Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphometric Analysis
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Nut Morphometric Traits
3.2. Kernel Chemical Composition
3.3. Population Structure and Correlations between Morphological, Chemical, Geographical, and Environmental Distances
4. Discussion
4.1. Nut Morphometric Traits
4.2. Kernel Chemical Composition
4.3. Population Structure and Correlations between Morphological, Chemical, Geographical, and Environmental Distances
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bottacci, A. Castanea sativa Miller 1768. In Enzyklopädie der Holzgewächse. Handbuch und Atlas der Dendrologie; Roloff, A., Schütt, P., Lang, U.M., Stimm, B., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Volume 3, pp. 1–9. [Google Scholar]
- Fernández-López, J.; Alía, R. Technical Guidelines for Genetic Conservation and Use for Chestnut (Castanea sativa Mill.); EUFORGEN International Plant Genetic Resources Institute: Rome, Italy, 2003; p. 6. [Google Scholar]
- Conedera, M.; Krebs, P.; Tinner, W.; Prandella, M.; Torriani, D. The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg. Hist. Archaeobot. 2004, 13, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Krebs, P. History, present situation and perspective of chestnut cultivation in Europe. Acta Hort. 2008, 784, 23–27. [Google Scholar] [CrossRef]
- Krebs, P.; Conedera, M.; Pradella, M.; Torrioni, D.; Felber, M.; Tinner, W. Quaternary refugia of sweet chestnut (Castanea sativa Mill.): An extended palynological approach. Veg. Hist. Archaeobot. 2004, 13, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Villani, F.; Pigliucci, M.; Benedettelli, S.; Cherubini, M. Genetic differentiation among Turkish chestnut (Castanea sativa Mill.) populations. Heredity 1991, 66, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Villani, F.; Ansotta, A.S.; Cherubini, M.; Cesaroni, D.; Sbordoni, V. Genetic structure of natural populations of Castanea sativa in Turkey: Evidence of a hybrid zone. J. Evol. Biol. 1999, 12, 233–244. [Google Scholar] [CrossRef]
- Martín, M.A.; Mattioni, C.; Molina, J.R.; Alvarez, J.B.; Cherubini, M.; Herrera, M.A.; Villani, F.; Martín, L.M. Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet. Genomes 2012, 8, 127–136. [Google Scholar] [CrossRef]
- Mattioni, C.; Martín, M.A.; Pollegioni, P.; Cherubini, M.; Villani, F. Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): Evidence for multiple glacial refugia. Am. J. Bot. 2013, 100, 951–961. [Google Scholar] [CrossRef] [Green Version]
- Mattioni, C.; Martin, M.A.; Chiocchini, F.; Cherubini, M.; Gaudet, M.; Pollegioni, P.; Velichkov, I.; Jarman, R.; Chambers, F.M.; Paule, L.; et al. Landscape genetics structure of European sweet chestnut (Castanea sativa Mill): Indications for conservation priorities. Tree Genet. Genomes 2017, 13, 39. [Google Scholar] [CrossRef]
- Lusini, I.; Velichkov, I.; Pollegioni, P.; Chiocchini, F.; Hinkov, G.; Zlatanov, T.; Cherubini, M.; Mattioni, C. Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: Implications for conservation. Conserv. Genet. 2014, 15, 283–293. [Google Scholar] [CrossRef]
- Poljak, I.; Idžojtić, M.; Šatović, Z.; Ježić, M.; Ćurković-Perica, M.; Simovski, B.; Acevski, A.; Liber, Z. Genetic diversity of the sweet chestnut (Castanea sativa Mill.) in Central Europe and the western part of the Balkan Peninsula and evidence of marron genotype introgression into wild populations. Tree Genet. Genomes 2017, 13, 18. [Google Scholar] [CrossRef]
- Anić, M. O Rasprostranjenosti Evropskog Pitomog Kestena s Osobitim Obzirom na Nezavisnu Državu Hrvatsku i Susjedne Zemlje; Tiskara C. Albrecht (P. Acinger): Zagreb, Croatia, 1942; p. 142. [Google Scholar]
