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Abstract: Forests play an important role in biodiversity conservation, being one of the main providers
of ecosystem services, according to the Economics of Ecosystems and Biodiversity. The functions
and ecosystem services provided by forests are various concerning the natural capital and the socio-
economic systems. Past decades of remote-sensing advances make it possible to address a large
set of variables, including both biophysical parameters and ecological indicators, that characterize
forest ecosystems and their capacity to supply services. This research aims to identify and implement
existing methods that can be used for evaluating ecosystem services by employing airborne and
terrestrial stationary laser scanning on plots from the Southern Carpathian mountains. Moreover,
this paper discusses the adaptation of field-based approaches for evaluating ecological indicators
to automated processing techniques based on airborne and terrestrial stationary laser scanning
(ALS and TLS). Forest ecosystem functions, such as provisioning, regulation, and support, and the
overall forest condition were assessed through the measurement and analysis of stand-based biomass
characteristics (e.g., trees’ heights, wood volume), horizontal structure indices (e.g., canopy cover),
and recruitment-mortality processes as well as overall health status assessment (e.g., dead trees
identification, deadwood volume). The paper, through the implementation of the above-mentioned
analyses, facilitates the development of a complex multi-source monitoring approach as a potential
solution for assessing ecosystem services provided by the forest, as well as a basis for further
monetization approaches.

Keywords: ecosystem services; natural capital; socio-economic system; ecological indicators; terres-
trial laser scanning; aerial laser scanning

1. Introduction

Forest is playing a crucial role in biological diversity, local welfare, the balance of
carbon emissions, and the global economy [1–3]. In the context of climate change, the
understanding of forest ecosystem processes’ importance is essential in assuring sustain-
able management and economic development [4]. Toward this purpose, forest monitoring
was established as the main tool for studying the dynamics of forest structure and func-
tioning and its response to anthropogenic influences [3,5]. The necessity of this tool is
highlighted by decisional factors’ requirements and forest governance [6]. Due to the high
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complexity of the forest dynamics, a high amount of warranted information is needed in
the characterization process.

The primary mechanism of forest monitoring in assuring the data integration is
developing forest inventories focused on parameters related to the main dendrometric
characteristics of trees (e.g., diameter at breast height (DBH), height-DBH ratio, crown
width). Besides these variables, the monitoring also has to take into consideration infor-
mation regarding the climate (temperature and precipitations) and pollution (atmospheric
depositions). However, it is a well-known fact that the traditional forest inventory can
be expensive, time-consuming, and requires a large amount of qualified personnel [3].
Moreover, forest inventory is limited to statistically established sample plots, resulting in a
weaker representativity at larger scales [7–9].

To overcome the mentioned limitations, alternative solutions and measuring method-
ologies were sought in the remote-sensing field. In the past decades, remote-sensing
systems have evolved, ensuring a large variety of applications [10]. As expected, the
remote-sensing portfolio already contains several techniques addressing forest ecology and
management [11]. From their beginning, remote-sensing systems were mostly equivalated
to satellite imagery. New instruments of interest here, airborne laser scanning, unmanned
aerial vehicles, digital photography systems, and terrestrial laser scanners, have more
recently captured the researchers’ attention, gradually gaining visibility through a large
number of scientific studies.

Land cover analysis [12,13], biomass estimation [14–17], hazard identification [18–20],
structure assessment [21–26], and ecological indicators are just some of the most frequent
applications of remote sensing in forestry. The major advantages of remote sensing are
related to its capability of capturing a large amount of data and the possibility of revisiting
in relatively short periods, as well as the plurality of the associated analyses [24].

A keen interest in remote sensing was shown toward biophysical parameters, such
as DBH, tree height, volume, and implicitly biomass. The majority of these parameters
were initially computed employing regression models, with input data derived from crown
projections and height measurements from passive sensors [27–29], calibrated with ground
samples. New technologies, as is the case of terrestrial laser scanning, propose different
approaches for estimating tree characteristics. These provide a more direct method that
involves point cloud classification, tree segmentation, and stem reconstruction [30–32].
Besides the biophysical parameters, active remote-sensing systems are used to describe
stands’ structure through indirect analyses of the number of trees, canopy stratification,
and trees distribution. As described in the work of [24,33,34], airborne and terrestrial
laser scanning represent optimal solutions in describing forest stands through structural
indicators based on point cloud processing.

