A Synthesis of Spatial Forest Assessment Studies Using Remote Sensing Data and Techniques in Pakistan
Abstract
:1. Introduction
2. Geographical Coverage
3. Review Methodology
4. Articles Published in the Pre-2010 Period
4.1. Islamabad Capital Territory (ICT)
4.2. Mansehra District
4.3. Thatta District
4.4. Kashmore District
4.5. Abbottabad District
5. Articles Published in the Post-2010 Period
5.1. Abbottabad District
5.2. Chitral District
5.3. Dir District
5.4. Gilgit District
5.5. Islamabad Capital Territory (ICT)
5.6. Mansehra District
5.7. Rawalpindi District
5.8. Shaheed Benazirabad District
5.9. Swat District
5.10. Thatta District
5.11. Khyber Pakhtunkhwa (KP), Gilgit-Baltistan (GB), and Azad Jammu and Kashmir (AJK)
5.12. Coastal Mangrove Sites of Pakistan
5.13. Other Districts
6. Accuracies, Assessments, and Validations for Forest Mapping
7. Discussion
7.1. Citations’ vs. Publications’ Frequency
7.2. Study Scales and Accuracy Comparison
7.3. Remotely Sensed Data
7.4. Classification Algorithms
7.5. Forest Types
7.5.1. Aravalli West Thorn Scrub Forests
7.5.2. Baluchistan Xeric Woodlands
7.5.3. Himalayan Subtropical Pine Forests
7.5.4. Indus River Delta-Arabian Sea Mangroves
7.5.5. Karakoram-West Tibetan Plateau Alpine Steppe
7.5.6. Mixed Forests
7.5.7. Northwestern Himalayan Alpine Shrub and Meadows
7.5.8. Western Himalayan Broadleaf Forests
7.5.9. Western Himalayan Subalpine Conifer Forests
7.6. Evolution of Forest Mapping and Forest Change Assessment in Pakistan
8. Limitations and Challenges for Forest Mapping
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Aboveground Biomass |
AJK | Azad Jammu & Kashmir |
ALOS | Advanced Land Observation Satellite |
ANP | Ayubia National Park |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
AVNIR-2 | Advanced Visible and Near Infrared Radiometer type 2 |
CKNP | Central Karakoram National Park |
CMRI | Combined Mangrove Recognition Index |
ETM | Enhanced Thematic Mapper |
ETM+ | Enhanced Thematic Mapper Plus |
EVI | Enhanced Vegetation Index |
FAO | Food and Agriculture Organization |
GB | Gilgit-Baltistan |
GVM | Global Land Vegetation Monitoring |
HRV | High-Resolution Visible |
ICT | Islamabad Capital Territory |
IPCC | Intergovernmental Panel on Climate Change |
ISODATA | Interactive Self Organizing Data Analysis |
k-NN | k-Nearest Neighbor |
KP | Khyber Pakhtunkhwa |
LSMA | Linear Spectral Mixture Analysis |
LULC | Land-Use and Land Cover |
MDC | Mahalanobis Distance Classification |
MHNP | Margallah Hills National Park |
MOSIS | Moderate Resolution Imaging Spectroradiometer |
MS | Microsoft |
MSS | Multi-Spectral Scanner |
NFI | National Forest Inventory |
NDMI | Normalized Difference Moisture Index |
NDVI | Normalized Difference Vegetation Index |
NN | Neural Network |
NWFP | North Western Frontier Province |
OBIA | Object-Based Image Analysis |
OLI | Operational Land Imager |
PCA | Principal Component Analysis |
PFI | Pakistan Forest Institute |
REDD+ | Reducing Emissions from Deforestation and forest Degradation plus |
RF | Random Forest |
RVI | Ratio Vegetation Index |
SAR | Synthetic Aperture Radar |
SAVI | Soil Adjusted Vegetation Index |
SPOT | Satellite pour l’Observation de la Terre |
SVM | Support Vector Machine |
TIRS | Thermal Infrared Sensor |
TM | Thematic Mapper |
UN | United Nations |
UNFCCC | United Nations Framework Convention on Climate Change |
References
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys. Geogr. 2005, 29, 1–26. [Google Scholar] [CrossRef]
