Distribution, Dominance Structure, Species Richness, and Diversity of Bats in Disturbed and Undisturbed Temperate Mountain Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Capture of Bats
2.3. Data Analysis
- -
- At q = 0, species richness; the abundances of individual species are not taken into account, so the value is simply the species richness of a given area.
- -
- At q = 1, Shannon diversity index, according to the Hill formula; very abundant and less abundant or rare species all have the same weight, i.e., the value obtained is the most neutral and indicates ‘true species diversity’.
- -
- At q = 2, the reverse of Simpson’s index; Hill’s formula gives greater weight to more numerous and common species and less to rare species. Lower values at q = 2 indicate the strong dominance of two or three species in the assemblage.
3. Results
3.1. Species Richness and Elevation
3.2. Species Diversity and Dominance Structures of Bat Assemblages in Different Types of Forests
3.3. Sex Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wickramasinghe, L.P.; Harris, S.; Jones, G.; Vaughan, N. Bat activity and species richness on organic and conventional farms—Impact of agricultural intensification. J. Appl. Ecol. 2003, 40, 984–993. [Google Scholar] [CrossRef]
- Jones, G.; Jacobs, D.S.; Kunz, T.H.; Willig, M.R.; Racey, P.A. Carpe noctem: The importance of bats as bioindicators. Endanger. Species Res. 2009, 8, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Fenton, M.B.; Acharya, L.; Audet, D.; Hickey, M.B.C.; Memiman, C.; Adkins, B. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the neotropics. Biotropica 1992, 24, 440–446. [Google Scholar] [CrossRef]
- Medellín, R.A.; Equihua, M.; Amin, M.A. Bat diversity and abundance as indicators of disturbance in neotropical rainforest. Conserv. Biol. 2000, 14, 1666–1675. [Google Scholar] [CrossRef]
- Moreno, C.E.; Halffter, G. Spatial and temporal analysis of α, β and γ diversities of bats in a fragmented landscape. Biodivers. Conserv. 2001, 10, 367–382. [Google Scholar] [CrossRef]
- Clarke, F.M.; Rostant, L.V.; Racey, P.A. Life after logging: Post-logging recovery of a neotropical bat community. J. Appl. Ecol. 2005, 42, 409–420. [Google Scholar] [CrossRef]
- Sherwin, H.A.; Montgomery, W.I.; Lundy, M.G. The impact and implications of climate change for bats. Mamm. Rev. 2013, 43, 171–182. [Google Scholar] [CrossRef]
- Ramírez-Mejía, A.F.; Urbina-Cardona, J.N.; Sánchez, F. Functional diversity of phyllostomid bats in an urban–rural landscape: A scale-dependent analysis. Biotropica 2020, 52, 1168–1182. [Google Scholar] [CrossRef]
- Meschede, A.; Heller, K.-G. Ökologie und Schutz von Fledermäusen in Wäldern; Budesamt für Naturschutz: Bonn, Germany, 2000; ISBN 9783784336053. [Google Scholar]
- Kaňuch, P.; Danko, Š.; Celuch, M.; Krištín, A.; Pjenčák, P.; Matis, Š.; Šmídt, J. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mamm. Biol. 2008, 73, 147–155. [Google Scholar] [CrossRef]
- Patriquin, K.J.; Barclay, R.M.R. Foraging by bats in cleared, thinned and unharvested boreal forest. J. Appl. Ecol. 2003, 40, 646–657. [Google Scholar] [CrossRef]
- Lacki, M.J.; Baker, M.D. Foraging Ecology of Bats in Forests. In Bats in Forests: Conservation and Management; Lacki, M.J., Hayes, J.P., Kurta, A., Eds.; The Johns Hopkins University Press: Baltimore, MD, USA, 2007; pp. 83–127. ISBN 978-0801884993. [Google Scholar]
