.2 387.6
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used to develop the BGB allometric equations.

2.3. Destructive Sampling Procedure

A detailed methodology of the belowground biomass collection at the site 451D was
reported by Huynh et al. [41]. A similar methodology was carried out at three sites (451D,
451G, and 13PHY) in the previous study in 2009.
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In summary, each tree sampled was assigned a tree identification number (ID). The
diameter over bark at breast height 1.3 m (D, cm) was recorded and the total height (H, m)
was measured after the tree was felled.

A square plot of 1.5 × 1.5 m was marked around the tree stump with the tree in the
center of the square. A second square measuring 2.5 m × 2.5 m was then marked out
around the outside of the stump (Figure 3). In the 2009, a 1 m3 excavation area was used to
sample the rootball monolith. However, in 2020, the trees were 11 years older with D up to
42 cm; hence, we extended the monolith sample area to ensure all of the large roots were
included in the sample.

Forests 2021, 12, x FOR PEER REVIEW 5 of 17 
 

 

A detailed methodology of the belowground biomass collection at the site 451D was 
reported by Huynh et al. [41]. A similar methodology was carried out at three sites (451D, 
451G, and 13PHY) in the previous study in 2009.  

In summary, each tree sampled was assigned a tree identification number (ID). The 
diameter over bark at breast height 1.3 m (D, cm) was recorded and the total height (H, 
m) was measured after the tree was felled.  

A square plot of 1.5 × 1.5 m was marked around the tree stump with the tree in the 
center of the square. A second square measuring 2.5 m × 2.5 m was then marked out 
around the outside of the stump (Figure 3). In the 2009, a 1 m3 excavation area was used 
to sample the rootball monolith. However, in 2020, the trees were 11 years older with D 
up to 42 cm; hence, we extended the monolith sample area to ensure all of the large roots 
were included in the sample. 

 
Figure 3. Excavated area: (A) The inner square (1.5 × 1.5 m) marked around sampled tree to sample 
rootball to a depth of 1 m, (B) the second square (2.5 × 2.5 m) located outside the rootball area to 
create four trenches (0.5 m wide around the inner square) and these trenches were dug to a 1-m 
depth to collect medium roots via soil sieving. 

An 8-tonne excavator was used to dig four trenches down to 1 m deep prior to re-
moving the rootball monolith. Soil in the excavated area was sieved through an 8 × 8 cm 
mesh with all roots removed (>2 mm). BGB in this study was defined as the rootball and 
medium roots (Huynh et al., 2020). The rootball included the stump to height of 50 cm 
above ground and to a depth of 1.0 m below the surface and enclosed by an area of 1.5 × 
1.5 m. Medium roots (>2 mm diameter) were collected from soil immediately surrounding 
the rootball in four trenches, as shown in Figure 3. These roots were weighed and recorded 
as fresh BGB (kg).  

After weighing the roots, sub-samples (at least 2 kg) of the rootball and medium roots 
were taken to the laboratory for dry weight determination. Root subsamples were oven-
dried to a constant weight at 70 °C–100 °C. The fresh to oven-dry mass ratios were calcu-
lated and used to convert the total fresh mass of each root component into oven-dry mass. 

  

Figure 3. Excavated area: (A) The inner square (1.5 × 1.5 m) marked around sampled tree to sample
rootball to a depth of 1 m, (B) the second square (2.5 × 2.5 m) located outside the rootball area to
create four trenches (0.5 m wide around the inner square) and these trenches were dug to a 1-m depth
to collect medium roots via soil sieving.

An 8-tonne excavator was used to dig four trenches down to 1 m deep prior to
removing the rootball monolith. Soil in the excavated area was sieved through an 8 × 8 cm
mesh with all roots removed (>2 mm). BGB in this study was defined as the rootball
and medium roots (Huynh et al., 2020). The rootball included the stump to height of
50 cm above ground and to a depth of 1.0 m below the surface and enclosed by an area
of 1.5 × 1.5 m. Medium roots (>2 mm diameter) were collected from soil immediately
surrounding the rootball in four trenches, as shown in Figure 3. These roots were weighed
and recorded as fresh BGB (kg).

After weighing the roots, sub-samples (at least 2 kg) of the rootball and medium
roots were taken to the laboratory for dry weight determination. Root subsamples were
oven-dried to a constant weight at 70 ◦C–100 ◦C. The fresh to oven-dry mass ratios were
calculated and used to convert the total fresh mass of each root component into oven-
dry mass.