- Miura, S.; Amacher, M.; Hofer, T.; San-Miguel-Ayanz, J.; Ernawati; Thackway, R. Protective functions and ecosystem services of global forests in the past quarter-century. For. Ecol. Manag. 2015, 352, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Giri, C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Birdsey, R.; Pan, Y. Trends in management of the world’s forests and impacts on carbon stocks. For. Ecol. Manag. 2015, 355, 83–90. [Google Scholar] [CrossRef]
- Tian, X.; Sohngen, B.; Kim, J.B.; Ohrel, S.; Cole, J. Global climate change impacts on forests and markets. Environ. Res. Lett. 2016, 11, 1–10. [Google Scholar] [CrossRef]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, 6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Khamzina, A.; Pflugmacher, D.; Martius, C. Forest cover mapping in post-Soviet Central Asia using multi-resolution remote sensing imagery. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest stand species mapping using the sentinel-2 time series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Isuhuaylas, L.A.V.; Hirata, Y.; Santos, L.C.V.; Torobeo, N.S. Natural forest mapping in the Andes (Peru): A comparison of the performance of machine-learning algorithms. Remote Sens. 2018, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Valjarević, A.; Djekić, T.; Stevanović, V.; Ivanović, R.; Jandziković, B. GIS numerical and remote sensing analyses of forest changes in the Toplica region for the period of 1953–2013. Appl. Geogr. 2018, 92, 131–139. [Google Scholar] [CrossRef]
- Gudex-Cross, D.; Pontius, J.; Adams, A. Enhanced forest cover mapping using spectral unmixing and object-based classification of multi-temporal Landsat imagery. Remote Sens. Environ. 2017, 196, 193–204. [Google Scholar] [CrossRef]
- Shoot, C.; Andersen, H.E.; Monika Moskal, L.; Babcock, C.; Cook, B.D.; Morton, D.C. Classifying forest type in the national forest inventory context with airborne hyperspectral and lidar data. Remote Sens. 2021, 13, 1863. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. Change detection within remotely sensed satellite image time series via spectral analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Hernández-Stefanoni, J.L.; Reyes-Palomeque, G.; Subedi, M.R. The road to operationalization of effective tropical forest monitoring systems. Remote Sens. 2021, 13, 1370. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Lefsky, M.A. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Armston, J.; Hancock, S.; Marselis, S.; Goetz, S.; Dubayah, R. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 2019, 231, 111262. [Google Scholar] [CrossRef]
- Hu, T.; Su, Y.; Xue, B.; Liu, J.; Zhao, X.; Fang, J.; Guo, Q. Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sens. 2016, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatch, S.; Shugart, H.; et al. The BIOMASS Mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef] [Green Version]
- Nesha, M.K.; Herold, M.; De Sy, V.; Duchelle, A.E.; Martius, C.; Branthomme, A.; Garzuglia, M.; Jonsson, O.; Pekkarinen, A. An assessment of data sources, data quality and changes in national forest monitoring capacities in the Global Forest Resources Assessment 2005–2020. Environ. Res. Lett. 2021, 16, 054029. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping and Monitoring Global Forest Canopy Height through the Integration of GEDI and Landsat Data. Available online: www.globalforestwatch.org (accessed on 25 August 2021).
- Global Forest Watch. Global Mangrove Watch. Available online: www.globalforestwatch.org (accessed on 25 August 2021).