Regarding this matter, the literature offers a rich variety of active remote-sensing-based
forest variables, from foliage indices [24,35,36] (leaf area index—LAI, gap probability—
pgap) to trees spatial distribution [37,38] (mostly distance and angles between trees, but also
the position itself for marginal trees detection, sampling plot edge effect mitigation, etc.).
Satellite imagery also proposes indicators related to the status of forest stand health [39–42],
an aspect that will not be detailed here since passive remote sensing does not make the
subject of our study.

Disregarding the plethora of variables and its promising evolution, passive remote-
sensing technology still demands innovative approaches to address the requirements of
ecological relevant indicators [11]. The constant need for ground measurement calibration
represents the main disadvantage of most passive remote-sensing systems. Furthermore,
the applications based on regression models can lead to important errors due to potentially
incorrect assumptions regarding the relationship between forest characteristics [43,44].

In the ecological research field, active remote-sensing data are increasingly being used.
Quantifying forest ecosystems information from indices based on active remote-sensing
highlights the need for further analysis and adaptation. The processing and uptake of these
data are necessary for linking the indicators to the capacity of forest ecosystems to provide
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benefits. These benefits materialize in what we call ecosystem services and represent the
ecosystems’ benefits, processes, and assets for providing human well-being [45].

In the field of research, the relationship between ecology and economy has been
attributed with great importance, a fact that is corroborated by the very nature of ecosys-
tem services. This has made it possible to develop the concept of natural capital on an
environmental basis [46] and led to the idea of value, from a monetary point of view, of the
ecosystem services and goods [47]. The need to exploit the benefits of ecosystems derives
from their contribution to the human economy [48,49] and their expression in services and
commercial goods [50,51].

Nowadays, there is a multitude of methods for evaluating and monetizing services,
most of them being subjective. The methods are based on human preferences or physical
costs upon which ecosystem services can be integrated [46]. The established methods are
based on damaged cost avoided, replacement cost, market price, productivity cost, hedonic
pricing, benefits transfer, and contingent evaluation method [51–53].

Despite the difficulties encountered in the process of applying ecosystem evalua-
tion methods, they have an essential role in communicating the value of nature to the
decisional factors and policymakers [54]. In this regard, there is an absolute need for
objective ecological indicators that can provide information about ecosystem health status
and structure.

This paper intends to identify and test several methods and variables applicable to
airborne and terrestrial stationary laser scanning to quantify the capacity of the forest
ecosystem in providing benefits. The identification of suitable ecosystem services will
be performed according to The Economics of Ecosystem and Biodiversity (TEEB) classi-
fication [51,55]. Alongside, Millennium Ecosystem Assessment classification (MEA) and
Common International Classification of Ecosystem Services (CICES), TEEB represents one
of the widely known ecosystem services classification networks. The latter is a global
campaign aiming at raising awareness regarding biodiversity’s economic benefits and the
rising costs of ecosystem degradation. The final purpose of this initiative is to analyze and
explain in a mainstream approach the importance of taking action [56]. This classification
was adopted because it corresponds faithfully to the functions attributed to the studied
stands according to the Romanian forest legislation. The majority of ecosystem functions
will be analyzed in relation to the existing indicators, as well as other variables adapted to
active remote-sensing sampling. The paper does not intend to calibrate or to validate exist-
ing methodologies but to showcase a minimal set of indicators computed through active
remote-sensing methods that can offer sufficient information about the ecosystems’ capacity
to provide services. Furthermore, as mentioned above, the paper aims only at information
obtained through the use of ALS and stationary TLS measurements, excluding any other
potential data based on satellite imagery or other passive remote-sensing technologies.

2. Materials and Methods
2.1. Study Site

To analyze the identified methods and variables, ten stands were considered in the
current study, each of them being designed as a one-hectare rectangular plot with three
15 m-radius circular subplots within them.

The ten one-hectare plots are located in two different areas of the Southern Carpathian
mountains, thus covering three of the most representative tree species of Romania. These
are sessile oak (Quercus petraea) and beech (Fagus sylvatica) in the hill region and Norway
spruce (Picea abies) in the mountainous region (Figure 1).
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Figure 1. (a) Location of the sampled forest stands, (b) detailed position (coordinates in WGS 84 projection system). 
Figure 1. (a) Location of the sampled forest stands, (b) detailed position (coordinates in WGS 84 projection system).

Both deciduous and coniferous forest plots were considered in the process of assessing
the applicability of the studied methods as well as in the evaluation of the different



Forests 2021, 12, 1269 5 of 24

structural characteristics of the plots. Therefore, the plots were chosen in relation to species,
age, and applied silvicultural interventions (Table 1).