- Medak, J. Fitocenološke Značajke Šuma Pitomog Kestena u Sjeverozapadnoj Hrvatskoj. Master’s Thesis, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia, 5 December 2004. [Google Scholar]
- Medak, J. Šumske Zajednice i Staništa Pitomog Kestena (Castanea sativa Mill.) u Hrvatskoj. Ph.D. Thesis, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia, 18 December 2009. [Google Scholar]
- Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G. Castanea sativa in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publ. Off. EU: Luxembourg, 2016; pp. 78–79. [Google Scholar]
- Conedera, M.; Manetti, M.C.; Giudici, F.; Amorini, E. Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecol. Medit. 2004, 30, 179–193. [Google Scholar] [CrossRef]
- Anić, M. Pitomi kesten u Zagrebačkoj gori. Glas. Šum. Pokuse 1940, 7, 103–312. [Google Scholar]
- Lauteri, M.; Monteverdi, M.C.; Sansotta, A.; Cherubini, M.; Spaccino, L.; Villani, F.; Küҫük, M. Adaptation to drought in European chestnut. Evidences from a hybrid zone and from controlled crosses between drought and wet adapted populations. Acta Hortic. 1998, 494, 345–353. [Google Scholar] [CrossRef]
- Martín, M.A.; Mattioni, C.; Cherubini, M.; Taurchini, D.; Villani, F. Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet. Genomes 2010, 6, 735–744. [Google Scholar] [CrossRef]
- Míguez-Soto, B.; Fernández-Cruz, J.; Fernández-López, J. Mediterranean and Northern Iberian gene pools of wild Castanea sativa Mill. are two differentiated ecotypes originated under natural divergent selection. PLoS ONE 2019, 14, e0211315. [Google Scholar] [CrossRef] [Green Version]
- Mattioni, C.; Cherubini, M.; Micheli, E.; Villani, F.; Bucci, G. Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet. Genomes 2008, 4, 563–574. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A. Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests 2018, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Borghetti, M.; Menozzi, P.; Vendramin, G.G.; Giannini, R. Morphological variation in chestnut fruits (Castanea sativa Mill.) in Tuscany (Italy). Silvae Genet. 1986, 35, 124–128. [Google Scholar]
- Pereira-Lorenzo, S.; Fernández-López, J.; Morengo-González, J. Variability and grouping of Northwestern Spanish chestnut cultivars. I. Morphological traits. J. Am. Soc. Hortic. 1996, 121, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Lorenzo, S.; Díaz-Hernández, M.B.; Ramos-Cabrer, A. Use of highly discriminating morphological characters and isozymes in the study of Spanish chestnut cultivars. J. Am. Soc. Hortic. 2006, 131, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Lorenzo, S.; Fernández-López, J. Description of 80 cultivars and 36 clonal selections of chestnut (Castanea sativa Mill.) from Northwestern Spain. Fruit Var. J. 1997, 51, 13–27. [Google Scholar]
- Queijeiro, J.M.; De la Montaña, J.; Míguez, M. Identification and morphological description of cultivars of chesnut (Castanea sativa Mill.) of the region of Verín-Monterrei (Ourense, Spain). J. Am. Pomol. Soc. 2006, 60, 37–45. [Google Scholar] [CrossRef]
- Ramos-Cabrer, A.M.; Pereira-Lorenzo, S. Genetic relationship between Castanea sativa Mill. trees from north-western to south Spain based on morphological traits and isoenzymes. Genet. Resour. Crop Evol. 2005, 52, 879–890. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, P.; Barrio-Anta, M.; Diéguez-Aranda, U. Differentiation of sweet chestnut (Castanea sativa Mill.) cultivars by leaf, nut and burr dimensions. Forestry 2006, 79, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Furones-Pérez, P.; Fernández-López, J. Morphological and phenological description of 38 sweet chestnut cultivars (Castanea sativa Miller) in a contemporary collection. Span. J. Agric. Res. 2009, 7, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Ertan, E. Variability in leaf and fruit morphology and in fruit composition of chestnuts (Castanea sativa Mill.) in the Nazilli region of Turkey. Genet. Resour. Crop Evol. 2007, 54, 691–699. [Google Scholar] [CrossRef]