- Adeney, K. A step towards inclusive federalism in Pakistan? The politics of the 18th amendment. Publius 2012, 42, 539–565. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Li, Q.; Altan, O.; Khan, M.R.; Baqa, M.F.; Lu, L. Quantitative Analysis of Forest Fires in Southeastern Australia Using SAR Data. Remote Sens. 2021, 13, 2386. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H. CA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Jamil, Z. Forest change detection in Margala hills of Pakistan. Adv. Space Res. 1993, 13, 107–110. [Google Scholar] [CrossRef]
- Malik, R.N.; Husain, S.Z. Evaluating deforestation using landsat TM and SPOT XS data in dry sub-tropical forest of Margalla Hills, northwest of Pakistan. Geoinform. Eur. Integr. 2003, 429–434. [Google Scholar]
- Lodhi, M.A.; Echavarria, F.R.; Keithley, C. Using remote sensing data to monitor land cover changes near afghan refugee camps in northern pakistan. Geocarto Int. 1998, 13, 33–39. [Google Scholar] [CrossRef]
- Saeed, U.; Gilani, H.; Shahzad, N.; Gill, K. Remote sensing based forest change trend analysis–a case study of mangrove forest of Keti Bunder, Indus Delta. Terra 2001, 15, 12–24. [Google Scholar]
- Siddiqui, M.N.; Jamil, Z.; Afsar, J. Monitoring changes in riverine forests of Sindh-Pakistan using remote sensing and GIS techniques. Adv. Space Res. 2004, 33, 333–337. [Google Scholar] [CrossRef]
- Abbas, S.; Qamer, F.M.; Rana, A.D.; Hussain, N.; Saleem, R. Application of Object Based Image Analysis for Forest Cover Assessment of Moist Temperate Himalayan Forest in Pakistan. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, XXXVIII-4, 39-4. [Google Scholar]
- Raza, A.; Raja, I.A.; Raza, S. Land-use change analysis of district abbottabad, pakistan: Taking advantage of gis and remote sensing analysis. Sci. Vis. 2012, 18, 43–50. [Google Scholar]
- Khan, U.; Minallah, N.; Junaid, A.; Gul, K.; Ahmad, N. Parallelepiped and Mahalanobis Distance based Classification for forestry identification in Pakistan. In Proceedings of the 2015 International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 19–20 December 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Gul, K.; Minallah, N.; Junaid, A.; Aziz, N. Performance Analysis of Object Oriented Remote Sensing Techniques for Forest Detection in Pakistan. Sindh Univ. Res. J. 2016, 48, 511–515. [Google Scholar]
- Un Nisa, Z.; Mir, K.; Fatimah, H.; Batool, S.M.; Sanaullah; Atif, S.; Awan, M.A. Application of satellite remote sensing in forest change detection and its environmental impacts in district Abbottabad, Pakistan. J. Pure Appl. Agric. 2018, 3, 49–62. [Google Scholar]
- Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A.; Tahir, A.A. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag. 2019, 245, 348–357. [Google Scholar] [CrossRef]
- Shehzad, K.; Qamer, F.M.; Murthy, M.S.R.; Abbas, S.; Bhatta, L.D. Deforestation trends and spatial modelling of its drivers in the dry temperate forests of northern Pakistan—A case study of Chitral. J. Mt. Sci. 2014, 11, 1192–1207. [Google Scholar] [CrossRef]
- Zeb, A.; Armstrong, G.W.; Hamann, A. Forest conversion by the indigenous Kalasha of Pakistan: A household level analysis of socioeconomic drivers. Glob. Environ. Change 2019, 59, 102004. [Google Scholar] [CrossRef]
- Zeb, A. Spatial and temporal trends of forest cover as a response to policy interventions in the district Chitral, Pakistan. Appl. Geogr. 2019, 102, 39–46. [Google Scholar] [CrossRef]