Table 1. Sample plots characteristics.

Sample Plot Species Age
[Years] Silvicultural Interventions Forest Districts

SGT Sessile oak 190 Progressive Mihăes, ti
SGTM Sessile oak 190 Without interventions Mihăes, ti

SFR Beech 40 Thinning Mihăes, ti
SFRM Beech 40 Without interventions Mihăes, ti

SFT Beech 120 Progressive Mihăes, ti
SFTM Beech 120 Without interventions Mus, etes, ti
SMR Norway spruce 50 Thinning Mus, etes, ti

SMRM Norway spruce 50 Without interventions Mus, etes, ti
SMT Norway spruce 150 Progressive Mus, etes, ti

SMTM Norway spruce 150 Without interventions Mus, etes, ti

2.2. Conventional Field Data Collection

In order to ensure control over the LiDAR data sets, a classical inventory was also car-
ried out in the plots. Field measurements included DBH, tree height, crown height, crown
width, and position of each tree (XYZ coordinates) and targeted all the trees with a DBH
equal to or greater than 6 cm. To acquire these variables, an integrated GIS field software
and electronic mapping and dendrometrics sensors [57] for recording tree positions and
canopy characteristics were used.

2.3. Terrestrial Laser Scanner Data

In each 15 m circular subplot, five terrestrial scans were performed accordingly to a
cardinal point sampling scheme to compensate for the shadowing (Figure 2a). The scanning
process was achieved with a phase shift terrestrial laser scanner [58]. The resulting point
clouds were characterized by 8 µs per scan point and over 44 million points per 360◦ sweep.
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Figure 2. (a) TLS ground-based data collection (b) terrestrial laser scan of the subplots.

Regarding the TLS pre-processing methods for classification and segmentation of the
point cloud prior to obtaining the stems and the foliage, an approach proposed by Pascu
et al. was followed [24,30,32,59] (Figure 2b).

2.4. Airborne Laser Scanner Data

The airborne LiDAR data for the one-hectare plots were collected through the use of
a full-wave airborne laser scanner [60]. The discrete points extraction was conducted by
the provider of the data sets, according to the standard processing procedure. Following
processing, an average point density of 6 points/m2 was reached (Figure 3).

Further analyses, such as the ground-non-ground classification, were performed using
filtering algorithms by means of dedicated software [61], as shown in the work of [62].
The digital terrain model (DTM) was generated through an inverse distance-weighting
interpolation, which ensured a 1 × 1 m spatial resolution. The DTM was further used as
support in the computation of several parameters (e.g., tree height, canopy height).
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2.5. Ecosystem Services Identification and Evaluation

The literature proposes an entire series of ecosystem functions and services assessment
methods (monetary, non-monetary, and integrated methods). In this research, the interest
was to gather reliable information needed in applying those evaluation methods. The
ecosystem services identification is presented according to the ecosystem functions stated
by TEEB, and the paper intends to cover the majority of the functions.

3. Results
3.1. Provisioning Services

Wood products are one of the most prominent resources provided by forest ecosys-
tems [63], being a direct economic benefit that can be easily assessed from a monetary
point of view. In literature, wood products, equated to above-ground biomass, are an
important variable that can be estimated through remote-sensing techniques. Between the
implementation of biophysical parameters relationships [64,65] to allometric models and
direct measurements [30,66–68], the above-ground biomass estimation gained impressive
interest in research due to the associated accuracy.

In our study, the applied methodology was the one proposed by Pascu et al. in
the work of [30]. Therefore, the above-ground estimation implied the use of stand vol-
ume derived from number of trees, DBH, and tree height (Figure 4). Even though other
studies [69,70] show volume underestimation when based on terrestrial laser scanning
data, this was due to low stand heterogeneity. The accuracy presented by Pascu et al. in
what concerns the number of trees and DBH is more than satisfactory (errors under 5%).
Moreover, the use of terrestrial laser scanning proved to be an adequate approach for the
above-ground volume computation [71].

Height values computed through this active remote-sensing technology show biases
and errors, also highlighted by several research papers [30,69,70,72,73]. To overcome this
limitation, compensations were applied based on airborne laser scanning.
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For computing above-ground tree volume, the logarithmic regression equation (Equa-
tion (1)) described in the work of [74] was used:

log v = a0 + a1 log d + a2log2d + a3 log h + a4log2h (1)

where:
d—tree diameter at breast height;
v—tree volume;
h—tree height;
a0, a1, a2, a3, a4—species-specific regression coefficients.
The above-ground volumes for each plot are presented in Table 2. When compared

to the field measurements based on the same methodology (Equation (1)), the errors are
between 4.6% and 13.3%.