2.4. Data Analysis
2.4.1. Biomass Model Development

Allometry involves linear or nonlinear modelling approaches to describe the corre-
lation between biomass and tree variables (such as D and H) [42–44]. The power-law
relationships are typical in many biomass equations [14,44–48]. Power models can be fitted
using log-linear models or nonlinear models [44,47,49]. We applied both methods in our
study. Firstly, we used power functions to analyze and develop allometric models with
different independent variables (D and H). Secondly, we compared these equations based
on a variety of selection criteria, including cross validation to select robust models and
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to predict BGB based on forest inventory data. Finally, we selected the best models to
accurately estimate BGB (as described in the section on model comparison and selection).

Within forests, most allometric equations have been developed using log-transformation
(e.g., by Burrows et al. [50], Eamus et al. [8] and Paul et al. [19]) but if nonlinear models can
account for heteroscedasticity there is no need to transform the parameter estimates [7,47].
The power-laws form Y = αX β, where Y, α, β, and X are the dependent variable, scaling
coefficient, scaling exponent, and explanatory variable, respectively. If an additive error
term or a multiplicative error term can be assumed for sampled trees, a simple BGB
equation has the following form:

BGB = α × X β × ε (1)

where BGB is total belowground biomass kgtree−1; X is tree variables D and H; α and β are
coefficients estimated by regression; and ε is the error term [43,51]. However, as biomass
data often exhibits a non-constant variance, Equation (1) was therefore transformed into a
linear form using the natural logarithm (ln) of both sides of the equation prior to developing
predictive models as shown in Equation (2):

ln(BGB) = ln (α) + β × ln (X) + ε (2)

To determine BGB, the log–log regression equations were transformed back from the
logarithmic scale to the arithmetic scale. Based on the existing literature [19,48,52–54], an
initial set of candidate models (Equations (3)–(7)) were selected:

ln(BGB) = ln(α) + β × ln (D) (3)

ln(BGB) = ln(α) + β × ln (H) (4)

ln(BGB) =ln(α) + β × ln (DH) (5)

ln(BGB) = ln(α) + β × ln (D2H) (6)

ln(BGB) = ln(α) + β × ln (DH2) (7)

where BGB = total belowground biomass (kg/tree), D = diameter at breast height (1.3 m)
in (cm), H = tree height (m), and α and β are parameter estimates of the model. The
resulting estimates of biomass using the log–log transformation usually leads to a negative
bias [30,55]. When back-transforming the estimation of biomass, a systematic bias result,
such as a correction factor (CF), should be used to remove the bias [56]. Consequently, all
logarithmic models (Equations (3)–(7)) include a CF. The CF was calculated as follows:

CF = exp (RSE2/2) (8)

where RSE is residual standard error. If the value of RSE is high, it results in a higher CF
and the model is less reliable. The models which provide the best relationships have a CF
close to 1 [25,55,56]. In this study, the five candidate linear regression models were fitted
using ‘lm( )’ function in the statistical software R.

We also evaluated an alternative approach using weighted nonlinear modelling to
develop the models for BGB, as this approach is considered better at correcting for bias
when transforming biomass estimates from logarithmic equations back to the arithmetic
scale [42]. Weighted nonlinear models had the following general form:

BGB = α× Xβ
ij + εij (9)

where BGB = total belowground biomass (kgtree−1); α and β are the parameter of the
model; Xij is the covariate D (cm), H (m), or combination of D and H for ith sampled
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tree; and εij is the random error related to the ith sampled tree. The variance function Var
(εij) [43,51] was defined as:

Var
(
Eij
)
= σ̂2(νij

)2δ (10)

where Eij is the absolute value; σ̂2 is the estimated error sum of squares; νij is the weighting
variable (DH2, D2H, DH, H, and D in this study) associated with the jth tree; and δ is the
variance function coefficient to be estimated. The value of δwas calculated using varPower
constructor in the R package.

To be consistent with the previous models (Equations (3)–(7)), the following nonlinear
models were developed specifically using the same combination of variables:

BGB = α × (D) β (11)

BGB = α × (H) β (12)

BGB = α × (DH) β (13)

BGB = α × (D2H) β (14)

BGB = α × (DH2) β (15)

The five candidate nonlinear models (Equations (11)–(15)) were fitted by the weighted
maximum likelihood procedure [29,57] using ‘nlme’ package in R software, and the model
diagnostics were checked using the ggplot 2 package [58].