- Zeb, A.; Hamann, A.; Armstrong, G.W.; Acuna-Castellanos, D. Identifying local actors of deforestation and forest degradation in the Kalasha valleys of Pakistan. For. Policy Econ. 2019, 104, 56–64. [Google Scholar] [CrossRef]
- Sajjad, A.; Hussain, A.; Wahab, U.; Adnan, S.; Ali, S.; Ahmad, Z.; Ali, A. Application of Remote sensing and GIS in Forest cover change in Tehsil Barawal, District Dir, Pakistan. Am. J. Plant. Sci. 2015, 06, 1501–1508. [Google Scholar] [CrossRef] [Green Version]
- Munawar, S.; Khokhar, M.F.; Atif, S. Reducing emissions from deforestation and forest degradation implementation in northern Pakistan. Int. Biodeterior. Biodegrad. 2015, 102, 316–323. [Google Scholar] [CrossRef]
- Ullah, S.; Farooq, M.; Shafique, M.; Siyab, M.A.; Kareem, F.; Dees, M. Spatial assessment of forest cover and land-use changes in the Hindu-Kush mountain ranges of northern Pakistan. J. Mt. Sci. 2016, 13, 1229–1237. [Google Scholar] [CrossRef]
- Ullah, S.; Shafique, M.; Farooq, M.; Zeeshan, M.; Dees, M. Evaluating the impact of classification algorithms and spatial resolution on the accuracy of land cover mapping in a mountain environment in Pakistan. Arab. J. Geosci. 2017, 10, 67. [Google Scholar] [CrossRef]
- Haq, F.; Rahman, F.; Tabassum, I.; Ullah, I.; Sher, A. Forest Dilemma in the Hindu Raj Mountains Northern Pakistan: Impact of Population Growth and Household Dynamics. Small-Scale For. 2018, 17, 323–341. [Google Scholar] [CrossRef]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egypt. J. Remote Sens. Sp. Sci. 2019, 22, 11–24. [Google Scholar] [CrossRef]
- Imran, M.; ud Din, N. Geospatially mapping carbon stock for mountainous forest classes using InVEST model and Sentinel-2 data: A case of Bagrote valley in the Karakoram range. Arab. J. Geosci. 2021, 14, 756. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Sp. Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N.; Nawaz, M.; Tahir, M.S.A. Land cover classification and change detection analysis of rawal watershed using remote sensing data. J. Biodivers. Environ. Sci. 2015, 6, 236–248. [Google Scholar]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannan, A.; Feng, Z.; Ahmad, A.; Liu, J.; Saeed, S.; Mukete, B. Carbon dynamic shifts with land use change in margallah hills national park, Islamabad (Pakistan) from 1990 to 2017. Appl. Ecol. Environ. Res. 2018, 16, 3197–3214. [Google Scholar] [CrossRef]
- Batool, R.; Javaid, K. Spatio-temporal assessment of Margalla hills forest by using LANDSAT imagery for year 2000 and 2018. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Waseem, S.; Khayyam, U. Loss of vegetative cover and increased land surface temperature: A case study of Islamabad, Pakistan. J. Clean. Prod. 2019, 234, 972–983. [Google Scholar] [CrossRef]
- Khan, M.S.; Ullah, S.; Sun, T.; Rehman, A.U.; Chen, L. Land-use/land-cover changes and its contribution to urban heat Island: A case study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [Google Scholar] [CrossRef]
- Gilani, H.; Ahmad, S.; Qazi, W.A.; Abubakar, S.M.; Khalid, M. Monitoring of urban landscape ecology dynamics of Islamabad capital territory (ICT), Pakistan, over four decades (1976–2016). Land 2020, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.; Ali, K.; Nizami, S.M. Four decadal urban land degradation in Pakistan a case study of capital city islamabad during 1979–2019. Environ. Sustain. Indic. 2021, 10, 100108. [Google Scholar] [CrossRef]
- Shah, A.; Ali, K.; Nizami, S.M. Spatio-temporal analysis of urban sprawl in Islamabad, Pakistan during 1979–2019, using remote sensing. GeoJournal 2021, 6. [Google Scholar] [CrossRef]
