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Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129,
165 00 Prague, Czech Republic; sedlecky@fld.czu.cz (M.S.); sikoraa@fld.czu.cz (A.S.);
prokupkovaa@fld.czu.cz (A.P.); modlinger@fld.czu.cz (R.M.); novotnykarel@fld.czu.cz (K.N.);
turcani@fld.czu.cz (M.T.)
* Correspondence: lowe@fld.czu.cz; Tel.: +420-224-383-756

Abstract: Since 2014, forestry in the Czech Republic has been significantly affected by a bark beetle
outbreak. The volume of infested trees has exceeded processing capacity and dead standing spruce
(Picea abies) remain in the forest stands, even for several years. What should be done with this bark
beetle wood? Is it necessary to harvest it in order to preserve the basic mechanical and physical
properties? Is it possible to store it under standard conditions, or what happens to it when it is
“stored” upright in the forest? These are issues that interested forest owners when wood prices were
falling to a minimum (i.e., in 2018–2019) but also today, when the prices of quality wood in Central
European conditions are rising sharply. To answer these questions, we found out how some of the
mechanical properties of wood change in dead, bark beetle-infested trees. Five groups of spruce
wood were harvested. Each of these groups was left upright in the forest for a specified period of
time after bark beetle infestation, and one group was classified as a reference group (uninfested trees).
Subsequently, we discovered what changes occurred in tensile and compressive strength depending
on the time left in the stand and the distance from the center of the trunk. When selecting samples,
we eliminated differences between individual trees using a CT scanning technique, which allowed
us to separate samples, especially with different widths of annual rings and other variations that
were not caused by bark beetle. The results showed the effect of log age and radial position in the
trunk on tensile and compressive strength. The values for tensile strength in 3-year infested trees
decreased compared to uninfested trees by 14% (from 93.815 MPa to 80.709 MPa); the values for
compressive strength then decreased between the same samples by up to 25.6% (from 46.144 MPa to
34.318 MPa). A significant decrease in values for compressive strength was observed in the edges of
the trunks, with 44.332 MPa measured in uninfested trees and only 29.750 MPa in 3-year infested
trees (a decrease of 32.9%). The results suggest that the use of central timber from bark beetle-infested
trees without the presence of moulds and fungi should not be problematic for construction purposes.

Keywords: Norway spruce; bark beetle outbreak; wood quality; wood properties; dead wood

1. Introduction

Bark beetle outbreaks are a central factor that lead to extensive changes in the struc-
ture, function, and composition of forest ecosystems [1,2]. In recent decades, bark beetle
outbreaks have intensified globally, which also affects forestry economics and human
well-being [3]. Forests and forestry in the Czech Republic have been facing a bark beetle
outbreak of unprecedented magnitude since 2014. Hlásny et al. [3] maps in detail the
reasons that led to this calamity. One of the reasons is that, for commercial reasons, Czech
forestry grew high-quality, productive spruce stands on 55% of the forest area. Successive
dry and warm years as a result of increasing climate change have made spruce stands
growing outside their optimal distribution range highly threatened and attractive for bark
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beetle infestation. This situation quickly grew from a local problem in Central Moravia
into a national outbreak, which significantly affected wood prices. The Czech Ministry of
Agriculture relaxed conditions for processing trees infested with bark beetles, which had to
be harvested under the original regulations, and thus several million m3 of dead spruces
remained in forest stands [3,4]. Nevertheless, in 2020, 32.3 million m3 of spruce wood was
harvested in Czechia [5]. Within Central Europe, the Czech wood market is not alone; sales
problems associated with the bark beetle outbreak have been recorded throughout Central
Europe, which has exacerbated this unfavourable situation [3,4]. Smaller forest owners
were often forced to harvest all their spruce wood and sell it under unfavourable conditions.
In some cases, their financial situation did not even allow them to harvest the infested
spruces. Large producers, such as state forests, lacked the processing capacity, so these
owners sought to harvest freshly infested spruces on the edges of outbreak areas as a matter
of priority in order to at least partially slow down the outbreak. As early as 2018, spruces
killed by bark beetle started appearing in forest stands, and in some cases have remained
there until now. In 2018 and 2019, these dead trees were sold essentially at production
costs as bark beetle wood, of which there was a huge surplus on the market at that time.
However, the rise in wood prices, which was recorded in Central Europe at the beginning
of 2021, and which is still ongoing, raises the question of whether these standing dead bark
beetle trees could not be used for purposes better than, for example, wood chip production.
Profit from the sale of wood is the primary source of income in forestry. Therefore, it is
necessary to not only determine its volume as accurately as possible [6], but also to know its
quality [7]. From a political and economic point of view, such a strategy would also make it
possible to obtain funding for afforestation of outbreak areas and subsequent management
of these stands.