2.4.2. Model Comparison and Selection

Accuracy and reliability should be considered in selection of the best-performing
allometric equations [26,55,59,60]. Models with the same response (dependent) variables
(i.e., Equations (3)–(7), fitted by transformed data or Equations (11)–(15) fitted by weighted
nonlinear analysis) were compared based on five fit statistics: (i) Akaike information
criterion (AIC); (ii) adjusted R2 (adj. R2); (iii) average bias, used to estimate model errors
and for calculating the difference between the estimate and the true value [61]; (iv) root
mean square error (RMSE) [44,61]; and (v) mean absolute percentage error (MAPE) [61].
To check for possible outliers and assess the goodness-of-fit of models, the diagnostic plots
were also used to choose the best performing models [62]. The optimal model will have
the lowest AIC, average bias, RMSE, MAPE, as well as a high adjusted R2, low levels of
collinearity [48], and will fit the data well.

AIC = −2ln (L) + 2p (16)

where L is the likelihood of the fitted model and p is total number of parameters in
the model.

Bias =
1
n ∑n

i=1(yi− ŷi) (17)

RMSE =
1
n

√
∑n

i=1 (yi− ŷi)
2

(18)

MAPE =
100
n ∑n

i=1

∣∣∣yi− ŷi
∣∣∣

yi
(19)

where n is the number of samples; yi, ŷi, and y are observed, fitted/predicted and averaged
value for the ith sample. Models with different dependent variables or weights were
compared using Furnival’s index (FI) [42,63,64]. The FI is calculated as follows:

FI =
1(

f′(Y)
)√MSE (20)
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where f′(Y) is the derivative of the dependent variable with respect to total BGB; MSE is
the mean square error of the fitted equation, and the square bracket (( )) is the geometric
mean. The five transformed models were compared with five weighted nonlinear models
where more reliable models have lower FI values.

2.4.3. Model Cross Validation

To assess the applicability of the model for general use to predict BGB, a comparison
between the two methods (linear and nonlinear) was therefore undertaken via cross-
validation to select the best ‘predicting model’. A Monte Carlo cross-validation procedure
(MCCV) [65–67] was used to test the robustness and predictive value of each regression
model. This procedure involves several steps; for each equation, the dataset was randomly
split into two parts with 70% for training and 30% for testing [44,68]. The process was
repeated 23 times with different random selections with the criteria for the selection of
the models based on an average over 23 iterations. Comparison models were also based
on the same criteria in Section 2.4, including AIC, adjusted R2, percent bias, RMSE, and
MAPE [61]. Finally, a model with the lowest errors was selected as follows:

Bias =
1
R ∑R

r=1
100
n ∑n

i=1
(yi− ŷ)

yi
(21)

RMSE =
1
R

√
∑R

r=1 ∑n
i=1(yi− ŷ)2 (22)

MAPE =
1
R ∑R

r=1
100
n ∑n

i=1

∣∣∣yi− ŷi
∣∣∣

yi
(23)

where R = number of resampling (23); yi is measured BGB; and ŷ is estimated BGB from
the cross-validation study.

3. Results
3.1. Descriptive Statistics

The D ranged from 11.8 cm to 42.0 cm across all sites and ages, while the H varied
from 13.1 m to 32.0 m. The BGB of the sampled trees ranged from 11.2 to 387.6 kgtree−1

(Table 2) and varied among tree ages. Root biomass increased with age. For example, BGB
ranged from 11.2 to 70.2 kgtree−1 in nine-year-old trees, whereases it ranged from 64.4 to
387.6 kgtree−1 in the 20-year-old trees. The rootball accounted for approximately 80% of
the BGB, and medium roots contributed about 20%.

Before fitting the allometric equations, data were checked for normality and a scatter
plot was prepared to explore the relationships between BGB and independent variables D
and H. The BGB–D relationship presented the best fit on the original scale (Figure S1).