- De La Montaña Míguelez, J.; Miguez Bernàndez, M.; Garcia Quejeiro, J.M. Composition of varieties of chestnuts from Galicia (Spain). Food Chem. 2004, 84, 401–404. [Google Scholar] [CrossRef]
- Botta, R.; Akkak, A.; Guaraldo, P.; Bounous, G. Genetic characterization and nut quality of chestnut cultivars from Piemonte (Italy). Acta Hortic. 2005, 693, 395–401. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Díaz-Hernández, M.B.; Ciordia-Ara, M.; Ríos-Mesa, D. Chemical composition of chestnut cultivars from Spain. Sci. Hortic. 2006, 107, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Borges, O.P.; Carvalho, J.S.; Correia, P.R.; Silva, A.P. Lipid and fatty acid profiles of Castanea sativa Mill. chestnuts of 17 native Portuguese cultivars. J. Food Compost. Anal. 2007, 20, 80–89. [Google Scholar] [CrossRef]
- Borges, O.; Gonçalves, B.; Carvalho, J.L.S.; Correia, P.; Silva, A.P. Nutritional quality of chestnut (Castanea sativa Mill.) cultivars from Portugal. Food Chem. 2008, 106, 976–984. [Google Scholar] [CrossRef]
- Peña-Méndez, E.M.; Hernández-Suárez, M.; Díaz-Romero, C.; Rodríguez-Rodríguez, E. Characterization of various chestnut cultivars by means of chemometrics approach. Food Chem. 2008, 107, 537–544. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Casal, S.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Nutritional, fatty acid and triacylglycerol profiles of Castanea sativa Mill. cultivars: A compositional and chemometric approach. J. Agric. Food Chem. 2009, 57, 2836–2842. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Casal, S.; Ferreira, I.C.F.R.; Peres, A.M.; Pereira, J.A.; Oliviera, M.B.P.P. Chemical characterization of chestnut cultivars from three consecutive years: Chemometrics and contribution for authentication. Food Chem. Toxicol. 2012, 50, 2311–2317. [Google Scholar] [CrossRef] [Green Version]
- Sacchetti, G.; Neri, L.; Dimitri, G.; Mastrocola, D. Chemical composition and functional properties of three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. Acta Hortic. 2009, 844, 41–46. [Google Scholar] [CrossRef]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. J. Food Compost. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Mert, C.; Ertürk, Ü. Chemical compositions and sugar profiles of consumed chestnut cultivars in Marmara region, Turkey. Not. Bot. Horti. Agrobot. Cluj-Napoca 2017, 45, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Poljak, I.; Vahčić, N.; Gačić, M.; Idžojtić, M. Morphology and chemical composition of fruits of the traditional Croatian chestnut variety ‘Lovran Marron’. Food Technol. Biotechnol. 2016, 54, 189–199. [Google Scholar] [CrossRef]
- Poljak, I.; Vahčić, N.; Vidaković, A.; Tumpa, K.; Žarković, I.; Idžojtić, M. Traditional sweet chestnut and hybrid varieties: Chemical composition, morphometric and qualitative nut characteristics. Agronomy 2021, 11, 516. [Google Scholar] [CrossRef]
- Villani, F.; Pigliucci, M.; Lauteri, M.; Cherubini, M. Congruence between genetic, morphometric, and physiological data on differentiation of Turkish chestnut (Castanea sativa). Genome 1992, 35, 251–256. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A.; Drouzas, A.D.; Alizoti, P.G. Electrophoretic and quantitative variation in chestnut (Castanea sativa Mill.) in Hellenic populations in old-growth natural and coppice stands. For. Snow Landsc. Res. 2001, 76, 429–434. [Google Scholar]
- Bolvanský, M.; Užík, M. Morphometric variation and differentiation of European chestnut (Castanea sativa) in Slovakia. Biologia 2005, 60, 423–429. [Google Scholar]
