Application of a Panel Data Quantile-Regression Model to the Dynamics of Carbon Sequestration in Pinus kesiya var. langbianensis Natural Forests
Abstract
:1. Introduction
2. Research Data
2.1. Sample Plot Data
2.2. Biomass and Carbon Content Determination
3. Research Method
3.1. Method for Selection of Panel Data Model
3.2. Quantile Model Based on Panel Data
3.3. Division of Age Groups
3.4. Model Evaluation
3.5. Realization of the Method
4. Results
4.1. Base Model
4.2. Test of the Panel Data Model
4.3. Quantile-Regression Model for Panel Data
4.4. Residual Examination
4.5. Model Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Soimakallio, S.; Kalliokoski, T.; Lehtonen, A.; Salminen, O. On the trade-offs and synergies between forest carbon sequestration and substitution. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 1–17. [Google Scholar] [CrossRef]
- Mader, S. Plant trees for the planet: The potential of forests for climate change mitigation and the major drivers of national forest area. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 519–536. [Google Scholar] [CrossRef]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Granier, A.; Ceschia, E.; Damesin, C.; Dufrêne, E.; Epron, D.; Gross, P.; Lebaube, S.; Le Dantec, V.; Le Goff, N.; Lemoine, D.; et al. The carbon balance of a young Beech forest. Funct. Ecol. 2000, 14, 312–325. [Google Scholar] [CrossRef]
- Law, B.E.; Thornton, P.E.; Irvine, J.; Anthoni, P.M.; Van Tuyl, S. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Glob. Chang. Biol. 2001, 7, 755–777. [Google Scholar] [CrossRef]
- Hazlett, P.W.; Gordon, A.M.; Sibley, P.K.; Buttle, J.M. Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. For. Ecol. Manag. 2005, 219, 56–68. [Google Scholar] [CrossRef]
- Neilson, E.T.; MacLean, D.A.; Meng, F.R.; Arp, P.A. Spatial distribution of carbon in natural and managed stands in an industrial forest in New Brunswick, Canada. For. Ecol. Manag. 2008, 253, 148–160. [Google Scholar] [CrossRef]
- Gundersen, P.; Thybring, E.E.; Nord-Larsen, T.; Vesterdal, L.; Nadelhoffer, K.J.; Johannsen, V.K. Old-growth forest carbon sinks overestimated. Nature 2021, 591, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, Z.; Hayyat, M.U.; Khan, A.U.; Mahmood, R.; Shahzad, L.; Ghaffar, R.; Cao, K.F. Models to estimate the above and below ground carbon stocks from a subtropical scrub forest of Pakistan. Glob. Ecol. Conserv. 2021, 27, e01539. [Google Scholar] [CrossRef]
- Silva, H.F.; Ribeiro, S.C.; Botelho, S.A.; Liska, G.R.; Cirillo, M.A. Biomass and Carbon in a Seasonal Semideciduous Forest in Minas Gerais. Floresta E Ambiente 2018, 25, e20160508. [Google Scholar] [CrossRef]
- Reiersen, G.; Dao, D.; Lütjens, B.; Klemmer, K.; Zhu, X.; Zhang, C. Tackling the Overestimation of Forest Carbon with Deep Learning and Aerial Imagery. arXiv 2021, arXiv:2107.11320. [Google Scholar]
- Nie, X.; Guo, W.; Huang, B.; Zhuo, M.; Li, D.; Li, Z.; Yuan, Z. Effects of soil properties, topography and landform on the understory biomass of a pine forest in a subtropical hilly region. Catena 2019, 176, 104–111. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Li, F.; Jin, X. Spatial modeling of the carbon stock of forest trees in Heilongjiang Province, China. J. For. Res. 2014, 25, 269–280. [Google Scholar] [CrossRef]
- Smeglin, Y.H.; Davis, K.J.; Shi, Y.; Eissenstat, D.M.; Kaye, J.P.; Kaye, M.W. Observing and Simulating Spatial Variations of Forest Carbon Stocks in Complex Terrain. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005160. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.; Huang, S.; Guo, C. Mapping the mean annual precipitation of China using local interpolation techniques. Theor. Appl. Climatol. 2015, 119, 171–180. [Google Scholar] [CrossRef]