Spruce bark beetles colonize stressed and dying trees when their populations are
low. However, if their population is high, then they also massively attack large numbers
of healthy trees [4]. Bark beetle-infested trees may subsequently show a different wood
quality from healthy trees. The wood quality can thus be different, especially with regard to
its structure, physical properties, and mechanical properties. Several studies have already
addressed this issue [8–12]; however, the scientific literature has not yet answered all
the questions related to the properties of wood from bark beetle-infested trees. Current
scientific findings have been summarized in a review article by Hýsek et al. [7]. If we focus
on the mechanical properties of spruce wood infested with bark beetles, their change was
monitored mainly in the longer term (several years) and was caused mainly indirectly
(by fungal activity) [8]. Jelonek et al. [8] state that spruce stands that are dead as a result
of bark beetle infestation and, secondarily, ophiostomatoid fungi, pose a risk to people
after 3 or more years. The authors also recommended that wood from these spruces be
used in industry for construction purposes no later than the first or second year after bark
beetle infestation. However, in the case of wood thus used, it is always necessary to keep
in mind that it most likely contains fungal spores and hyphae [12], which can activate
in the wooden structure at any time and start growing if they have suitable humidity
conditions. However, it is clear that the above conclusions and recommendations of the
authors cannot be generally valid because the time period when the wood properties of
dead bark beetle-infested trees do not change compared to normal wood tree properties
depends on the tree species, specific site factors, and season [7].

In this study, we accordingly focused on the description of the mechanical properties
of bark beetle-infested spruces under specific local climatic conditions in a selected area of
the Czech Republic, which was massively affected by the bark beetle outbreak 4 years ago.
It is the Czech Republic that has recently become the epicentre of Europe’s spruce bark
beetle outbreak [3]. The aim of this study was to determine how the selected mechanical
properties of wood (tensile and compressive strength) differ between spruces dead after
bark beetle infestation and left in the forest stand upright for different lengths of time.
This information is essential for foresters managing the affected forests when planning
the processing or non-processing of infested trees, considering the possibilities of using
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this wood, and formulating the subsequent business strategy. With unchanged properties,
more valuable assortments can be produced from infested trees, which will bring higher
economic value to forest owners affected by bark beetle outbreaks.

2. Materials and Methods
2.1. Materials

In a forest stand near Huntířov (Děčínsko, Ustí nad Labem Region, Czechia: 50.7930 N;
14.2897 E), four groups of standing spruces (Picea abies) that had died after infestation by
the European spruce bark beetle (Ips typographus) were selected. Each group formed a
continuous part of the stand, which was infested with the bark beetle and had died within
the same period of time. Individual groups of trees were left in the stand for 1/2 year,
1 year, 2 years, and 3 years. From each group of equally old dry trees, five trees were
randomly selected, and five living trees were randomly selected in the same stand. A
rhizome piece about 1 metre above the ground with a length of 1.4 m was cut from selected
trees. The diameter of the trees was about 40 cm. Out of the selected 25 trunks, there was
a further reduction so that one trunk remained from each group that was most similar
in density and annual rings (Age of Log; Table 1). To avoid skewing of the results, the
trunks and subsequent samples were handled so that differences in their annual ring
width, age, proportion of earlywood and latewood, etc., were as minimal as possible. A
CT scanning device was used to select the samples, thus making it possible to reduce
the above-mentioned differences to a minimum. A Siemens medical CT scanning device,
which is primarily intended for medicine, was used. Cutouts of the specified length were
scanned. The samples themselves were subsequently prepared according to standards
ČSN 490110 and 49 0113 for measuring compressive and tensile strength [13,14]. Sample
production took place immediately after felling. The prepared samples were placed in an
air-conditioned chamber to ensure constant conditions (65% relative humidity and 20 ◦C).
The descriptions and sampling are given in Table 1 and shown in Figure 1.