- Solar, A.; Podjavoršek, A.; Štampar, F.S. Fenotypic and genotypic diversity of European chestnut (Castanea sativa Mill.) in Slovenia—Opportunity for genetic improvement. Genet. Resour. Crop Evol. 2005, 52, 391–394. [Google Scholar] [CrossRef]
- Idžojtić, M.; Zebec, M.; Poljak, I.; Medak, J. Variation of sweet chestnut (Castanea sativa Mill.) populations in Croatia according to the morphology of fruits. Sauteria 2009, 18, 232–333. [Google Scholar]
- Poljak, I.; Idžojtić, M.; Zebec, M.; Perković, N. The variability of European sweet chestnut (Castanea sativa Mill.) in the region of northwest Croatia according to morphology of fruits. Šumar. List 2012, 136, 479–489. [Google Scholar]
- AOAC International. Nuts and nut products—Preparation of test sample procedure. In AOAC Official Method 935.52; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- AOAC International. Nuts and nut products—Moisture in nuts and nut products. In AOAC Official Method 925.40; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- AOAC International. Nuts and nut products—Ash of nuts and nut products. In AOAC Official Method 950.49; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- AOAC International. Nuts and nut products—Fat (crude) in nuts and nut products. In AOAC Official Method 948.22; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- AOAC International. Nuts and nut products—Protein (crude) in nuts and nut products. In AOAC Official Method 950.48; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Oliveira, I.; Sousa, A.; Morais, J.S.; Ferreira, I.C.; Bento, A.; Estevinho, L.; Pereira, J.A. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars. Food Chem. Toxicol. 2008, 46, 1801–1807. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.M. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 4th ed.; W.H. Freeman and Co.: New York, NY, USA, 2012; p. 937. [Google Scholar]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 13; StatSoft, Inc.: Tulsa, OK, USA, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistics in Biological Research, 4th ed.; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.r-project.org/index.html (accessed on 22 October 2021).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Smouse, P.E.; Long, J.C.; Sokal, R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 1986, 35, 627–632. [Google Scholar] [CrossRef]
- Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd ed.; Chapman & Hall/CRC, Taylor & Francis Group: Boca Raton, FL, USA, 2007; p. 480. [Google Scholar]
- Rohlf, F.J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.2; Applied Biostatistics Inc.: New York, NY, USA, 2009; p. 44. [Google Scholar]
- Krüssmann, G. Handbuch der Laubgehölze; Paul Parkey in Berlin und Hamburg, Verlag für Landwirtschaft, Veterinärmedizin, Gartenbau und Forstwesen: Berlin, Germany, 1960. [Google Scholar]
- Herman, J. Šumarska Dendrologija; Stanbiro: Zagreb, Croatia, 1971; p. 470. [Google Scholar]
- Hegi, G. Illustrierte Flora von Mitteleuropa; Verlag Paul Parey: Berlin und Hamburg, Germany, 1981; Volume 3, p. 504. [Google Scholar]
- Idžojtić, M. Dendrology: Cones, Flowers, Fruits and Seeds; Elsevier—Academic Press: London, UK; San Diego, CA, USA; Cambridge, MA, USA; London, UK, 2019; p. 800. [Google Scholar]
- Garland, T., Jr.; Kelly, S.A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 2006, 209, 2344–2361. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.H.; Thuiller, W.; Yoccoz, N.G.; Soudant, A.; Boucher, F.; Saccone, P.; Lavorel, S. Intraspecific functional variability: Extent, structure and sources of variation. J. Ecol. 2010, 98, 604–613. [Google Scholar] [CrossRef]
- Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 2014, 208747. [Google Scholar] [CrossRef] [Green Version]