3.2. Regression Equations Fitted to Natural Log Transformed Data

Separate transformed models for BGB developed based on D and H, or DH, D2H,
and DH2 are presented in Table 3. Comparative plots between predicted and observed
BGB are shown in the Supplementary Materials (Figure S2). The five candidate models
had similar goodness of fit statistics among the different variables. The results showed
that the predictor ln (D) (Equation (3)) alone performed poorest based on AIC and adj. R2,
whereas the combination DH2 (Equation (7)) performed the best. A comparison of five
criteria was used to distinguish the best model (AIC, adj. R2, Bias, RMSE and MAPE),
which showed that H (Equation (4)) was a poorer predictor than D2H (Equation (6)) and
DH (Equation (5)). Analysis of AIC, adj. R2, and RMSE for models with a single variable (D
or H) showed that Equation (4) was superior to Equation (3). However, Equation (3) had
lower values for bias and MAPE and a CF closer to 1 than Equation (4), and the spread of
residuals from Equation (3) was narrower than that from Equation (4) (Figure S2). Values
of CF for logarithmic models following back-transformation ranged from 1.035 to 1.096,
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while the mean value was 1.055. Comparisons of the log transformed models are provided
in Figure S2 and Table 3.

Table 3. Parameter estimates and their standard errors for BGB models developed based on logarithmic transformed models
and weighted nonlinear models: D is diameter at breast height (cm), H is total tree height (m), CF is correction factor, AIC is
Akaike’s information criterion (kg), averaged bias (kg), averaged RMSE is averaged root mean square error (kg), averaged
MAPE is averaged mean absolute percent error (%), δ is the variance function coefficient. FI = Furnival’s Index. FI can be
used to compare logarithmic transformed models and weighted nonlinear maximum likelihood models.

Equation
No. Model Form

Parameter
Estimates CF Weight

Variable AIC
Adj.
R2 Bias RMSE MAPE FI

α β

Logarithmic transformed models
(3) ln(BGB) = ln(α) + β × ln(D) 0.02354 2.64328 1.035 - 234.2 0.875 −6.3787 37.738 22.179 16.306
(4) ln(BGB) = ln(α) + β × ln(H) 0.00302 3.32052 1.096 - 227.9 0.905 −1.9043 32.876 39.416 26.668
(5) ln(BGB) = ln(α) + β × ln(DH) 0.00757 1.50922 1.047 - 222.5 0.928 −4.2685 27.987 25.677 18.898
(6) ln(BGB) = ln(α) + β × ln(D2H) 0.01101 0.96482 1.040 - 226.9 0.913 −5.0478 30.780 23.487 17.478
(7) ln(BGB) = ln(α) + β × ln(DH2) 0.00531 1.04515 1.058 - 220.5 0.934 −3.4478 26.824 29.197 20.918

Weighted nonlinear models
(11) BGB = α × D β 0.02933 2.5805 - 1/D δ 206.9 0.903 −0.00003 0.014 0.029 0.014
(12) BGB = α × H β 0.00269 3.3789 - 1/H δ 226.8 0.906 0.00093 0.065 0.132 0.066
(13) BGB = α × (DH) β 0.01150 1.44752 - 1/(DH) δ 209.9 0.944 −0.00048 0.058 0.120 0.058
(14) BGB = α × (D2H) β 0.01687 0.92222 - 1/(D2H) δ 207.5 0.939 −0.00033 0.037 0.079 0.037
(15) BGB = α × (DH2) β 0.00722 1.01661 - 1/(DH2) δ 214.0 0.940 −0.00016 0.077 0.158 0.777

3.3. Weighted Nonlinear Maximum Likelihood Models

Weighted nonlinear models (Equations (11)–(15)) are presented in Table 3. For these
models, the adj. R2 ranged from 0.903 (Equation (11)) to 0.944 (Equation (13)). Most
regression models were closely related to the predictors, but Equation (12) with H alone
had a weaker relationship based on AIC and averaged bias, while Equations (11) and (14)
were more closely fitted, with the lowest AIC, bias, RMSE, and MAPE. Although the
nonlinear maximum likelihood BGB model with D alone (Equation (11)) had a smaller
adj. R2 than the model with predictor D2H (Equation (14)), its weighted residuals graph
indicates the narrowest variation and spread of points (Figure S3).