Table 2. Above-ground volume and mean stand characteristics.

Plot V [m3 ha−1] dm [cm] hm [m] vm [m3]

SGT 444.1 21.91 20.7 0.97
SGTM 646.4 24.15 22.36 0.90

SFR 434.6 17.81 21.9 0.37
SFRM 509.8 18.25 26.26 0.48

SFT 457.2 24.83 18.9 1.07
SFTM 622.3 25.45 19.4 1.05
SMR 345.7 17.3 17.8 0.28

SMRM 420.1 17.45 15.8 0.29
SMT 409.5 29.29 21.6 0.90

SMTM 558.3 33.01 26.6 0.93
V—stand volume; dm—stand mean diameter; hm—stand mean height; vm—tree mean volume.

Considering the biophysical parameters, differences in mean stand volume can be
observed between the plots where silvicultural interventions were applied and those
without interventions. The reduced volume, specific to the young forest stands and to those
targeted by interventions, confirms the viability of the methods and results and makes it
possible to compare them in terms of wood product provisioning.

3.2. Regulating Services

At the moment, the ecosystem services specific to regulating functions represent
a great challenge in the evaluating processes [54]. This function includes services for
air quality regulation, moderation of extreme events, erosion prevention, and carbon
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sequestration [51,55,75]. In the context of evaluating the related services, specific indicators
were developed in the field of ecological research.

The assessment methods tend to use indirect measurements and quantify the rela-
tionship between different variables. Tree canopy cover, canopy structure indices (e.g.,
leaf area index), and trees distribution are the most used parameters in the majority of the
evaluating approaches [76–78].

3.2.1. Structural Indices

As previously mentioned, forest structure characteristics and biodiversity are the main
sources of information for the assessment of ecosystem services. To establish the capacity of
ecosystems in supplying regulating services, indices such as Clark-Evans nearest neighbor
index (CE), uniform angle index (UAI), and relative dominance diameter index were
computed at the subplot level.

Clark-Evans nearest neighbor index (CE) describes the horizontal trees distribution
by using the mean distance between a reference tree and the nearest neighbors and the
mean distance defined by a Poison distribution [79]. CE can range from 0, when the stand
is characterized by tree clustering, to 2.1491 [79] in the case of regular distribution.

Uniform angle index (UAI) describes the uniform distribution of the nearest neighbor-
ing trees in relation to the reference tree [38]. The method is based on the angles between
trees, compared to a uniform dispersion angle of 72◦ (Equation (2)). The interpretation of
these values is made according to the confidence interval of 0.475–0.517 [38], describing a
random distribution.

UAI =
1
n

n

∑
i=1

UAIi =
1

4n

n

∑
i=1

4

∑
j=1

zij (2)

where:
n—number of reference trees
zij—angle coefficients in relation to the reference (72◦), 1 if <72◦, 0 if > 72◦

UAIi—uniform angle index
The relative dominance diameter index (IDR) is defined as the ratio between the

number of trees with a diameter greater than the reference tree. The value of this indicator
reaches values in the range (0–1) and is interpreted in relation to five default thresholds.
Thus, in relation to the number of trees with a diameter larger than the reference, the
indicator falls into the following categories: shade tolerant, dominated, co-dominant,
dominant, predominant. These categories correspond to the Kraft classes, a method
used for validating the obtained values. The variable considered in the evaluation of
the dominancy indicator may be substituted by other tree characteristics such as height
or species.

In the structural indices computation process, the edge effect was removed in order
to ensure accurate results. This was performed by selecting only the trees within an inner
buffer, defining an area smaller than that of the circular subplots (Figure 5).

The interpretation of these indices made it possible to identify the supplied services
and the level to which they could be quantified. CE values greater than 1 suggested that the
studied subplots were characterized by a more uniform horizontal structure. An exception
was identified in the SFTM-3 subplot, which was characterized by a mean value of 0.4.
This could be explained by the smaller number of trees clustered together and by the fact
that this circle is crossed by a forest harvesting road. Based on the calculated t-values for
the CE, according to the work of [80], the subplots that overpass 1.96 can be described as
having a regular distribution (Table 3).
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Table 3. Horizontal structure indices in the 15 m-radius subplot.