- Douaihy, B.; Sobierajska, K.; Jasińska, A.K.; Boratyńska, K.; Ok, T.; Romo, A.; Machon, N.; Didukh, Y.; Dagher-Kharrat, M.B.; Boratyński, A. Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AOB Plants 2012, 2012, plr003. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Diaz, S.; Buchmann, N.; Gurvich, D.E.; Pooter, H. Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Miljković, D.; Stefanović, M.; Orlović, S.; Stanković Neđić, M.; Kesić, L.; Stojnić, S. Wild cherry (Prunus avium (L.) L.) leaf shape and size variations in natural populations at different elevations. Alp. Bot. 2019, 129, 163–174. [Google Scholar] [CrossRef]
- Zebec, M.; Drvodelić, D.; Moro, M. Geometric morphometric analysis of fruit shape variability in continental populations of Ulmus minor Mill. sensu latissimo from Croatia. In Book of Abstracts, Natural Resources Green Technology & Sustainable Development 2; Radojčić Redovniković, I., Radošević, K., Jakovljević, T., Stojaković, R., Gaurina Srček, V., Erdec Hendrih, D., Eds.; Faculty of Food Technology and Biotechnology: Zagreb, Croatia, 2016; p. 119. [Google Scholar]
- Poljak, I.; Vahčić, N.; Liber, Z.; Tumpa, K.; Pintar, V.; Zegnal, I.; Vidaković, A.; Valković, B.; Kajba, D.; Idžojtić, M. Morphological and chemical diversity and antioxidant capacity of the service tree (Sorbus domestica L.) fruits from two eco-geographical regions. Plants 2021, 10, 1691. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A. Phenotypic variation and population relationships of chestnut (Castanea sativa) in Greece, revealed by multivariate analysis of leaf morphometrics. Acta Hortic. 2005, 693, 233–240. [Google Scholar] [CrossRef]
- Bounous, G. Following chestnut footprints (Castanea spp.)—Cultivation and culture, folklore and history, traditions and uses. Scripta Hort. 2009, 9, 72–84. [Google Scholar]
- Linhares, I.; Martins, A.; Borges, O.; Guedes, C.; Seixas Sousa, V. Effect of irrigation and soil management practices on fruit production and quality in chestnut orchards of northern Portugal. Acta Hortic. 2005, 693, 701–706. [Google Scholar] [CrossRef]
- Mota, M.; Pinto, T.; Vilela, A.; Marques, T.; Borges, A.; Caço, J.; Ferreira-Cardoso, J.; Raimundo, F.; Gomes-Laranjo, J. Irrigation positively affects the chestnut’s quality: The chemical composition, fruit size and sensory attributes. Sci. Hortic. 2018, 238, 177–186. [Google Scholar] [CrossRef]
- Wright, S. Evolution in Mendelian populations. Genetics 1931, 16, 97–159. [Google Scholar] [CrossRef] [PubMed]
- DeWoody, J.; Trewin, H.; Taylor, G. Genetic and morphological differentiation in Populus nigra L.: Isolation by colonization or isolation by adaptation? Mol. Ecol. 2015, 24, 2641–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Acronym | Population | N | Latitude | Longitude | Country | Biogeographical Region | Management Type |
---|---|---|---|---|---|---|---|
P01 | Combai | 20 | 12.056333 | 45.928222 | ITA | sub-Mediterranean | high-forest |
P02 | Pazin | 20 | 13.916000 | 45.234361 | CRO | sub-Mediterranean | high-forest |
P03 | Bosiljevo | 20 | 15.278500 | 45.415306 | CRO | continental | high-forest |
P04 | Karlovac | 20 | 15.499583 | 45.481917 | CRO | continental | high-forest |
P05 | Tisovec | 20 | 15.845389 | 46.270917 | SVN | continental | high-forest |
P06 | Macelj | 20 | 15.836222 | 46.257139 | CRO | continental | high-forest |
P07 | Petrova gora | 20 | 15.833917 | 45.318667 | CRO | continental | coppice |
P08 | Cazin | 20 | 15.955278 | 44.980444 | BIH | continental | coppice |
Trait | Descriptive Parameters | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | Total |
---|---|---|---|---|---|---|---|---|---|---|
nut mass | M | 8.17 | 9.39 | 8.33 | 7.96 | 8.82 | 9.44 | 5.94 | 4.96 | 7.87 |
SD | 2.60 | 3.09 | 2.98 | 1.96 | 2.64 | 2.84 | 2.11 | 1.68 | 2.94 | |