- Amjad, D.; Kausar, S.; Waqar, R.; Sarwar, F. Land cover change analysis and impacts of deforestation on the climate of District Mansehra, Pakistan. J. Biodivers. Environ. Sci. 2019, 14, 103–113. [Google Scholar]
- Ullah, S.; Tahir, A.A.; Akbar, T.A.; Hassan, Q.K.; Dewan, A.; Khan, A.J.; Khan, M. Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region. Sustainability 2019, 11, 5492. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, N.; Saeed, U.; Gilani, H.; Ahmad, S.R.; Ashraf, I.; Irteza, S.M. Evaluation of state and community/private forests in Punjab, Pakistan using geospatial data and related techniques. For. Ecosyst. 2015, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.; Liu, J.; Zhongke, F.; Khan, T.U.; Saeed, S.; Mukete, B.; ChaoYong, S.; Yongxiang, F.; Ahmad, A.; Amir, M.; et al. Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv. 2019, 17, e00535. [Google Scholar] [CrossRef]
- Siyal, A.A.; Siyal, A.G.; Mahar, R.B. Spatial and temporal dynamics of Pai forest vegetation in Pakistan assessed by RS and GIS. J. For. Res. 2016, 28, 593–603. [Google Scholar] [CrossRef]
- Shafique, T.; Zuberi, M.H.; Shams, Z.I. Geospatial assessment of carbon stock inventory by vegetation indices in Pai Forest, Sindh, Pakistan. Int. J. Environ. Qual. 2021, 43, 47–64. [Google Scholar] [CrossRef]
- Qasim, M.; Hubacek, K.; Termansen, M.; Khan, A. Spatial and temporal dynamics of land use pattern in District Swat, Hindu Kush Himalayan region of Pakistan. Appl. Geogr. 2011, 31, 820–828. [Google Scholar] [CrossRef]
- Qasim, M.; Hubacek, K.; Termansen, M.; Fleskens, L. Modelling land use change across elevation gradients in district Swat, Pakistan. Reg. Environ. Chang. 2013, 13, 567–581. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Siddiqui, S.; Mousa, B.G.; Munir, I.; Nasri, A.; Waqas, H.; Lu, L.; Baqa, M.F. Forest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, Pakistan. Geomat. Nat. Hazards Risk 2021, 12, 1212–1233. [Google Scholar] [CrossRef]
- Ali, S.; Ali, W.; Khan, S.; Khan, A.; Rahman, Z.U.; Iqbal, A. Forest cover change and carbon stock assessment in Swat valley using remote sensing and geographical information systems. Pure Appl. Biol. 2017, 6, 850–856. [Google Scholar] [CrossRef]
- Ahmad, A.; Liu, Q.J.; Nizami, S.M.; Mannan, A.; Saeed, S. Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use policy 2018, 78, 781–790. [Google Scholar] [CrossRef]
- Ahmad, A.; Liu, Q.J.; Marwat, K.B.; Shah, S.; Amir, M.; Mannan, A. Tree distribution pattern, growing stock characteristics and carbon mitigation potential of different forests ecosystems in kumrat, hindukush region of northern pakistan. Pak. J. Bot. 2019, 51, 2185–2194. [Google Scholar] [CrossRef]
- Talib, B.; Arif, H.; Shahzad, M.; Mehmood, S.A.; Batool, H.; Naeem, K.; Batool, S.; Nasir, J.; Shafiq, M. Spatiotemporal analysis of land use /land cover in Swat, Pakistan using supervised classification in Remote Sensing: 2000 to 2015. Int. J. Econ. Environ. Geol. 2020, 11, 69–74. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H.; Siddiqui, S.; Imran, M.; Farhan, M. Monitoring Land Use And Land Cover Changes Using Geospatial Techniques, A Case Study of Fateh Jang, Attock, Pakistan. Geogr. Environ. Sustain. 2021, 14, 41–52. [Google Scholar] [CrossRef]
- Qasim, H.; Luqman, M.; Khan, S. A study of forest land cover changes using satellite remote sensing in thatta district Pakistan. Sci. Int. 2016, 28, 4069–4075. [Google Scholar]
- Ur Rehman, Z.; Kazmi, S.J.H. Land use/land cover changes through satellite remote sensing approach: A case study of Indus delta, Pakistan. Pak. J. Sci. Ind. Res. 2018, 61, 156–162. [Google Scholar] [CrossRef]