3.4. Model Comparison and Selection

Comparison of the values using Furnival’s index (FI) showed that the overall perfor-
mance of weighted nonlinear models was better than log-linear models (Table 3). Models
D2H (Equation (14)) and D (Equation (11)) had the lowest FI values (0.025 and 0.014, re-
spectively) of all the models developed. These results were supported by the standardized
residual plots. All five log transformed models had two outliers in the larger predicted
BGB size class (Figure S2). The first is at D of 40.0 cm with total fitted BGB of 387.6 kg, and
the second is at D of 42.0 cm with total BGB of 341.8 kg. These were the largest diameter
trees sampled. For the best overall model in terms of FI (Equation (11)) (Table 3), there was
no evidence that inclusion of large trees underestimated BGB in stands of 7–20 years old.
Hence, further analysis was restricted to the nonlinear models.

3.5. Model Cross Validation

The Monte Carlo cross-validation (MCCV) procedure was used to test the observed
and predicted BGB of the five nonlinear models (Equations (11)–(15)). Results of MCCV
procedure are presented in Table 4. The cross validation showed that the differences
between criteria were non-significant, except for adj. R2, and for the models with D, DH,
and D2H. However, the BGB model using H alone had relatively high errors (averaged
bias, RMSE, and MAPE) and significant differences compared to the errors of other models
tested. The D2H model had slightly higher AIC, bias, and RMSE than the model only
using D. The validated and predicted values for the different models are also provided in
Figure S4.
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Table 4. Average predicted errors of five weighted nonlinear models from Monte Carlo cross
validation to select equations for BGB. The cross-validation procedure was run 23 times, 70% data
used for training, 30% data used for testing, and the statistics for comparison and validation of the
models were averaged over 23 realizations. Bold: selected model based on cross-validation statistics
and diagnostic plots (Figure S4).

Equation
No. Model Form AIC Adj. R2 Bias RMSE MAPE

(11) BGB = α × D β 146.4 0.854 0.040 0.063 0.090
(12) BGB = α × H β 160.9 0.916 0.422 2.631 1.213
(13) BGB = α × (DH) β 149.0 0.921 0.194 0.308 0.346
(14) BGB = α × (D2H) β 147.6 0.910 0.136 0.175 0.224
(15) BGB = α × (DH2) β 151.6 0.922 0.223 0.748 0.574

4. Discussion

The most reliable ways for determining of tree biomass and terrestrial carbon is to
destructively sample and measure all trees across the whole plantation estate [46,60,69].
However, it is unrealistic to destructively sample all standing trees to estimate biomass due
to the difficulty, time, and high cost of sampling [30] and negative environmental impacts,
particularly associated with excavating root systems [69]. Thus, allometric relationships
are considered an alternative approach and are widely applicable [30]. Developing reliable
allometric models, based on a sample of destructively sampled trees, allows easy transfer
from forest inventory data (e.g., D and H measures) to biomass estimates [28]. Once
established, allometric equations allow estimation of forest carbon and CO2 sequestration
through simple, non-destructive measurements, such as diameter and tree height [40,70].
Allometric equations also play an important role in estimating and predicting the amount
of carbon that will be stored in forests in the future [61].

4.1. Model Fitting and Cross Validation

Results suggest that both methods (logarithmic transformed models and weighted
nonlinear models) closely described the relationships between BGB and predictors (D and
H). Each set of the five candidate models had relatively high adj. R2. Their values ranged
from 0.875–0.934 and from 0.903–0.944 in Equations (3)–(7) and Equations (11)–(15), re-
spectively (Table 3). However, based on statistics and diagnostic plots, weighted nonlinear
regression models fitted with relatively low error levels in comparison with logarithmic
transformed models. Furnival’s index and the weighted residuals plots suggested that non-
linear models had higher reliability. This result contrasts with the findings of Moore [42]
and Fordjour and Rahmad [64] who reported that the log-linear models performed better
than nonlinear regression models in radiata pine plantations and liana species in tropical
primary and secondary forests. The log transformation modelling approach has been used
by many authors (e.g., Eamus et al. [8], Kuyah et al. [71], and Paul et al. [19]) when devel-
oping biomass equations. In contrast, fewer studies have used the nonlinear modelling
approach to develop allometric equations [7,61,72–74].

Despite nonlinear models showing high reliability, we undertook cross-validation to
identify the model that is best supported by our data (Table 4). Results of cross-validation
statistics indicated that model BGB = α × H β (Equation (12)) was less accurate than
model BGB = α × D β (Equation (11)), which had excellent potential for predicting BGB. A
wide variety of statistical models have been developed for estimating tree biomass [49].
However, relatively few studies use cross-validation, despite this being an important step
in the development of predictive models [75]. For example, our equation based on the
H variable alone had a higher adj. R2 compared to the equation with D, but the adj. R2

alone is inadequate to select the best model. This implies that if the equation with H alone
was not checked by cross-validation, this could result in large prediction errors. In our
cross-validation analyses, the simple model based on D alone performed better than all
other models tested, even though it had a slightly lower adj. R2 (Figure S4). This was also
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consistent with the selection of this model based on FI and other criteria (AIC, bias, RMSE
and MAPE) discussed previously.