CV | 31.78 | 32.86 | 35.84 | 24.59 | 29.87 | 30.06 | 35.55 | 33.89 | 37.35 | |
nut height (NH) | M | 24.85 | 26.90 | 26.15 | 25.48 | 26.72 | 26.17 | 23.31 | 23.40 | 25.37 |
SD | 2.49 | 2.58 | 2.93 | 2.03 | 2.90 | 2.67 | 2.72 | 3.05 | 2.99 | |
CV | 10.00 | 9.60 | 11.22 | 7.97 | 10.86 | 10.19 | 11.67 | 13.03 | 11.77 | |
nut width (NW) | M | 27.97 | 29.95 | 28.92 | 28.64 | 28.56 | 30.07 | 25.09 | 22.96 | 27.77 |
SD | 3.70 | 3.72 | 4.16 | 2.96 | 3.42 | 3.38 | 3.39 | 2.75 | 4.16 | |
CV | 13.22 | 12.43 | 14.40 | 10.34 | 11.96 | 11.25 | 13.52 | 11.96 | 14.98 | |
distance from base to the point of maximum nut width (PMNW) | M | 11.31 | 11.85 | 12.40 | 12.17 | 11.55 | 12.17 | 10.50 | 10.79 | 11.59 |
SD | 1.65 | 1.54 | 1.63 | 1.37 | 1.57 | 1.54 | 1.48 | 1.71 | 1.69 | |
CV | 14.56 | 13.00 | 13.16 | 11.22 | 13.61 | 12.67 | 14.09 | 15.82 | 14.56 | |
nut thickness (NT) | M | 18.04 | 17.71 | 16.82 | 17.13 | 18.30 | 18.91 | 14.94 | 14.20 | 17.01 |
SD | 2.62 | 2.90 | 2.72 | 2.36 | 2.83 | 2.79 | 2.60 | 2.17 | 3.05 | |
CV | 14.50 | 16.40 | 16.16 | 13.78 | 15.49 | 14.76 | 17.37 | 15.26 | 17.92 | |
hilum length (HL) | M | 21.35 | 20.17 | 22.06 | 21.81 | 20.55 | 23.83 | 19.73 | 17.86 | 20.92 |
SD | 4.50 | 3.42 | 3.82 | 3.34 | 3.56 | 3.26 | 3.24 | 3.01 | 3.91 | |
CV | 21.07 | 16.96 | 17.33 | 15.34 | 17.31 | 13.69 | 16.40 | 16.88 | 18.70 | |
hilum width (HW) | M | 10.86 | 9.08 | 10.25 | 10.50 | 9.90 | 11.75 | 9.93 | 9.15 | 10.18 |
SD | 2.69 | 1.83 | 1.99 | 2.07 | 1.94 | 1.96 | 2.00 | 1.97 | 2.22 | |
CV | 24.78 | 20.15 | 19.37 | 19.75 | 19.60 | 16.66 | 20.10 | 21.53 | 21.85 | |
number of kernels (NK) | M | 1.01 | 1.01 | 1.01 | 1.09 | 1.03 | 1.01 | 1.01 | 1.01 | 1.02 |
SD | 0.07 | 0.07 | 0.10 | 0.30 | 0.17 | 0.07 | 0.10 | 0.10 | 0.14 | |
CV | 7.04 | 7.04 | 9.88 | 27.37 | 16.60 | 7.04 | 9.88 | 9.88 | 14.16 | |
number of intrusions of the seed coat into the kernel (NI) | M | 3.26 | 3.67 | 3.26 | 2.61 | 4.59 | 3.36 | 3.14 | 2.54 | 3.30 |
SD | 2.08 | 1.95 | 1.70 | 1.88 | 1.75 | 1.89 | 1.97 | 1.85 | 1.98 | |
CV | 63.71 | 53.26 | 52.03 | 71.99 | 38.27 | 56.45 | 62.80 | 72.65 | 59.85 | |
length of the longest intrusion of the seed coat into the kernel (LI) | M | 4.04 | 4.88 | 4.70 | 3.79 | 6.15 | 5.73 | 3.96 | 2.71 | 4.50 |
SD | 2.52 | 2.59 | 2.28 | 2.31 | 2.19 | 2.68 | 2.19 | 1.84 | 2.55 | |
CV | 62.50 | 52.99 | 48.52 | 60.94 | 35.55 | 46.75 | 55.42 | 67.96 | 56.83 | |
NH/NW | M | 0.90 | 0.91 | 0.91 | 0.89 | 0.94 | 0.87 | 0.93 | 1.02 | 0.92 |
SD | 0.08 | 0.09 | 0.08 | 0.07 | 0.09 | 0.07 | 0.07 | 0.11 | 0.09 | |
CV | 8.96 | 9.56 | 9.00 | 7.83 | 9.30 | 8.21 | 7.25 | 10.28 | 10.03 | |
PMNW/NH | M | 0.45 | 0.44 | 0.47 | 0.48 | 0.43 | 0.46 | 0.45 | 0.46 | 0.46 |
SD | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | |
CV | 10.26 | 8.90 | 7.60 | 8.49 | 8.92 | 7.68 | 9.32 | 8.51 | 9.28 | |
NT/NH | M | 0.73 | 0.66 | 0.64 | 0.67 | 0.69 | 0.72 | 0.64 | 0.61 | 0.67 |
SD | 0.10 | 0.08 | 0.08 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.10 | |
CV | 13.37 | 12.61 | 12.72 | 13.19 | 13.00 | 12.56 | 13.33 | 14.59 | 14.33 | |
NT/NW | M | 0.65 | 0.59 | 0.58 | 0.60 | 0.64 | 0.63 | 0.60 | 0.62 | 0.61 |
SD | 0.07 | 0.06 | 0.05 | 0.07 | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | |
CV | 11.48 | 10.41 | 9.42 | 11.08 | 11.16 | 11.99 | 11.22 | 11.63 | 11.72 | |
HL/NW | M | 0.76 | 0.67 | 0.76 | 0.76 | 0.72 | 0.79 | 0.79 | 0.78 | 0.75 |
SD | 0.08 | 0.06 | 0.05 | 0.07 | 0.07 | 0.06 | 0.06 | 0.08 | 0.08 | |
CV | 10.10 | 8.49 | 6.15 | 9.66 | 10.04 | 7.94 | 7.54 | 10.50 | 10.18 | |
HW/NT | M | 0.60 | 0.51 | 0.61 | 0.61 | 0.54 | 0.62 | 0.67 | 0.65 | 0.60 |
SD | 0.10 | 0.06 | 0.06 | 0.08 | 0.07 | 0.08 | 0.10 | 0.11 | 0.10 | |
CV | 16.95 | 12.26 | 10.44 | 13.01 | 13.73 | 12.24 | 15.00 | 16.31 | 16.13 | |
HW/HL | M | 0.51 | 0.45 | 0.47 | 0.48 | 0.48 | 0.49 | 0.50 | 0.51 | 0.49 |