- Sun, Y.S.; Wang, W.F.; Li, G.C. Spatial distribution of forest carbon storage in Maoershan region, Northeast China based on geographically weighted regression kriging model. J. Appl. Ecol. 2019, 30, 1642–1650. (In Chinese) [Google Scholar]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Litvak, M.; Miller, S.; Wofsy, S.C.; Goulden, M. Effect of stand age on whole ecosystem CO2, exchange in the Canadian boreal forest. J. Geophys. Res. Atmos. 2003, 108, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Zaehle, S.; Sitch, S.; Prentice, I.C.; Liski, J.; Cramer, W.; Erhard, M.; Hickler, T.; Smith, B. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol. Appl. 2006, 16, 1555–1574. [Google Scholar] [CrossRef]
- Williams, M.; Schwarz, P.A.; Law, B.E.; Irvine, J.; Kurpius, M.R. An improved analysis of forest carbon dynamics using data assimilation. Glob. Chang. Biol. 2010, 11, 89–105. [Google Scholar] [CrossRef]
- Zhao, M.; Yue, T.; Zhao, N.; Sun, X.; Zhang, X. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. J. Geogr. Sci. 2014, 24, 249–268. [Google Scholar] [CrossRef]
- Hallock, K.F.; Koenker, R.W. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar]
- Jin, B.; Wu, Y.; Rao, C.R.; Hou, L. Estimation and model selection in general spatial dynamic panel data models. Proc. Natl. Acad. Sci. USA 2020, 117, e201917411. [Google Scholar] [CrossRef]
- Bera, A.K.; Doğan, O.; Taşpınar, S.; Leiluo, Y. Robust LM tests for spatial dynamic panel data models. Reg. Sci. Urban Econ. 2019, 76, 47–66. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross-Section and Panel Data; MIT Press: Cambridge, MA, USA, 2001; Volume 1, pp. 206–209. [Google Scholar]
- Lu, X.; Su, L. Determining individual or time effects in panel data models. J. Econom. 2020, 215, 60–83. [Google Scholar] [CrossRef]
- Jari, K.; Olli, T. Testing the Forest Rotation Model: Evidence from Panel Data. For. Sci. 1999, 45, 539–551. [Google Scholar]
- Ou, G.L.; Xu, H. Construction of an Environment-Sensitive Biomass Model for Natural Pinus Simaosi Forest; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Zang, H.; Liu, S.; Huang, J.C.; Zhang, Z.D.; Ouyang, X.Z.; Ning, J.K. Effects of Competition, Climate Factors and Their Interactions on Diameter Growth for Chinese Fir Plantations. Sci. Silvae Sin. 2021, 57, 12. (In Chinese) [Google Scholar]
- Yuan, S.K.; Xu, H.; Li, C.; Lv, Y.L.; Wei, A.C.; Xiong, H.X.; Ou, G.L. Remote sensing estimation on biomass of Pinus densata forests based on quantile regression model. For. Inventory Plan. 2018, 43, 8–13; discussion 14–31. (In Chinese) [Google Scholar]
Variable | Year | N | Mean | S.D. | Minimum | Maximum |
---|---|---|---|---|---|---|
Avg_DBH (cm) | 2007 | 81 | 15.31 | 5.83 | 6.2 | 28 |
2012 | 81 | 15.81 | 5.57 | 7.6 | 28 | |
2017 | 81 | 17.20 | 5.13 | 3.1 | 30.1 | |
Crown Density | 2007 | 81 | 54.22 | 19.59 | 22 | 88 |
2012 | 81 | 55.52 | 19.26 | 22 | 85 | |
2017 | 81 | 59.24 | 15.67 | 22 | 85 | |
Stock Volume (m3 per hectare) | 2007 | 81 | 96.85 | 54.45 | 2.63 | 272.99 |
2012 | 81 | 112.63 | 54.29 | 24.86 | 284.93 | |
2017 | 81 | 125.35 | 56.55 | 0.54 | 297.8 | |
Temp (°C) | 2007 | 81 | 19.46 | 0.10 | 17.52 | 21.74 |
2012 | 81 | 27.1 | 0.10 | 26.10 | 28.70 | |
2017 | 81 | 26.2 | 0.07 | 25.28 | 27.78 | |
Precipitation (mm) | 2007 | 81 | 1399.98 | 11.26 | 1213.70 | 1614.15 |
2012 | 81 | 1037.76 | 23.18 | 788.06 | 1554.10 | |
2017 | 81 | 1405.97 | 15.17 | 1163.18 | 1779.02 | |
Topographic Position Index (TPI) | 81 | 0.92 | 0.42 | −7.5 | 11.88 | |
Terrain Ruggedness Index (TRI) | 81 | 9.42 | 0.47 | 1.63 | 20.88 | |