- Ruczyński, I. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and eisler’s bats (N. leisleri) in Białowieża Primeval Forest, Poland. Can. J. Zool. 2006, 84, 900–907. [Google Scholar] [CrossRef]
- Dietz, M.; Brombacher, M.; Erasmy, M.; Fenchuk, V.; Simon, O. Bat community and roost site selection of tree-dwelling bats in a well-preserved European lowland forest. Acta Chiropterol. 2018, 20, 117–127. [Google Scholar] [CrossRef]
- Vasko, V.; Blomberg, A.S.; Vesterinen, E.J.; Suominen, K.M.; Ruokolainen, L.; Brommer, J.E.; Norrdahl, K.; Niemelä, P.; Laine, V.N.; Selonen, V.; et al. Within-season changes in habitat use of forest-dwelling boreal bats. Ecol. Evol. 2020, 10, 4164–4174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretzsch, H.; Hilmers, T.; Biber, P.; Avdagić, A.; Binder, F.; Bončina, A.; Bosela, M.; Dobor, L.; Forrester, D.I.; Lévesque, M.; et al. Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries. Can. J. For. Res. 2020, 50, 689–703. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Bulušek, D.; Šimůnek, V.; Hájek, V.; Králíček, I. Mixed vs. monospecific mountain forests in response to climate change: Structural and growth perspectives of Norway spruce and European beech. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Tudoran, G.-M.; Cicșa, A.; Boroeanu, M.; Dobre, A.-C.; Pascu, I.-S. Forest dynamics after five decades of management in the Romanian Carpathians. Forests 2021, 12, 783. [Google Scholar] [CrossRef]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016; pp. 114–116. [Google Scholar]
- Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. Manag. 2004, 202, 67–82. [Google Scholar] [CrossRef]
- Synek, M.; Janda, P.; Mikoláš, M.; Nagel, T.A.; Schurman, J.S.; Pettit, J.L.; Trotsiuk, V.; Morrissey, R.C.; Bače, R.; Čada, V.; et al. Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. For. Ecol. Manag. 2020, 457, 117734. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Mikoláš, M.; Svitok, M.; Bollmann, K.; Reif, J.; Bače, R.; Janda, P.; Trotsiuk, V.; Čada, V.; Vítková, L.; Teodosiu, M.; et al. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For. Ecol. Manag. 2017, 405, 210–218. [Google Scholar] [CrossRef]
- Szwagrzyk, J.; Bodziarczyk, J.; Pielech, R. The impact of wind and bark beetle outbreaks and protective measures on the vegetation of spruce forests in the Tatra National Park. Parki Nar. Rez. Przyr. 2019, 38, 57–68. [Google Scholar]
- Regnery, B.; Couvet, D.; Kubarek, L.; Julien, J.F.; Kerbiriou, C. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. Ecol. Indic. 2013, 34, 221–230. [Google Scholar] [CrossRef]
- Kotowska, D.; Zegarek, M.; Osojca, G.; Satory, A.; Pärt, T.; Żmihorski, M. Spatial patterns of bat diversity overlap with woodpecker abundance. PeerJ 2020, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rachwald, A.; Boratyński, J.S.; Krawczyk, J.; Szurlej, M.; Nowakowski, W.K. Natural and anthropogenic factors influencing the bat community in commercial tree stands in a temperate lowland forest of natural origin (Białowieża Forest). For. Ecol. Manag. 2021, 479, 118544. [Google Scholar] [CrossRef]
- Barclay, R.M.R.; Kurta, A. Ecology and behavior of bats roosting in tree cavities and under bark. In Bats in Forests: Conservation and Management; Lacki, M.J., Hayes, J.P., Kurta, A., Eds.; The Johns Hopkins University Press: Baltimore, MD, USA, 2007; pp. 17–60. ISBN 978-0801884993. [Google Scholar]