- Abbasi, H.U.; Chughtai, A.H.; Sultana, G.; Adhban; Farea, O.A.; Islam, H. Spatio-temporal Land use/cover assessment of Sub-Tropical Forests ofThatta Division. Sindh Univ. Res. J. 2019, 51, 547–554. [Google Scholar] [CrossRef]
- Qamer, F.M.; Shehzad, K.; Abbas, S.; Murthy, M.S.R.; Xi, C.; Gilani, H.; Bajracharya, B. Mapping deforestation and forest degradation patterns in Western Himalaya, Pakistan. Remote Sens. 2016, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Munawar, S.; Udelhoven, T. Land change syndromes identification in temperate forests of Hindukush Himalaya Karakorum (HHK) mountain ranges. Int. J. Remote Sens. 2020, 41, 7735–7756. [Google Scholar] [CrossRef]
- Khan, T.U.; Mannan, A.; Hacker, C.E.; Ahmad, S.; Siddique, M.A.; Khan, B.U.; Din, E.U.; Chen, M.; Zhang, C.; Nizami, M.; et al. Use of GIS and remote sensing data to understand the impacts of land use/land cover changes (LULCC) on snow leopard (Panthera uncia) habitat in pakistan. Sustainability 2021, 13, 3590. [Google Scholar] [CrossRef]
- Abbas, S.; Qamer, F.M.; Ali, G.; Tripathi, N.K.; Shehzad, K.; Saleem, R.; Gilani, H. An assessment of status and distribution of mangrove forest cover in Pakistan. J. Biodivers. Environ. Sci. 2013, 3, 64–78. [Google Scholar]
- Tariq, A.; Shu, H.; Siddiqui, S.; Munir, I.; Sharifi, A.; Li, Q.; Lu, L. Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. J. For. Res. 2021, 13, 12. [Google Scholar] [CrossRef]
- Gilani, H.; Naz, H.I.; Arshad, M.; Nazim, K.; Akram, U.; Abrar, A.; Asif, M. Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuar. Coast. Shelf Sci. 2021, 249, 107128. [Google Scholar] [CrossRef]
- Abbasi, H.; Baloch, M.A.; Memon, A.G. Deforestation analysis of riverine forest of sindh using remote sensing techniques. Mehran Univ. Res. J. Eng. Technol. 2011, 30, 477–482. [Google Scholar]
- Iqbal, M.F.; Khan, I.A. Spatiotemporal Land use land cover change analysis and erosion risk mapping of Azad Jammu and Kashmir, Pakistan. Egypt. J. Remote Sens. Space Sci. 2014, 17, 209–229. [Google Scholar] [CrossRef] [Green Version]
- Batool, S.; Khan, K.; Ghaffar, A.; Hussain, S.Z. Forest Cover Change Detection and Its Impact on Rainfall Patternin Thak Valley (Pakistan). Pak. J. Sci. 2015, 67, 1–9. [Google Scholar]
- Baig, S.; Qazi, W.A.; Akhtar, A.M.; Waqar, M.M.; Ammar, A.; Gilani, H.; Mehmood, S.A. Above Ground Biomass Estimation of Dalbergia sissoo Forest Plantation from Dual-Polarized ALOS-2 PALSAR Data. Can. J. Remote Sens. 2017, 43, 297–308. [Google Scholar] [CrossRef]
- Younis, S.M.Z.; Ammar, A. Quantification of impact of changes in land use-land cover on hydrology in the upper Indus Basin, Pakistan. Egypt. J. Remote Sens. Space Sci. 2018, 21, 255–263. [Google Scholar] [CrossRef]
- Rashid, B.; Iqbal, J. Spatiotemporal Change Detection in Forest Cover Dynamics along Landslide Susceptible Region of Karakoram Highway, Pakistan. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Javed, T.; Khan, A.; Lei, H.; Muhammad, I.; Ali, I.; Huo, X. Impact assessment of land use change on surface temperature and agricultural productivity in Peshawar-Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 33076–33085. [Google Scholar] [CrossRef] [PubMed]