4.2. Predictors for BGB Models

Biomass estimating equations often include diameter or height as independent vari-
ables. The literature indicates that most studies used D (over 80% of studies) for establishing
allometric equations [49]. Our results also showed that BGB was closely related to D. This
is consistent with Eamus et al. [8], Kuyah et al. [76], and Paul et al. [19]. Our results are
also consistent with Sileshi [48] who found that biomass equations with the addition of
the variable H led to an increase in adj. R2. For example, the equation BGB = α × (DH)
β (Equation (13)) had a higher adj. R2 (0.944) in comparison with the equation with D
alone (0.903) (Equation (11)) but the overall errors (AIC, bias, RMSE, and MAPE) of the
equations with both D and H were higher than that with D alone. The optimal model
selected in this study was therefore the nonlinear involving only D. This also avoids the
issue of collinearity, thus addressing concerns raised by Sileshi [48].

4.3. Biomass Model Comparisons

There have been a range of studies involving the development of regression equations
for predicting BGB in eucalypt plantations (Table 5). We evaluated these equations using
our data. The errors (bias, RMSE and MAPE) of predicted BGB using equations developed
for Eucalyptus spp., in studies by authors such as Eamus et al. [8], Resh et al. [77], and
Saint-André et al. [72], are not suitable for spotted gum plantations. Application of these
equations indicated that BGB was underestimated by approximately 40–60% for the same
tree diameters, which ranged from 25–50 cm in diameter. This suggests that these previous
models may require improvement for application in spotted gum plantations, ideally with
the inclusion of greater sampling effort for mature trees or larger trees. Previous studies
by Eamus et al. [8], Resh et al. [77], and Saint-André et al. [72] were based on trees with
diameters ranging from 3–25 cm.

Table 5. Comparison of average errors of BGB equation fitted by nonlinear maximum likelihood and other BGB equations
worldwide with different eucalypt species. N = Native; P = Plantation.

Reference Forest Type Site Species (Diameter Range, cm) Bias RMSE MAPE

This study P Australia Corymbia citriodora subsp. variegata
(11.8–42) −0.003 0.014 0.029