SD | 0.09 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.08 | 0.07 | |
CV | 16.70 | 12.46 | 13.34 | 12.41 | 11.51 | 12.00 | 11.36 | 15.81 | 14.05 | |
LI/NT | M | 0.22 | 0.27 | 0.28 | 0.22 | 0.34 | 0.30 | 0.26 | 0.19 | 0.26 |
SD | 0.13 | 0.13 | 0.12 | 0.13 | 0.11 | 0.13 | 0.13 | 0.12 | 0.13 | |
CV | 57.80 | 49.23 | 42.11 | 60.06 | 33.03 | 44.71 | 50.63 | 65.97 | 51.74 |
Trait | Variance Component | df | % Variation | F | p |
---|---|---|---|---|---|
nut mass | Among populations | 7 | 26.40 | 11.3574 | <0.0001 |
Within populations | 152 | 48.46 | 20.2724 | <0.0001 | |
Error | 25.14 | ||||
nut height (NH) | Among populations | 7 | 18.47 | 7.09504 | <0.0001 |
Within populations | 152 | 58.30 | 26.0985 | <0.0001 | |
Error | 23.23 | ||||
nut width (NW) | Among populations | 7 | 31.67 | 14.2809 | <0.0001 |
Within populations | 152 | 45.40 | 20.7954 | <0.0001 | |
Error | 22.93 | ||||
distance from base to the point of maximum nut width (PMNW) | Among populations | 7 | 13.95 | 6.98548 | <0.0001 |
Within populations | 152 | 42.23 | 10.6354 | <0.0001 | |
Error | 43.82 | ||||
nut thickness (NT) | Among populations | 7 | 26.22 | 13.7966 | <0.0001 |
Within populations | 152 | 36.45 | 11.2423 | <0.0001 | |
Error | 37.33 | ||||
hilum length (HL) | Among populations | 7 | 17.28 | 6.89291 | <0.0001 |
Within populations | 152 | 55.98 | 21.9393 | <0.0001 | |
Error | 26.74 | ||||
hilum width (HW) | Among populations | 7 | 12.49 | 5.34088 | <0.0001 |
Within populations | 152 | 54.21 | 17.2763 | <0.0001 | |
Error | 33.30 | ||||
number of kernels (NK) | Among populations | 7 | 2.56 | 3.43539 | <0.01 |
Within populations | 152 | 12.56 | 2.47944 | <0.0001 | |
Error | 84.88 | ||||
number of intrusions of the seed coat into the kernel (NI) | Among populations | 7 | 8.68 | 5.99596 | <0.0001 |
Within populations | 152 | 28.45 | 5.52612 | <0.0001 | |
Error | 62.87 | ||||
length of the longest intrusion of the seed coat into the kernel (LI) | Among populations | 7 | 16.80 | 11.0424 | <0.0001 |
Within populations | 152 | 27.92 | 6.05035 | <0.0001 | |
Error | 55.28 | ||||
NH/NW | Among populations | 7 | 21.28 | 9.30401 | <0.0001 |
Within populations | 152 | 48.20 | 16.79345 | <0.0001 | |
Error | 30.52 | ||||
PMNW/NH | Among populations | 7 | 12.15 | 10.8916 | <0.0001 |
Within populations | 152 | 17.54 | 3.49451 | <0.0001 | |
Error | 70.31 | ||||
NT/NH | Among populations | 7 | 15.79 | 9.23331 | <0.0001 |
Within populations | 152 | 33.25 | 7.52340 | <0.0001 | |
Error | 50.97 | ||||
NT/NW | Among populations | 7 | 10.09 | 7.36716 | <0.0001 |
Within populations | 152 | 25.21 | 4.89694 | <0.0001 | |
Error | 64.70 | ||||
HL/NW | Among populations | 7 | 23.67 | 10.2695 | <0.0001 |
Within populations | 152 | 48.26 | 18.1867 | <0.0001 | |
Error | 28.08 | ||||
HW/NT | Among populations | 7 | 24.91 | 12.9752 | <0.0001 |
Within populations | 152 | 37.88 | 11.1793 | <0.0001 | |
Error | 37.21 | ||||
HW/HL | Among populations | 7 | 8.44 | 5.97359 | <0.0001 |
Within populations | 152 | 27.55 | 5.30367 | <0.0001 | |
Error | 64.01 | ||||
LI/NT | Among populations | 7 | 10.89 | 7.35714 | <0.0001 |
Within populations | 152 | 28.17 | 5.62329 | <0.0001 | |
Error | 60.94 |
Trait | Descriptive Parameters | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | Total | p |
---|---|---|---|---|---|---|---|---|---|---|---|
w (water)/(g/100 g) | M | 54.79 | 56.35 | 56.76 | 58.49 | 55.26 | 58.89 | 59.75 | 60.28 | 57.57 | <0.0001 |
SD | 1.60 | 1.61 | 1.91 | 2.05 | 2.48 | 1.64 | 1.17 | 1.29 | 2.60 | ||
CV | 2.91 | 2.85 | 3.36 | 3.51 | 4.49 | 2.78 | 1.96 | 2.15 | 4.51 | ||
w (ash)/(g/100 g dm) | M | 2.76 | 2.94 | 2.90 | 3.03 | 2.67 | 3.37 | 3.29 | 3.50 | 3.06 | <0.0001 |
SD | 0.26 | 0.23 | 0.35 | 0.23 | 0.83 | 0.23 | 0.32 | 0.24 | 0.47 | ||