Plots Subplot Nref CE t-Value * W

SMTM
1 17 1.715 1.19 0.456
2 11 1.829 2.19 0.432
3 7 1.689 2.59 0.393

SGTM
1 20 1.558 3.12 0.563
2 19 1.558 3.14 0.526
3 25 1.825 2.68 0.510

SFTM
1 31 1.074 0.56 0.547
2 37 1.272 1.59 0.574
3 20 0.405 −8.75 0.55

SFRM
1 64 1.423 1.09 0.553
2 55 1.283 0.91 0.515
3 37 1.166 0.97 0.5

SMRM
1 92 1.269 0.4 0.532
2 106 1.171 0.21 0.709
3 87 1.025 0.04 0.548

SMT
1 46 1.751 3.17 0.531
2 55 1.604 1.95 0.524
3 38 1.429 2.41 0.561

SGT
1 39 1.321 2.7 0.545
2 38 1.556 2.13 0.59
3 35 1.575 3.65 0.558

SFT
1 26 1.551 4.46 0.635
2 42 1.781 3.77 0.642
3 36 1.549 3.34 0.643

SFR
1 71 1.309 0.68 0.715
2 99 1.866 1.16 0.707
3 76 1.628 0.95 0.725

SMR
1 102 1.301 0.38 0.719
2 131 1.244 0.21 0.722
3 147 1.252 0.37 0.723

Nref—number of reference trees, * t—CE value.
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When uniform angle index values were analyzed, differences between plots could
be observed, thus detecting structural differences between the corresponding stands. The
uniform angle index values ranged between 0.393 and 0.725, values covering the entire
interpretation interval. Within the old sessile oak stand, without interventions (SGTM),
the corresponding subplots reached values equivalent to a rather random distribution.
This was the case with the 2.3 (0.510) subplot, reaching values quite different than its
counterpart, subplots 2.1 and 2.2, characterized by a clustered structure (Table 2). In the
case of the Norway spruce (SMTM), the reached values defined a uniform structure, while
the young beech stand with interventions (SFR) was characterized by a clustered structure
in all subplots.

Also, from this analysis, the difference between the plots with interventions and
those without could be observed. The plots covered with silvicultural treatments tend to
describe more clustered structures, an effect caused by the increased distance between trees
after harvesting.

Figure 6 facilitates the interpretation of the structure and conditions similarity within
a plot. As stated before, discrepancies appeared in SFTM for the CE index and in SMRM
for the uniform angle index. The latter was a consequence of a windthrow event that had
affected the SMRM-3 subplot.
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Analyses of relative dominance diameter index described the vertical stand structure
at the subplot level. A similarity could be observed between old Norway spruce (SMTM)
subplots (Figure 7), indicating a uniform structure within the stand and a uniform tree
distribution between classes. The sessile oak stand is characterized by a lower degree of
heterogeneity and more unevenness between classes.
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3.2.2. Carbon Storage

Carbon is stocked in forest stands in the following five pools: above and below-ground
living biomass, soil, litter, and deadwood [81,82]. Apart from the variables used for the
above-ground volume, carbon stock evaluation (Table 4) required another set of parameters,
namely the theoretical number of trees per hectare, wood density, root-to-shoots ratio, and
biomass expansion factor (Equation (3)). These were retrieved from specific yield tables
and international guides [83,84].

Cstock = ∑ V ∗ D ∗ (1 + R) ∗ BEF ∗ CF (3)

where:
Cstock—carbon stock [tC]
V—tree volume [m3]
D—wood density [t/m3]
R—root-to-shoot ratio
BEF—biomass expansion factor
CF—carbon fraction

Table 4. Carbon stock required variables.

Plot V
[m3 ha−1]

D 1

[kg m−3]
R 1 BEF 2 CF 3 Carbon Stock

[tC·ha−1]

SGT 444.1 584 0.22 1.4 0.48 151.88
SGTM 646.4 584 0.22 1.4 0.48 221.06

SFR 434.6 545 0.19 1.4 0.46 129.66
SFRM 509.8 545 0.19 1.4 0.46 152.09

SFT 457.2 545 0.19 1.4 0.46 136.40
SFTM 622.3 545 0.19 1.4 0.46 185.65
SMR 345.7 353 0.2 1.3 0.51 74.68

SMRM 420.1 353 0.2 1.3 0.51 90.76
SMT 409.5 353 0.2 1.3 0.51 88.47

SMTM 558.3 353 0.2 1.3 0.51 120.61
1 [83] 2 [84] 3 [85].