Table 1. Marking of Samples.

Age of Log (Years) Log Number Distance from Center

0; 0.5; 1; 2; 3 1; 2; 3; 4; 5 1; 2; 3; 4; 5
Key: Age of Log—0—living tree; 0.5—infested in summer 2020; 1—infested in spring 2020; 2—infested in spring
2019; 3—infested in spring 2018.
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Figure 2 shows the differences in a living tree compared with infested trees. The
living tree is visibly without circumferential cracks and shows a clear distinction between
heartwood and sapwood. In infested trees that had been left standing in the forest, cracks
are visible; the older the tree, the more and larger the cracks. Furthermore, on the infested
trees, we observed a different colour at the border of heartwood and sapwood. Different
colours indicate different densities and associated humidity in the area [15]. CT scanning
helped us to eliminate obvious differences between samples so that the results were not
skewed. CT substrates were evaluated optically from CT outputs to exclude parts of the
trunks with detectable deviations and wood disturbance, as this selection would have been
performed at a sawmill. The influence of the width of annual rings, the ratio between
earlywood and latewood, wood density, the occurrence of rot, spores and hyphae of fungi,
and similar factors have a major impact on the resulting mechanical properties of the
wood [8,12,16–19].
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2.2. Methods
2.2.1. Determining Selected Characteristics

Tensile and compressive tests were performed according to predetermined condi-
tions. The tests were performed on a universal testing machine (FPZ 100, TIRA, Schalkau,
Germany), according to [13,14]. The test samples for the pressure test had the shape of a
rectangular prism with a cross-section of 20 mm × 20 mm and a height of 30 mm. Tensile
test specimens were made of blanks with a cross-section of 20 mm × 20 mm and a length
of 350 mm; each blank was machined according to Figure 3. To adhere to the duration limit
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for the individual tests (60 ± 30 s for the compressive test and 105 ±15 s for the tensile test),
the top support feed rate was set accordingly. Maximal force at breaking point was used
for calculation of compressive and tensile strength. The deflections of loaded test samples
were measured using an ALMEMO 2690-8 datalogger (Ahlborn GmbH, Braunschweig,
Germany).
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2.2.2. Evaluation and Calculation of Tensile and Compressive Strength

The tensile strength of the wood along the fibres was calculated according to the
standard [14] using Equation (1).

σt max =
Fmax

ab
(1)

where σt max is the maximal strength in tension along wood fibre (MPa), a is width of the
working part of the test sample (mm), and b is thickness of the working part of the test
sample (mm).

The compressive strength of the wood along the fibres was calculated according to the
standard [13] using Equation (2).

σc max =
Fmax

ab
(2)

where σc max is the maximal strength in compression along wood fibre (MPa), a is the width
of the test sample (mm), and b is the thickness of the test sample (mm).

Before evaluating the data by analysis of variance (ANOVA), the normality of the
data was verified by the Shapiro–Wilk test on the residues of the linear model. Due to the
confirmation of the normality of the data distribution (Gaussian distribution), the Bartlett
test was used to determine the agreement of the variances; the agreement of the variances
was not confirmed, and therefore, a modified ANOVA for unequal variances was used [20].
Duncan’s test was also used for deeper analysis to compare all sets of test specimens. The
test could be used because a statistically significant difference in ANOVA evaluation was
confirmed. The results were evaluated using a 95% confidence interval. STATISTICA 13
software (TIBCO Software Inc., Palo Alto, CA, USA) was used for statistical data evaluation.