Topographic Wetness Index (TWI) | 81 | 5.49 | 0.31 | 0.32 | 10.69 | |
Solar radiation (kWh/m2Y) | 81 | 1179.86 | 79.8 | 29.2 | 2602.23 | |
Altitude (m) | 81 | 1450 | 260 | 930 | 2220 |
PLOT | Trees Number | DBH (cm) | H (m) | Age | C (Kg) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | Std. | Min. | Max. | Mean | Std. | Min. | Max. | Mean | Std. | Min. | Max. | Mean | Std. | ||
Mojiang | 28 | 4.4 | 47 | 27.6 | 9.9 | 6.8 | 23.9 | 17.3 | 3.9 | 8 | 39 | 30 | 7 | 1.66 | 605.61 | 191.01 | 155.32 |
Simao | 64 | 5.9 | 58.3 | 22.9 | 11.9 | 6.1 | 27.4 | 16.7 | 5.4 | 14 | 82 | 42 | 18 | 3.42 | 1323.4 | 174.27 | 223.38 |
Lancang | 36 | 9.7 | 51.5 | 34.5 | 12.5 | 8.7 | 37 | 24.4 | 7.5 | 14 | 58 | 43 | 12 | 12.01 | 924.84 | 352.34 | 230.4 |
Variable (t) | Year | N | Mean | S.D. | Minimum | Maximum |
---|---|---|---|---|---|---|
C1 | 2007 | 81 | 25.73 | 15.65 | 0.74 | 73.08 |
C2 | 2012 | 81 | 27.93 | 15.72 | 6.74 | 76.27 |
C3 | 2017 | 81 | 32.17 | 15.55 | 0.15 | 79.72 |
Age Groups | Young-Aged (≤20) | Middle-Aged (21–30) | Near-Mature (31–40) | Mature (41–60) | Over-Mature (≥61) | Total |
---|---|---|---|---|---|---|
2007 | 24 | 20 | 29 | 15 | 3 | 81 |
2012 | 17 | 21 | 22 | 18 | 3 | 81 |
2017 | 4 | 28 | 25 | 18 | 6 | 81 |
C | Avg_DBH | Crown Density | Altitude | |
---|---|---|---|---|
C | 1.0000 | 0.6366 | 0.3088 | 0.2286 |
Avg_DBH | 0.6366 | 1.0000 | −0.0902 | −0.0819 |
Crown Density | 0.3088 | −0.0902 | 1.0000 | 0.1560 |
Altitude | 0.2286 | −0.0819 | 0.1560 | 1.0000 |
Testing Method | Statistics | p-Value | Results |
---|---|---|---|
F-test | 10.18 | 0.0000 | Rejected mixing effect |
Hausman-test | 2.14 | 0.5432 | Random-effect model was superior to the fixed-effect model |
Independent Variable | Tradition | Quantile | ||||
---|---|---|---|---|---|---|
0.1 | 0.25 | Median | 0.75 | 0.9 | ||
Avg_DBH | 2.1523 (0.1176) | 1.4653 (0.1441) | 1.828 (0.2487) | 2.1615 (0.1377) | 2.4218 (0.273) | 2.6163 (0.364) |
Crown Density | 0.2531 (0.0323) | 0.1744 (0.04021) | 0.273 (0.0526) | 0.3528 (0.0466) | 0.3478 (0.0675) | 0.3002 (0.0704) |
Altitude | 0.0138 (0.0038) | 0.008 (0.0024) | 0.0093 (0.0033) | 0.0137 (0.0036) | 0.015 (0.0043) | 0.0169 (0.004) |
Constant term | −40.5316 (6.1252) | −27.7645 (5.8006) | −35.9047 (8.8007) | −46.319 (6.3789) | −45.8981 (6.7704) | −43.3377 (4.7224) |
Models | R2 | MSE | AIC | MAE | |
---|---|---|---|---|---|
Tradition | 0.59 | 89.85 | 1099.05 | 7.44 | |
QR | 0.1 | 0.60 | 88.11 | 1094.31 | 7.2 |
0.25 | 0.43 | 126.06 | 1181.33 | 8.87 | |
Median | 0.59 | 89.04 | 1096.86 | 7.28 | |
0.75 | 0.45 | 120.61 | 1170.6 | 8.6 | |
0.9 | 0.62 | 84.35 | 1083.71 | 7.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Ou, G.; Fu, Y.; Zhang, C.; Yue, C. Application of a Panel Data Quantile-Regression Model to the Dynamics of Carbon Sequestration in Pinus kesiya var. langbianensis Natural Forests. Forests 2022, 13, 12. https://doi.org/10.3390/f13010012
Liu C, Ou G, Fu Y, Zhang C, Yue C. Application of a Panel Data Quantile-Regression Model to the Dynamics of Carbon Sequestration in Pinus kesiya var. langbianensis Natural Forests. Forests. 2022; 13(1):12. https://doi.org/10.3390/f13010012
Chicago/Turabian StyleLiu, Chang, Guanglong Ou, Yao Fu, Chengcheng Zhang, and Cairong Yue. 2022. "Application of a Panel Data Quantile-Regression Model to the Dynamics of Carbon Sequestration in Pinus kesiya var. langbianensis Natural Forests" Forests 13, no. 1: 12. https://doi.org/10.3390/f13010012
APA StyleLiu, C., Ou, G., Fu, Y., Zhang, C., & Yue, C. (2022). Application of a Panel Data Quantile-Regression Model to the Dynamics of Carbon Sequestration in Pinus kesiya var. langbianensis Natural Forests. Forests, 13(1), 12. https://doi.org/10.3390/f13010012