- Urooj, R.; Ahmad, S.S. Spatio-temporal ecological changes around wetland using multispectral satellite imagery in AJK, Pakistan. SN Appl. Sci. 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Khan, M.R.; Baig, M.H.A.; Hussain, Z.; Hameed, N.; Khan, J.A. Assessment of forest cover and carbon stock changes in sub-tropical pine forest of Azad Jammu & Kashmir (AJK), Pakistan using multitemporal Landsat satellite data and field inventory. PLoS ONE 2020, 15, e0226341. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, P.; Shirazi, S.A.; Firoozi, F.; Jahanshahi, S.M.A.; Mazhar, N. Detection of land cover changes in Baluchistan (shared between Iran, Pakistan, and Afghanistan) using the MODIS Land Cover Product. Arab. J. Geosci. 2020, 13, s12517-s020. [Google Scholar] [CrossRef]
- Ali, A.; Ashraf, M.I.; Gulzar, S.; Akmal, M.; Ahmad, B. Estimation of soil carbon pools in the forests of Khyber Pakhtunkhwa Province, Pakistan. J. For. Res. 2020, 31, 2313–2321. [Google Scholar] [CrossRef] [Green Version]
- Saddique, N.; Mahmood, T.; Bernhofer, C. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environ. Earth Sci. 2020, 79, 1–13. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Akram, W.; Ahmad, A.; Habib-ur-Rahman, M.; Ghaffar, A.; Amin, A.; Awais, M.; Farid, H.U.; Farooq, A.; et al. Study of land cover/land use changes using RS and GIS: A case study of Multan district, Pakistan. Environ. Monit. Assess. 2020, 192, 2. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Mubeen, M.; Ahmad, A.; Akram, W.; Hammad, H.M.; Ali, M.; Masood, N.; Amin, A.; Farid, H.U.; Sultana, S.R.; et al. Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 39676–39692. [Google Scholar] [CrossRef]
- Khan, K.; Iqbal, J.; Ali, A.; Khan, S.N. Assessment of sentinel-2-derived vegetation indices for the estimation of above-ground biomass/carbon stock, temporal deforestation and carbon emissions estimation in the moist temperate forests of pakistan. Appl. Ecol. Environ. Res. 2020, 18, 783–815. [Google Scholar] [CrossRef]
- Ali, A.; Nayyar, Z.A. Extraction of mangrove forest through Landsat 8 Mangrove Index (L8MI). Arab. J. Geosci. 2020, 13, s12517-s020. [Google Scholar] [CrossRef]
- Ul Haq, N.; Rahman, F.; Tabassum, I.; Mehran. Forest cover dynamics in Palas Valley Kohistan, Hindu Kush-Himalayan Mountains, Pakistan. J. Mt. Sci. 2021, 18, 416–426. [Google Scholar] [CrossRef]
- Zafar, Z.; Mehmood, M.S.; Ahamad, M.I.; Chudhary, A.; Abbas, N.; Khan, A.R.; Zulqarnain, R.M.; Abdal, S. Trend analysis of the decadal variations of water bodies and land use/land cover through MODIS imagery: An in-depth study from Gilgit-Baltistan, Pakistan. Water Sci. Technol. Water Supply 2021, 21, 927–940. [Google Scholar] [CrossRef]
- Abbas, S.; Qamer, F.M.; Hussain, N.; Saleem, R.; Nitin, K.T. National Level Assessment of Mangrove Forest Cover in Pakistan. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-8, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Qamer, F.M.; Abbas, S.; Saleem, R.; Shehzad, K.; Ali, H.; Gilani, H. Forest cover change assessment in conflict-affected areas of northwest Pakistan: The case of Swat and Shangla districts. J. Mt. Sci. 2012, 9, 297–306. [Google Scholar] [CrossRef]
- Ali, M.Z.; Qazi, W.; Aslam, N. A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier. Egypt. J. Remote Sens. Space Sci. 2018, 21, S29–S35. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Khan, W.R.; Ali, A.; Nazre, M. Assessment of above-ground biomass in pakistan forest ecosystem’s carbon pool: A review. Forests 2021, 12, 586. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring forest change in the amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int. J. Geoinf. 2020, 9, 580. [Google Scholar] [CrossRef]
- Dimock, W.C. AI and the Humanities. PMLA/Publ. Mod. Lang. Assoc. Am. 2020, 135, 449–454. [Google Scholar] [CrossRef]