3. Results and Discussion

The mechanical properties of wood are always dependent on many factors [21], one of
the most important being density. Table 2 shows that variability between densities between
groups in terms of age of log and position in the trunk is not very significant. The influence
of density on given mechanical properties is reported in research [22]: the compressive
strength increases with increasing density. Additionally, based on research [23], we can
say that we can largely predict the strength characteristics of wood according to its density.
Density was measured on all samples and then averaged over each group.
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Table 2. Average density values for individual groups according to age of log and position.

Age of Log Density
(kg·m−3)

Standard
Deviation Position Density

(kg·m−3)
Standard
Deviation

0 486.15 25.18 1 471.64 22.57
0.5 472.58 19.39 2 473.92 27.47
1 465.32 24.84 3 483.38 25.31
2 447.27 22.78 4 466.37 20.18
3 452.02 20.63 5 456.29 25.32

Statistical evaluation using ANOVA and Duncan tests (Table 3; Figure 4) shows a clear
course of change in the monitored mechanical properties of infested wood. The highest
values were measured for an uninfected tree that was selected as a reference value (0). The
values for the summer 2020 sample (0.5) did not show statistically significant differences
from the reference value. For the other “older” trees, a statistically significant difference
from the reference value was confirmed, and the tensile strength values were lower. It
showed that the longer the trunk is left standing dead in the forest, the lower the value for
wood density. The decrease in values from reference value for trunks stored since spring
2018 was 14%. This decrease could be partly due to a decrease in density between the
mentioned samples [24], but also to the climatic stress that caused the trees to die before
they were cut. The dead trees were climate-dried, and this effect of uncontrolled drying
can cause cracks, as also confirmed by research on the effects of climate on the rate of wood
mass drying [9,25].
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Table 3. Statistical evaluation of the effect of log age (AoL) on tensile strength using Duncan’s test.

σt Max (MPa) (1) 93.815 (2) 93.437 (3) 83.687 (4) 81.749 (5) 80.709 N

Number (AoL)

1 0 - 0.920 0.009 0.002 0.001 67
2 0.5 0.920 - 0.009 0.002 0.001 66
3 1 0.009 0.009 - 0.604 0.456 68
4 2 0.002 0.002 0.604 - 0.781 70
5 3 0.001 0.001 0.456 0.781 - 77

σt max—tensile strength of the wood along the fibres.

When evaluating the effect of distance from the center of the trunk on tensile strength,
which is shown in Table 4 and Figure 5, no statistically significant difference was found
in areas 1–4. A very significant statistical difference was only shown in area 5, which was
furthest from the center of the trunk. In this outer wood layer, the tensile strength values
decreased by 22.9%. This decrease was mainly due to cracks caused by drying and micro-
cracks in the circumferential sections. This phenomenon is caused by the uncontrolled
drying of a dead tree. The effect of drying is very important for the quality of timber and
affects its mechanical properties as well [26].
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Table 4. Statistical evaluation of the effect of distance from center (DfC) on tensile strength using
Duncan’s test.

σt Max (MPa) (1) 92.177 (2) 94.791 (3) 90.840 (4) 87.535 (5) 71.096 N

Number DfC

1 1 - 0.492 0.725 0.253 0.000 50
2 2 0.492 - 0.331 0.082 0.000 57
3 3 0.725 0.331 - 0.385 0.000 82
4 4 0.253 0.082 0.385 - 0.000 80
5 5 0.000 0.000 0.000 0.000 - 79

σt max—tensile strength of the wood along the fibres.

The influence of the interaction of both factors on tensile strength is shown in Figure 6
as well as in Table 5. The tensile strength in the outer layer of the trunk is very low and
undergoes almost no change with the age of the trunk. In layers No. 4 and 3, there was a
decrease in the tensile strength at the age of about 1 year after bark beetle infestation. For
the middle wood layers (No. 2 and 1), the reduction in tensile strength was only significant
after 2 years.
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Table 5. ANOVA spreadsheet—Age of log and distance from center—influence on tensile strength.

No. Age of Log
(Years)

Distance
from Center

σt Max
(Mpa) Mean

σt Max (Mpa)
Std. Err.

σt Max (Mpa)
−Std. Err.