Due to the methodology for the above-ground volume, for the sessile oak and beech
species, the biomass expansion factor (BEF) was omitted, as the regression equation for
volume already took into consideration the branches’ volume. Including BEF would have
led to biased results.

The obtained carbon stock values ranged between 74.68 tC·ha−1 (273.82 tCO2·ha−1)
in the case of the young Norway spruce plot covered with silvicultural intervention and
221.06 tC·ha−1 (810.55 tCO2·ha−1) in the case of the old sessile oak plot. The upper values



Forests 2021, 12, 1269 13 of 24

of the storage capacity interval of the studied plots are in accordance with those stated in
the work of [86]. The lower values are a consequence of age and species characteristics
(wood density, root-to-shoot ratio, and carbon fraction).

3.2.3. Foliage Indices

Active remote-sensing technology advances allowed for the development of multiple ap-
plications addressing the canopy structure, crown dynamics, and phenology [21,24,29,87–91].
These applications based on active remote-sensing data are a powerful tool in the deci-
sional process associated with forestry and ecology sectors. From the variety of indices
computed through remote sensing, in the research field, the leaf area index (LAI) is the
most commonly used. Furthermore, along with the LAI, an important role in improving
the canopy description is held by leaf area density (LAD), which offers detailed information
regarding the stand vertical structure. Leaf area index estimation as the ratio between
leaves (single-faced) area and area of the studied plot, was measured over time through
various indirect methods (orbital sensors, hemispherical photography, and light intensity
attenuation) [92–94], and still require improvement in what concerns the stability and
robustness of their results. Alternatively, airborne laser scanning, despite its limitations
related to penetration capability, has promising results in forestry indices and parameters
computation, including those above-mentioned [70,95].

In this study, LAI and LAD were estimated through the MacArthur and Horn equa-
tion [96] developed on the principle of the Beer–Lambert law [97,98] and following method-
ologies proposed in other related research papers [95,99–102]. Thus, to each voxel from
the processed point cloud (voxel—5 × 5 × 1 m), the following proposed equation was
applied [102]:

LADi−1,i = ln
(

Se

St

)
1

k∆z
(4)

where:
Se—number of pulses entering the voxel;
St—number of pulses exiting the voxel;
k—Beer–Lambert law extinction coefficient;
z—voxel height (1 m).
From the variety of estimated indices resulting when applying derivatives of the

above-mentioned methodology, of most interest to our study were the total LAI values,
the height of the mean LAD, and standard deviation corresponding to each voxel (cell of a
three-dimensional grid) column taken into consideration.

As shown in the case of the IDR, sessile oak (SGTM) is characterized by an uneven
structure, a fact also illustrated in the LAI and LAD values. In the northwest part of the
plot, the higher density of smaller trees impacted the LAI and height of the mean LAD,
reaching values in the range 1–3, respectively, 5–10 m.

As expected, the Norway spruce plot is characterized by smaller standard deviation
values, suggesting a constant horizontal structure throughout the plot (Figure 8). In
the case of the sessile oak plot, the standard deviation trend highlights a generation
individualization through higher variation within the upper levels of the canopy.
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3.3. Supporting Services

In the majority of the research papers, this function is not a self-contained one. Millen-
nium Ecosystem Assessment classification (MEA) [103] presents the support function as
integration between provisioning, regulating, and cultural functions, quantifying benefits
that ensure the rest of the services. In the Common International Classification of Ecosys-
tem Services (CICES), the support function is not promoted as one and is considered an
underlying structure that provides indirect outputs [104,105].

Understory biomass has an important ecological significance in forest ecosystem stability
and in assessing the relationships between wildlife and their habitat. Despite the low propor-
tion in above-ground volume, the understory biomass represents a tool for the researchers in
evaluating the food provisioning and the quality of the environment [106–114].

The understory biomass computation implies a complex and expensive forest inven-
tory due to multiple variables that should be taken into consideration. Active remote-
sensing applications that aim at assessing understory biomass were proposed. Terrestrial
and airborne laser scanning data were analyzed in order to estimate the understory, follow-
ing [106,112,115].

This study addressed the methodology proposed by the authors of [116] that aims
to predict the presence of shrub layers from aerial-based point clouds. In the mentioned
thesis, two indices were computed: (a) undergrowth return fraction and (b) undergrowth
cover density. For our case, of most interest was the undergrowth return fraction, expressed
as the ratio between the number of points in the 0.5–5 m range and the total number of
points (Figure 9).