- Russo, D.; Cistrone, L.; Budinski, I.; Console, G.; Della Corte, M.; Milighetti, C.; Di Salvo, I.; Nardone, V.; Brigham, R.M.; Ancillotto, L. Sociality influences thermoregulation and roost switching in a forest bat using ephemeral roosts. Ecol. Evol. 2017, 7, 5310–5321. [Google Scholar] [CrossRef] [PubMed]
- Jaberg, C.; Guisan, A. Modeling the distribution of bats in relation to landscape structure in a temperate mountain environment. J. Appl. Ecol. 2001, 38, 1169–1181. [Google Scholar] [CrossRef]
- McCain, C.M. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob. Ecol. Biogeogr. 2007, 16, 1–13. [Google Scholar] [CrossRef]
- Grindal, S.D.; Morissette, J.L.; Brigham, R.M. Concentration of bat activity in riparian habitats over an elevational gradient. Can. J. Zool. 1999, 77, 972–977. [Google Scholar] [CrossRef]
- Erickson, J.L.; Adams, M.J. A comparison of bat activity at low and high elevations in the Black Hills of western Washington. Northwest Sci. 2003, 77, 126–130. [Google Scholar]
- Holzhaider, J.; Kriner, E.; Rudolph, B.U.; Zahn, A. Radio-tracking a Lesser horseshoe bat (Rhinolophus hipposideros) in Bavaria: An experiment to locate roosts and foraging sites. Myotis 2002, 40, 47–54. [Google Scholar]
- Kaňuch, P.; Krištín, A. Altitudinal distribution of bats in the Pol’ana Mts area (Central Slovakia). Biologia 2006, 61, 605–610. [Google Scholar] [CrossRef]
- Nardone, V.; Cistrone, L.; Di Salvo, I.; Ariano, A.; Migliozzi, A.; Allegrini, C.; Ancillotto, L.; Fulco, A.; Russo, D. How to be a male at different elevations: Ecology of intra-sexual segregation in the trawling bat Myotis daubentonii. PLoS ONE 2015, 10, e0134573. [Google Scholar] [CrossRef] [Green Version]
- Mirek, Z. The Tatra Mountains and the Tatra National park—General information. In Nature of the Tatra National Park; Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H., Eds.; TPN: Kraków, Poland, 1996; pp. 17–26. ISBN 83-85832-08-4. [Google Scholar]
- Mirek, Z.; Piekos-Mirkowa, H. Flora and vegetation of the Polish Tatra Mountains. Mt. Res. Dev. 1992, 12, 147–173. [Google Scholar] [CrossRef]
- Fabijanowski, J.; Dziewolski, J. Forest management. In Nature of the Tatra National Park; Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H., Eds.; TPN: Kraków, Poland, 1996; pp. 675–696. ISBN 83-85832-08-4. [Google Scholar]
- Sproull, G.J.; Bukowski, M.; McNutt, N.; Zwijacz-Kozica, T.; Szwagrzyk, J. Landscape-level spruce mortality patterns and topographic forecasters of bark beetle outbreaks in managed and unmanaged forests of the Tatra Mountains. Polish J. Ecol. 2017, 65, 24–37. [Google Scholar] [CrossRef]
- Bodziarczyk, J.; Szwagrzyk, J.; Zwijacz-Kozica, T.; Zięba, A.; Szewczyk, J.; Gazda, A. The structure of forest stands in the Tatra National Park: The results of 2016–2017 inventory. For. Res. Pap. 2019, 80, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ochtyra, A. Forest disturbances in Polish Tatra Mountains for 1985-2016 in relation to topography, stand features, and protection zone. Forests 2020, 11, 579. [Google Scholar] [CrossRef]
- Mehr, M.; Brandl, R.; Hothorn, T.; Dziock, F.; Förster, B.; Müller, J. Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mamm. Biol. 2011, 76, 451–460. [Google Scholar] [CrossRef]