Administrative Area | Number of Studies |
---|---|
Azad Jammu & Kashmir (AJK) | 03 |
Balochistan | 01 |
Gilgit-Baltistan (GB) | 03 |
Islamabad Capital Territory (ICT) | 12 |
Khyber Pakhtunkhwa (KP) | 31 |
Punjab | 06 |
Sindh | 10 |
Other (national/regional level studies) | 07 |
Total | 73 |
Satellite Image | Classifier | Overall Accuracy | Kappa Coefficient | Producer’s Accuracy | User’s Accuracy | Reference |
---|---|---|---|---|---|---|
SPOT-5 | SVM | 89% | 0.86 | >72% | >78% | Ullah et al. [47] |
k-NN | 88% | 0.85 | >69% | >71% | ||
RF | 88% | 0.84 | >69% | >71% | ||
NN | 88% | 0.84 | >73% | >64% | ||
Landsat 8 | SVM | 71% | 0.59 | >26% | >40% | |
k-NN | 59% | 0.54 | >11% | >31% | ||
RF | 71% | 0.59 | >17% | >33% | ||
NN | 65% | 0.51 | >11% | >4% | ||
Year | Abbasi et al. [77] | |||||
1979 | 93.46% | 0.9094 | ||||
1992 | 98.10% | 0.9886 | ||||
1998 | 99.01% | 0.9986 | ||||
2000 | 99.79% | 0.9966 | ||||
2006 | 100% | 1.0 | ||||
2009 | 100% | 1.0 | ||||
2010 | 99.00% | 0.9825 | ||||
Year | Gilani et al. [58] | |||||
1976 | 0.83 | 0.79 | >72% | >75% | ||
1990 | 0.85 | 0.81 | >80% | >77% | ||
2000 | 0.86 | 0.82 | >80% | >80% | ||
2010 | 0.88 | 0.84 | >80% | >79% | ||
2016 | 0.90 | 0.85 | >84% | >84% | ||
Year | Season | Hussain et al. [96] | ||||
1988 | Rabi | 87.6% | 0.75 | >85.2% | >85.5% | |
Kharif | 86% | 0.81 | >84.4% | >82.7% | ||
2002 | Rabi | 84.5% | 0.77 | >80.4% | >82.1% | |
Kharif | 89.3% | 0.84 | >83.5% | >81.9% | ||
2017 | Rabi | 85.1% | 0.82 | >84.2% | >79.2% | |
Kharif | 87.7% | 0.78 | >83.2% | >83.1% | ||
Year | Hussain et al. [97] | |||||
1977 | 0.86 | 0.77 | >82.9% | >89.1% | ||
1987 | 0.85 | 0.74 | >83.9% | >84.3% | ||
1997 | 0.86 | 0.77 | >85.5% | >87% | ||
2007 | 0.88 | 0.79 | >87.7% | >89.8% | ||
2017 | 0.95 | 0.84 | >87.5% | >95% | ||
Year | Haq et al. [100] | |||||
1980 | 94.60% | 93.41% | >90% | |||
2000 | 95.50% | 94.39% | >90% | |||
2010 | 94.40% | 93.20% | >90% | |||
2017 | 93.00% | 91.40% | >90% | |||
Year | Gilani et al. [83] | |||||
1990 | 91.8 | 0.892 | ||||
1995 | 94 | 0.906 | ||||
2000 | 93 | 0.892 | ||||
2005 | 94.2 | 0.908 | ||||
2010 | 93.6 | 0.892 | ||||
2015 | 93.6 | 0.904 | ||||
2020 | 95.4 | 0.926 |
Studies with No Forest Change Assessment | 12 | ||||
---|---|---|---|---|---|
Studies with forest change assessment | 61 | Studies did not report forest change | 1 | ||
Studies reported forest change | 60 | Studies reported overall forest appraisal | 13 | ||
Studies reported overall forest decline | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Ahmad, S.R.; Gilani, H.; Tariq, A.; Zhao, N.; Aslam, R.W.; Mumtaz, F. A Synthesis of Spatial Forest Assessment Studies Using Remote Sensing Data and Techniques in Pakistan. Forests 2021, 12, 1211. https://doi.org/10.3390/f12091211
Ahmad A, Ahmad SR, Gilani H, Tariq A, Zhao N, Aslam RW, Mumtaz F. A Synthesis of Spatial Forest Assessment Studies Using Remote Sensing Data and Techniques in Pakistan. Forests. 2021; 12(9):1211. https://doi.org/10.3390/f12091211
Chicago/Turabian StyleAhmad, Adeel, Sajid Rashid Ahmad, Hammad Gilani, Aqil Tariq, Na Zhao, Rana Waqar Aslam, and Faisal Mumtaz. 2021. "A Synthesis of Spatial Forest Assessment Studies Using Remote Sensing Data and Techniques in Pakistan" Forests 12, no. 9: 1211. https://doi.org/10.3390/f12091211
APA StyleAhmad, A., Ahmad, S. R., Gilani, H., Tariq, A., Zhao, N., Aslam, R. W., & Mumtaz, F. (2021). A Synthesis of Spatial Forest Assessment Studies Using Remote Sensing Data and Techniques in Pakistan. Forests, 12(9), 1211. https://doi.org/10.3390/f12091211