The old Norway spruce plot, in comparison with the sessile oak, is characterized by
a sparse distribution of the shrub layer of lower intensities, with no understory clusters
identified. In the case of the sessile oak plot, a central area with a high density of understory
vegetation could be observed, mirrored in the northern part, by the lower values of the
canopy height model. Overall, the sessile oak plot recorded a value of 0.20, which according
to the work of [116], is indicative of a medium-to-high shrub cover intensity (Figure 10).
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The majority of the rest of the plots have a low-to-minim shrub cover, covering 6%
to 10%. An issue identified through field observations was in the case of SMRM. The plot
is characterized by a high shrub coverage, but due to the lower age and high tree density,
the laser beams could not penetrate the canopy layer. This resulted in a small number of
points near the ground and an underestimation of the shrub layer. This shortcoming can
be compensated by using TLS data to complete the ALS points cloud.

3.4. Structure Analysis for Cultural Services Assessment

The cultural services are the most problematic in what concerns the evaluation pro-
cesses. The services provided by the one-hectare plots are not traded on the market, and
therefore the methods of valuation applied tend to be more subjective. In addition, the
evaluation of the forest ecosystem’s capacity in providing these benefits is a challenging
one due to public preferences and the number of variables involved.

The forest structure indices computed under the regulating function section and
part of the health status information can be used in quantifying the human preferences
regarding the ideal distribution and biodiversity. Tree clusters, number of trees, sparse
distribution, higher canopy density, light penetration, visibility, understory volume, and
snags volume can all be indirectly assessed through tree distribution characteristics and
mortality analysis.

The snags identification and mortality characteristics were analyzed based on airborne
laser scanning data according to the work of [117] methodology (Figure 11).

After processing, the point clouds were classified into four classes, namely live trees,
small snags, live crown edge snags, and higher canopy snags. Due to the small proportion
of dead trees in the studied plots, not all classes were well represented. Moreover, following
the analysis, none of the snag classes were identified in the Norway spruce plots, apart from
sparse, unrepresentative small snags in the understory. By way of comparison, the sessile
oak plot presents a higher proportion corresponding to the live crown edge snags class.

A crucial role is attributed to the higher canopy snags class, which makes possible the
identification of dead treetops. A higher proportion of snags would have allowed for the
evaluation of a ratio between deadwood and the above-ground biomass. This information
could have then been used in the carbon sequestration estimation or the mortality rate of
the forest stand.
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4. Discussion

Forest ecosystems are characterized by various structures and complex processes
defined by a plethora of intra- and inter-plot relationships. The assessment of all ser-
vices provided by these ecosystems’ characteristics is still a challenging subject for the
research field [118]. Therefore, this study aimed to highlight some of the most impor-
tant and quantifiable services employing the latest applications of active remote-sensing
technology [119].

Taking advantage of the terrestrial stationary laser scanning, the obtained values for
above-ground volume, at tree and stand level, was within the characteristic tolerances [30].
Moreover, we compensated the height-specific bias caused by the terrestrial laser scanner’s
inability to penetrate dense canopies, a well know feature relevant to Romanian forests [24],
by deriving a canopy height model from aerial laser scanning.

Compared to the rest of the functions, provisioning could be evaluated most straight-
forward [76,120]. By only knowing the above-ground volume and market price, this service
could be monetized. To better understand this service, a technical approach can further be
used by classifying the wood in relation to the type of final product or the quality of the
timber, information that can be extracted from management plans.

The assessment of carbon sequestration is a more complex process, and it partially
uses wood volume calculations. The results are influenced by multiple biophysical param-
eters (wood density, the ratio between above and below-ground biomass, or the biomass
expansion factor) [84]. All these parameters depend on the species composition, a fea-
ture that cannot be presently assessed on a large scale by means of close-range active
remote sensing [121,122]. Furthermore, as described in the IPCC Guideline [84,123], forest
ecosystems stock a large amount of carbon not only in living biomass, so other pools
(soil and dead organic matter) should also be taken into consideration for a real carbon
emission/removals analysis. On the other hand, assumptions are made even within the
country-level estimation. Pools as soil, deadwood, or litter are considered to be neutral in
the carbon emission and removals balance. Therefore, only considering the living biomass
can represent a viable solution for carbon sequestration and stock assessment.

The utility of structural indices was highlighted in a long list of studies [24,119,124–126],
and the indirect quantification made by means of these indices could be considered a proper
method for evaluating forest ecosystem capacity to provide services. Forest structure
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represents a valuable source of information, and relating structure characteristics to specific
services is the approach used in this study.