- Ciechanowski, M. Habitat preferences of bats in anthropogenically altered, mosaic landscapes of northern Poland. Eur. J. Wildl. Res. 2015, 61, 415–428. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Jost, L. Partitioning diversity into independent alpha beta concepts. Ecology 2007, 88, 2427–2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 2–9. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Sachanowicz, K.; Wower, A. Assemblage structure and use of anthropogenic roosts by bats in the Eastern Carpathians: Case study in the Bieszczady National Park (SE Poland). Ital. J. Zool. 2013, 80, 139–148. [Google Scholar] [CrossRef]
- Vlaschenko, A.; Kravchenko, K.; Prylutska, A.; Ivancheva, E.; Sitnikova, E.; Mishin, A. Structure of summer bat assemblages in forests in European Russia. Turkish J. Zool. 2016, 40, 876–893. [Google Scholar] [CrossRef]
- Wermundsen, T.; Siivonen, Y. Foraging habitats of bats in southern Finland. Acta Theriol. 2008, 53, 229–240. [Google Scholar] [CrossRef]
- Piksa, K.; Bogdanowicz, W.; Tereba, A. Swarming of bats at different elevations in the Carpathian Mountains. Acta Chiropterol. 2011, 13, 113–122. [Google Scholar] [CrossRef]
- Piksa, K.; Nowak, J. The bat fauna hibernating in the caves of the Polish Tatra Mountains, and its long-term changes. Cent. Eur. J. Biol. 2013, 8, 448–460. [Google Scholar] [CrossRef]
- Buckley, D.J.; Lundy, M.G.; Boston, E.S.M.; Scott, D.D.; Gager, Y.; Prodöhl, P.; Marnell, F.; Montgomery, W.I.; Teeling, E.C. The spatial ecology of the whiskered bat (Myotis mystacinus) at the western extreme of its range provides evidence of regional adaptation. Mamm. Biol. 2013, 78, 198–204. [Google Scholar] [CrossRef]
- Taake, K. Strukturelle unt erschiedezwischen den sommerhabitaten von kleiner und grosser Bartfledermaus Myotis mystacinus und Myotis brandtii in Westfalen. Nyctalus 1984, 2, 16–32. [Google Scholar]
- Piksa, K.; Brzuskowski, T.; Cichocki, J.; Gubała, W.J. Species diversity of bats Chiroptera in the Tatra National Park during the summer activity period. Chrońmy Przyr. Ojcz. 2017, 73, 121–134. [Google Scholar]
- Kurek, K.; Gewartowska, O.; Tołkacz, K.; Jędrzejewska, B.; Mysłajek, R.W. Home range size, habitat selection and roost use by the whiskered bat (Myotis mystacinus) in human-dominated montane landscapes. PLoS ONE 2020, 15, e0237243. [Google Scholar] [CrossRef] [PubMed]
- Piksa, K.; Nowak, J.; Zmihorski, M.; Bogdanowicz, W. Nonlinear distribution pattern of hibernating bats in caves along an elevational gradient in mountain (Carpathians, Southern Poland). PLoS ONE 2013, 8, e68066. [Google Scholar] [CrossRef] [Green Version]
- Piksa, K.; Wołoszyn, B.W. The postglacial bat remains from the Polish Tatra caves. Lynx 2001, 32, 301–311. [Google Scholar]
- De Jong, J. Habitat use, home-range and activity pattern of the northern bat, Eptesicus nilssoni, in a hemiboreal coniferous forest. Mammalia 1994, 58, 535–548. [Google Scholar] [CrossRef]
- Pandurska, R. Altitudinal distribution of bats in Bulgaria. Myotis 1996, 34, 45–50. [Google Scholar]
- Rebelo, H.; Tarroso, P.; Jones, G. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Chang. Biol. 2010, 16, 561–576. [Google Scholar] [CrossRef]
- Rydell, J.; Elfström, M.; Eklöf, J.; Sánchez-Navarro, S. Dramatic decline of northern bat Eptesicus nilssonii in Sweden over 30 years. R. Soc. Open Sci. 2020, 7, 191754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, D.; Sagot, F. Les Chiroptères de la haute vallée d’Ossau (Pyrénées occidentales): Résultats des recherché estivales 1985–1986–1987. Doc. D’écol. Pyrénéenne 1988, 5, 173–196. [Google Scholar]
- Rehak, Z. Areal and altitudinal distribution of bats in the Czech part of the Carpathians (Chiroptera). Lynx 2006, 37, 179–205. [Google Scholar]