CV | 9.28 | 7.84 | 11.89 | 7.44 | 31.14 | 6.70 | 9.87 | 6.82 | 15.39 | ||
w (crude fat)/(g/100 g dm) | M | 2.85 | 3.45 | 2.34 | 3.23 | 3.14 | 3.19 | 2.05 | 2.67 | 2.86 | <0.0001 |
SD | 0.56 | 0.65 | 0.39 | 0.58 | 0.82 | 0.45 | 0.47 | 0.47 | 0.71 | ||
CV | 19.60 | 18.91 | 16.55 | 18.10 | 26.05 | 13.97 | 22.72 | 17.44 | 24.86 | ||
w (crude protein)/(g/100 g dm) | M | 4.39 | 4.24 | 3.99 | 4.48 | 3.73 | 4.73 | 3.89 | 4.65 | 4.26 | <0.0001 |
SD | 0.61 | 0.28 | 0.50 | 0.87 | 0.46 | 0.71 | 0.85 | 0.51 | 0.70 | ||
CV | 13.80 | 6.51 | 12.45 | 19.47 | 12.24 | 14.92 | 21.88 | 11.08 | 16.48 | ||
w (total carbohydrates)/(g/100 g dm) | M | 90.00 | 89.37 | 90.77 | 89.26 | 90.47 | 88.70 | 90.76 | 89.18 | 89.82 | <0.0001 |
SD | 0.87 | 0.71 | 0.63 | 0.97 | 0.99 | 0.68 | 0.85 | 0.72 | 1.09 | ||
CV | 0.96 | 0.80 | 0.69 | 1.09 | 1.09 | 0.77 | 0.93 | 0.81 | 1.21 | ||
w (Cu)/(mg/100 g dm) | M | 0.85 | 0.94 | 0.91 | 0.84 | 0.79 | 0.86 | 0.87 | 0.75 | 0.85 | <0.0001 |
SD | 0.09 | 0.12 | 0.11 | 0.06 | 0.03 | 0.08 | 0.11 | 0.15 | 0.11 | ||
CV | 10.59 | 12.74 | 12.42 | 7.61 | 4.31 | 9.39 | 12.98 | 20.38 | 13.46 | ||
w (Zn)/(mg/100 g dm) | M | 1.28 | 1.39 | 1.35 | 1.35 | 1.34 | 1.38 | 1.24 | 1.13 | 1.31 | <0.0001 |
SD | 0.12 | 0.21 | 0.17 | 0.08 | 0.15 | 0.19 | 0.24 | 0.18 | 0.19 | ||
CV | 9.17 | 15.25 | 12.65 | 6.04 | 10.98 | 14.05 | 19.15 | 16.11 | 14.49 | ||
w (Fe)/(mg/100 g dm) | M | 1.69 | 1.70 | 1.79 | 1.19 | 1.50 | 1.51 | 1.48 | 1.65 | 1.56 | <0.0001 |
SD | 0.10 | 0.28 | 0.34 | 0.23 | 0.19 | 0.26 | 0.30 | 0.51 | 0.34 | ||
CV | 5.80 | 16.35 | 19.24 | 19.35 | 12.43 | 17.15 | 20.48 | 30.75 | 21.74 | ||
w (Mn)/(mg/100 g dm) | M | 8.89 | 9.80 | 11.52 | 12.54 | 3.58 | 3.42 | 9.79 | 14.15 | 9.21 | <0.0001 |
SD | 2.98 | 1.97 | 1.96 | 3.81 | 1.66 | 1.12 | 2.45 | 3.15 | 4.42 | ||
CV | 33.51 | 20.10 | 17.01 | 30.37 | 46.47 | 32.85 | 25.02 | 22.27 | 47.99 | ||
w (Na)/(mg/100 g dm) | M | 9.29 | 11.37 | 10.68 | 9.16 | 12.65 | 7.39 | 8.67 | 11.66 | 10.11 | <0.0001 |
SD | 3.00 | 4.67 | 4.17 | 2.37 | 2.52 | 1.63 | 2.04 | 2.24 | 3.37 | ||
CV | 32.29 | 41.08 | 39.06 | 25.89 | 19.91 | 22.10 | 23.50 | 19.21 | 33.33 | ||
w (Ca)/(mg/100 g) | M | 100.03 | 177.03 | 183.02 | 108.51 | 90.22 | 118.67 | 147.88 | 160.74 | 135.76 | <0.0001 |
SD | 31.28 | 41.56 | 45.63 | 27.40 | 8.45 | 39.64 | 24.75 | 32.81 | 46.94 | ||
CV | 31.27 | 23.47 | 24.93 | 25.25 | 9.37 | 33.40 | 16.74 | 20.41 | 34.58 | ||
w (Mg)/(mg/100 g dm) | M | 123.35 | 145.87 | 144.93 | 156.03 | 134.09 | 179.40 | 193.69 | 198.41 | 159.47 | <0.0001 |
SD | 15.50 | 19.76 | 27.12 | 22.60 | 10.69 | 36.52 | 27.72 | 23.86 | 35.24 | ||
CV | 12.57 | 13.54 | 18.71 | 14.48 | 7.97 | 20.36 | 14.31 | 12.03 | 22.10 | ||
w (K)/(mg/100 g dm) | M | 2026.29 | 2209.35 | 1907.87 | 2134.40 | 1494.79 | 2514.16 | 2253.74 | 2468.82 | 2126.18 | <0.0001 |
SD | 269.01 | 336.41 | 300.68 | 314.04 | 174.84 | 582.53 | 264.67 | 173.35 | 441.53 | ||
CV | 13.28 | 15.23 | 15.76 | 14.71 | 11.70 | 23.17 | 11.74 | 7.02 | 20.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poljak, I.; Vahčić, N.; Liber, Z.; Šatović, Z.; Idžojtić, M. Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations. Forests 2022, 13, 55. https://doi.org/10.3390/f13010055
Poljak I, Vahčić N, Liber Z, Šatović Z, Idžojtić M. Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations. Forests. 2022; 13(1):55. https://doi.org/10.3390/f13010055
Chicago/Turabian StylePoljak, Igor, Nada Vahčić, Zlatko Liber, Zlatko Šatović, and Marilena Idžojtić. 2022. "Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations" Forests 13, no. 1: 55. https://doi.org/10.3390/f13010055
APA StylePoljak, I., Vahčić, N., Liber, Z., Šatović, Z., & Idžojtić, M. (2022). Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations. Forests, 13(1), 55. https://doi.org/10.3390/f13010055