Soil and water regulation services assured by the forest ecosystem are quantifiable
through trees distribution, LAI, LAD, and canopy projection [127,128]. The distances, the
angles, and the relationship between different individuals define the rate of success of
the forest to ensure the regulation function. Indices such as uniform angle index, Clark-
Evans nearest neighbor index, and relative dominance diameter index can describe the
ideal structure, which prevents gaps or corridors from occurring. The resulting values,
corresponding to the studied plots, describe a uniform tree distribution. According to the
uniform angle index values, the Norway spruce plot has a better capacity to assure the
regulation function if we consider the ideal structure being a random one.

When analyzing the CE, the obtained values tend to reach the upper half of the range,
close to a perfectly regular hexagonal distribution (2.1491). There are some dissimilarities
between CE and UAI regarding, in particular, the sessile oak plot due to the high number
of trees in the sampled area. However, of great importance in soil and water regulation
services is the fact that none of the plots is characterized by clustered trees that would
facilitate soil erosion and low water retention.

Air regulation function was evaluated in this study through the use of LAI and
LAD [129]. The capacity of the forest ecosystem to provide these services is directly
proportional to LAI values. For the studied plots, LAI values are within the 0–6 range, with
a considerable proportion in the upper classes throughout the entire old Norway spruce
plot. Due to lower values in the canopy height model and implicit smaller crown volumes,
the sessile oak recorded lower intensities in the northern part of the plot.

The support function assessment was evaluated based on the shrub cover, indicating
the capacity of the studied forests to provide various species’ habitat requirements. Im-
portant differences were observed between the studied areas. The sessile oak plot (SGTM)
recorded a larger area covered by understory vegetation. This analysis can also provide
additional information on the forest structure, information that can be used in further
biodiversity assessments.

The results regarding mortality have not allowed any further analyses regarding the
dead matter stratification. However, it offered enough information to assess the overall
health status of the forest ecosystem [117,123,130]. By following the presented structural
indices, as well as the ones addressing foliage, while simultaneously considering the human
preferences toward the ideal forest structure, a suitable evaluation of the cultural services
could be deployed.

Given the results corresponding to our studied plots, the lack of clustered trees, large
gaps, and overall canopy structure, an appropriate scale for referencing forest ecosystems’
capability to provide cultural benefits could have also been developed.

5. Conclusions

In order to emphasize and maximize the ecological, social, and economic benefits
of forests, suitable assessment methods are required. Active remote-sensing technology,
with the proven advantages and characteristic limitations, can represent the foundation
for multiple approaches aiming to quantify the capacity of the forest ecosystem to provide
services. This study highlighted the possibility of using two different active remote-sensing
data sets and several techniques to assess the main ecosystem functions according to
TEEB classification.

To estimate the key biophysical parameters of a tree, terrestrial laser scanning point
clouds proved to be a viable solution. The processing of this data source led to errors
associated with DBH of below 1 cm [30] at the subplot level when analyzing the mean tree.
Precisions associated with tree coordinates are comparable to those obtained through the
electronic field mapping system. Using the TLS-based variables as well as the airborne
laser scanning data, the provisioning function, particularly wood products, was evaluated.



Forests 2021, 12, 1269 19 of 24

This was performed by means of above-ground volume, characterized by errors smaller
than 6%.

Combining the terrestrial and aerial laser scans, the evaluation of regulating function
was also possible. The indices computed by processing the above-mentioned data sources
proved to be a suitable basis for acquiring the forest’s horizontal structure and the distribu-
tion of trees. CE, UAI, and IDR implementations through active remote-sensing approaches
can represent the link between ecosystem services and human preferences, but also the
qualitative parameters for assessing the degree of ensuring certain services, namely soil
stability, air quality, and water regulation.

Challenges still exist in applying active remote-sensing techniques due to the complex
ecosystems’ intra- and inter-plot relationships. However, the development of tools to
address the environmental assessment requirements is encouraged by the stakeholders
and decisional factors. Thus, it can be stated that active remote-sensing applications have
a significant role in forestry, a role that translates to an overall improvement of human
well-being.

Therefore, implementing the described methodologies highlighted the necessity of
developing custom reference scales relevant in the assessment processes of the relative
capacity of forest ecosystems to supply benefits. To achieve this, the study should be
extended to address further stands of different structures, species compositions, and
microclimates.
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