- Froidevaux, J.S.; Barbaro, L.; Vinet, O.; Larrieu, L.; Bas, Y.; Molina, J.; Calatayud, F.; Brin, A. Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure. Sci. Rep. 2021, 11, 10586. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Jones, G. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: Conservation implications. Ecography 2003, 26, 197–209. [Google Scholar] [CrossRef]
- Bütler, R.; Angelstam, P.; Ekelund, P.; Schlaepfer, R. Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biol. Conserv. 2004, 119, 305–318. [Google Scholar] [CrossRef]
- Basile, M.; Asbeck, T.; Jonker, M.; Knuff, A.K.; Bauhus, J.; Braunisch, V.; Mikusiński, G.; Storch, I. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects? J. Environ. Manag. 2020, 264, 110401. [Google Scholar] [CrossRef]
- Martin, K.; Aitken, K.E.H.; Wiebe, K.L. Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: Nest characteristics and niche partitioning. Condor 2004, 106, 5–19. [Google Scholar] [CrossRef]
- Kusch, J.; Weber, C.; Idelberger, S.; Koob, T. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zool. 2004, 53, 113–128. [Google Scholar]
- Randall, L.A.; Barclay, R.M.; Reid, M.L.; Jung, T.S. Recent infestation of forest stands by spruce beetles does not predict habitat use by little brown bats (Myotis lucifugus) in southwestern Yukon, Canada. For. Ecol. Manag. 2011, 261, 1950–1956. [Google Scholar] [CrossRef]
- Lawson, K.J.; Lausen, C.L.; Mancuso, K.A.; Volkmann, L.A.; Gooliaff, T.J.; Hutchen, J.; Teichman, K.J.; Kelly, A.J.; Hodges, K.E. Bat activity and richness in beetle-killed forests in southern British Columbia. J. Mammal. 2019, 100, 510–517. [Google Scholar] [CrossRef]
- Baagøe, H.J. The Scandinavian bat fauna: Adaptive wing morphology, and free flight in the field. In Recent Advances in the Study of Bats; Fenton, M.B., Racey, P.A., Rayner, J.M., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 57–74. ISBN 0521321603. [Google Scholar]
- Entwistle, A.G. Habitat exploitation by a gleaning bat, Plecotus auritus. Philos. Trans. R. Soc. B Biol. Sci. 1996, 351, 921–931. [Google Scholar] [CrossRef]
- Russ, J. The Bats of Britain and Ireland, Echolocation Calls, Sound Analysis and Species Identification; Alana Ecology Ltd.: London, UK, 1999. [Google Scholar]
- Fenton, M.B.; Bogdanowicz, W. Relationships between external morphology and foraging behaviour: Bats in the genus Myotis. Can. J. Zool. 2002, 80, 1004–1013. [Google Scholar] [CrossRef]
- Erasmy, M.; Leuschner, C.; Balkenhol, N.; Dietz, M. Shed light in the dark–How do natural canopy gaps influence temperate bat diversity and activity? For. Ecol. Manag. 2021, 497, 119509. [Google Scholar] [CrossRef]
- Müller, J.; Mehr, M.; Bässler, C.; Fenton, M.B.; Hothorn, T.; Pretzsch, H.; Klemmt, H.J.; Brandl, R. Aggregative response in bats: Prey abundance versus habitat. Oecologia 2012, 69, 673–684. [Google Scholar] [CrossRef]
- Chen, J.; Franklin, J.F.; Spies, T.A. Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric. For. Meteorol. 1993, 63, 219–237. [Google Scholar] [CrossRef]
- Lewis, T.; Dibley, G.C. Air movement near windbreaks and a hypothesis of the mechanism of the accumulation of airborne insects. Ann. Appl. Biol. 1970, 66, 477–484. [Google Scholar] [CrossRef]
- Zimmerman, G.S.; Glanz, W.E. Habitat use by bats in Eastern Maine. J. Wildl. Manag. 2000, 64, 1032–1040. [Google Scholar] [CrossRef]
- Flaquer, C.; Torre, I.; Arrizabalaga, A. Comparison of sampling methods for inventory of bat communities. J. Mammal. 2007, 88, 526–533. [Google Scholar] [CrossRef]