Paul et al. (2019) N, P Australia Mixed Eucalyptus spp.
(1.1–139) 8.4 29.6 26.5

Kuyah et al. (2012) P Kenya Eucalyptus spp.
(3–102) 32.2 42.2 34.2

Eamus et al. (2002) N Australia Eucalyptus spp.
(3–25) 8.4 58.5 42.2

Resh et al. (2003) P Australia E. globulus and E. nitens
(10–25) 61.2 78.0 61.2

Saint-André et al. (2005) P Congo E. alba
(3–25) 66.9 85.7 67.3

In Figure 4, we present three equations that best predicted the spotted gum BGB. (1) The
allometric equation developed by Kuyah et al. [76] where BGB (kgtree−1) = 0.029D2.432.
This equation was established for Eucalyptus species (Eucalyptus camaldulensis, Eucalyptus
grandis, and Eucalyptus saligna) in Western Kenya and constructed from the data collected
by 72 destructively sampling trees with DBH from 3–102 cm. (2) The BGB model of
Paul et al. [19] where BGB = exp(2.212 ln(D) − 2.682) × 1.096. Paul’s equation was
developed from single-stemmed trees, mostly eucalypts (77%) in hardwood plantations,
native forests, and woodlands, but also included other high wood density trees and
Pinus pinaster. The samples were collected from 810 trees with D ranging from 1.1 to
139 cm. (3) The optimal model selected in the current study based on Equation (11). The
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comparisons indicated that allometric equations developed in our study predicted the
highest yield of BGB among previous regression models. The models of Kuyah et al. [76]
and Paul et al. [19] resulted in similar estimates to our model for small diameter trees
(from 10–20 cm), but the predicted BGB values tended to be lower for larger diameter
trees (Figure 4). A possible explanation for the lower prediction when applying Kuyah
et al. [76] and Paul et al. [19] equations to the current data is the difference in characteristics
of species. Although these studies included diameters ranging from small to large trees, a
tree with a D of 40 cm had a predicted BGB of about 250 kg based on Paul’s equation [19],
while the spotted gum with a D of 30 cm also had a BGB of 250 kg. The prediction line of
the Paul equation lies below the observed data and the prediction line of Equation (11).
This difference may be due to the fact that we focused on a single species at three sites,
whereas many species and ecoregions across Australia were used in the Paul study [19].
The Kuyah et al. [76] study was conducted in agricultural landscapes in Kenya where the
average annual rainfall and soil characters are quite different to those in our study area,
and again a larger number of species were considered.
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Several methods have been used for sampling BGB, such as manual excavation [10,72,78,79],
soil pit excavation [80], monolith excavation [19,76,77,81], soil coring [77,80], water pres-
sure [82], and compressed air [83,84]. In this study, we used an 8-tonne excavator to
excavate biomass of individual trees to a 1.0-m depth [41]. The key benefit of this method is
that root samples can be collected accurately, although fine roots (<2 mm in diameter) were
not sampled during the excavation process. In prior excavations, Schenk and Jackson [85]
reported that at least 50% of all roots were found in the upper 0.3 m of the soil profile, while
90% were located within 2 m of the ground surface. In our case, visual observations made
during sampling suggested that excavation of an area of 2.5 × 2.5 × 1.0 m was adequate
to sample most roots in a 20-year-old spotted gum plantation. The average errors of BGB
equations discussed above implies that sampling methods may influence the resulting
model parameters and their reliability. While our method may estimate BGB accurately, the
main disadvantage of the approach is that it can be very destructive and labor-intensive. In
addition, it is not easy to excavate large trees growing in soil with high bulk densities.

Due to time and funding constraints, our equations are based on 23 sample trees,
across different ages, diameters, and three locations. It is recommended that future research
expands on this dataset across different spotted gum plantations, with a focus on collecting
more information on trees in the larger diameter classes. Inclusion of a greater number of
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sites and sampling in native forest environments would allow the effect of environmental
factors (e.g., soil characteristics) to be explored when developing allometric equations.

5. Conclusions

In this study, Equation (11), BGB = α × D β, was the most suitable allometric equation
for predicting belowground biomass of CCV plantations. This was confirmed by the Monte
Carlo cross validation procedure. Use of this equation is advantageous as D is an easy and
relatively accurate variable to measure in forest inventory assessments. Comparison of
belowground biomass equations for various eucalypt forests suggests that our allometric
equation differed from these equations and that use of earlier published equations may
under-predict BGB for larger (>30 cm D) spotted gum trees. Therefore, development
of the allometric equation in this study may contribute to more accurate predictions of
belowground biomass and carbon stocks in spotted gum plantations in Queensland.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12091210/s1, Figure S1. Scatterplot matrix between belowground biomass (BGB) with
diameter at breast height (D) and total height (H). Pearson correlation coefficient and significance
(* = 0.05 to *** > 0.001) between the variables are shown above the diagonal; Figure S2. Relationship
between belowground biomass (BGB, kgtree−1) and tree size variables, including diameter at breast
height, D (cm), and total height, H (m) based on natural log transformed data for the five candidate
models (E3–E7 presents for Equations (3)–(7)). See Table 3 for criteria associated with these regressions.
Above: predicted vs. observed BGB; and Below: standardized residual vs. predicted BGB; Figure S3.
Allometric relationships between belowground biomass (BGB, kgtree−1) and diameter at breast
height, D (cm), and height above ground, H (m), based on models fitted by the weighted nonlinear
maximum likelihood method. E11–E15 corresponds to five candidate equations (Equations (11)–(15))
shown in Table 3. Above: Observed vs. predicted BGB; and Below: Maximum likelihood weighted
residuals vs. predicted BGB; Figure S4. Plots of five selected nonlinear models for belowground
biomass (BGB, kgtree−1) from the cross-validation with different predictor (s). E11–E15 validated to
five candidate equations (Equations (11)–(15)) shown in Table 3. Validation data provided a random
split of 70% for training and 30% for testing to predicted BGB. The dataset was repeated over 23 times
to validate the performance of five nonlinear allometric equations developed and compared with the
selected BGB models fit by maximum likelihood.
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