- Russo, D. Elevation affects the distribution of the two sexes in daubenton’s bats Myotis daubentonii (Chiroptera: Vespertilionidae) from Italy. Mammalia 2002, 66, 543–551. [Google Scholar] [CrossRef]
- Mcguire, L.P.; Boyle, W.A. Altitudinal migration in bats: Evidence, patterns, and drivers. Biol. Rev. 2013, 88, 767–786. [Google Scholar] [CrossRef]
- Senior, P.; Butlin, R.K.; Altringham, J.D. Sex and segregation in temperate bats. Proc. R. Soc. B Biol. Sci. 2005, 272, 2467–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audet, D. Foraging behavior and habitat use by a gleaning bat, Myotis myotis (Chiroptera: Vespertilionidae). J. Mammal. 1990, 71, 420–427. [Google Scholar] [CrossRef]
- Drescher, C. Radiotracking of Myotis myotis (Chiroptera, Vespertilionidae) in South Tyrol and implications for its conservation. Mammalia 2004, 68, 387–395. [Google Scholar] [CrossRef]
- Mackie, I.J.; Racey, P.A. Habitat use varies with reproductive state in noctule bats (Nyctalus noctula): Implications for conservation. Biol. Conserv. 2007, 140, 70–77. [Google Scholar] [CrossRef]
- Cichocki, J.; Lupicki, D. Distribution of noctule bat Nyctalus noctula (Schreber, 1774) in the Polish Tatra Mts. Chrońmy Przyr. Ojcz. 2007, 63, 3–12. [Google Scholar]
- Loeb, S.C.; O’Keefe, J.M. Habitat use by forest bats in South Carolina in relation to local, stand, and landscape characteristics. J. Wildl. Manag. 2003, 70, 1210–1278. [Google Scholar] [CrossRef]
No. | Species | Female | Male | Total (Sex Ratio) | Status (Zone) | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
1 | Myotis myotis | 25 | 26 | 51 (0.51) NS | + | |
2 | M. bechsteinii | 1 | 7 | 8 (0.88) | + | + |
3 | M. nattereri | 4 | 4 (1) | − | ||
4 | M. emarginatus | 2 | 2 (1) | − | ||
5 | M. brandtii | 45 | 115 | 161 (0.71) * | + | + |
6 | M. mystacinus | 126 | 269 | 351 (0.77) * | + | + |
7 | M. alcathoe | 2 | 2 (1) | − | ||
8 | M. daubentonii | 4 | 4 (1) | + | − | |
9 | Eptesicus nilssonii | 4 | 8 | 12 (0.67) | + | + |
10 | Vespertilio murinus | 6 | 6 (1) | − | − | |
11 | Nyctalus noctula | 6 | 4 | 10 (0.4) NS | + | − |
12 | Pipistrellus pipistrellus | 3 | 3 | 6 (0.5) | + | |
13 | Pipistrellus nathusii | 1 | 1 (0) | − | ||
14 | Plecotus auritus | 13 | 69 | 83 (0.83) * | + | + |
15 | Barbastella barbastellus | 1 | 1 (1) | − | ||
Total | 224 | 520 | 745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piksa, K.; Brzuskowski, T.; Zwijacz-Kozica, T. Distribution, Dominance Structure, Species Richness, and Diversity of Bats in Disturbed and Undisturbed Temperate Mountain Forests. Forests 2022, 13, 56. https://doi.org/10.3390/f13010056
Piksa K, Brzuskowski T, Zwijacz-Kozica T. Distribution, Dominance Structure, Species Richness, and Diversity of Bats in Disturbed and Undisturbed Temperate Mountain Forests. Forests. 2022; 13(1):56. https://doi.org/10.3390/f13010056
Chicago/Turabian StylePiksa, Krzysztof, Tomasz Brzuskowski, and Tomasz Zwijacz-Kozica. 2022. "Distribution, Dominance Structure, Species Richness, and Diversity of Bats in Disturbed and Undisturbed Temperate Mountain Forests" Forests 13, no. 1: 56. https://doi.org/10.3390/f13010056
APA StylePiksa, K., Brzuskowski, T., & Zwijacz-Kozica, T. (2022). Distribution, Dominance Structure, Species Richness, and Diversity of Bats in Disturbed and Undisturbed Temperate Mountain Forests. Forests, 13(1), 56. https://doi.org/10.3390/f13010056