σt Max (Mpa)
+Std. Err. N

1 0 1 90.809 4.511 86.298 95.320 10
2 0 2 97.609 6.565 91.044 104.174 10
3 0 3 112.020 7.490 104.530 119.510 16
4 0 4 98.723 6.955 91.767 105.678 16
5 0 5 68.635 5.491 63.144 74.126 15

6 0.5 1 96.658 2.362 94.296 99.020 10
7 0.5 2 96.558 5.590 90.968 102.148 10
8 0.5 3 97.417 4.531 92.886 101.948 16
9 0.5 4 97.320 4.495 92.825 101.815 17
10 0.5 5 78.584 6.242 72.342 84.826 13

11 1 1 97.473 4.634 92.839 102.107 10
12 1 2 105.761 5.953 99.808 111.714 10
13 1 3 78.690 6.148 72.541 84.838 18
14 1 4 81.224 5.003 76.221 86.227 13
15 1 5 69.768 5.582 64.186 75.350 17

16 2 1 81.907 6.687 75.220 88.594 10
17 2 2 86.555 9.158 77.397 95.713 10
18 2 3 85.209 6.440 78.769 91.650 16
19 2 4 82.588 6.558 76.030 89.145 18
20 2 5 74.241 5.139 69.102 79.380 16

21 3 1 94.037 5.548 88.489 99.585 10
22 3 2 90.485 5.004 85.481 95.489 17
23 3 3 82.384 5.181 77.202 87.565 16
24 3 4 76.643 4.902 71.741 81.545 16
25 3 5 66.199 4.910 61.289 71.109 18

σt max—tensile strength of the wood along the fibres.

When evaluating the effect of the age of the log on compressive strength, a statistically
significant difference showed in all categories (Table 6). The highest values were measured
for the reference sample and the lowest for the oldest one. The highest decrease compared
to the reference group was up to 25.6%. This decrease was caused by several factors such
as density [23,27] and weathering [27,28], as well as uncontrolled drying. This stress can be
associated not only with the formation of cracks, but under certain climatic conditions also
the infestation of wood with fungi and the associated possible occurrence of rot [8,9,25,28]
(Figure 2). The influence of internal defects on compressive strength has also been proven
by research [27]. Figure 7 shows a clear difference between trees in age groups 0 and 3; the
others did not show such a clear trend of change in compressive strength. The compressive
strength values for categories 0.5, 1, and 2 were around 40 MPa, which was about 6 MPa
from the minimum and maximum.

Table 6. Statistical evaluation of the effect of log age (AoL) on compressive strength using Duncan´s
test.

σc Max (MPa) (1) 46.144 (2) 41.353 (3) 37.409 (4) 38.462 (5) 34.318 N

Number AoL

1 0 0.000 0.000 0.000 0.000 203
2 1 0.000 0.000 0.000 0.000 192
3 2 0.000 0.000 0.042 0.000 205
4 3 0.000 0.000 0.042 0.000 198
5 4 0.000 0.000 0.000 0.000 235

σc max—compressive strength of wood along the fibres.
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Figure 7. Statistical evaluation of the effect of log age on compressive strength using ANOVA.

Namely sections nearer the outer area showed a significant decrease in compressive
strength (Table 7; Figure 8). In other sections, a statistically significant difference was
demonstrated in some cases, but the values did not have an increased coefficient of variation;
in the case of anatomical differences in wood, these sections were relatively balanced. The
position of wood in the trunk with respect to its cross section is an important factor
influencing wood properties [28,29]. The importance of this factor is, therefore, amplified
in the case of bark beetle infestation.

Table 7. Statistical evaluation of the effect of distance from center (DfC) on compressive strength
using Duncan´s test.

σc Max (MPa) (1) 39.909 (2) 41.547 (3) 41.395 (4) 39.897 (5) 35.770 N

Number DfC

1 1 0.009 0.013 0.984 0.000 69
2 2 0.009 0.801 0.010 0.000 143
3 3 0.013 0.801 0.017 0.000 244
4 4 0.984 0.010 0.017 0.000 296
5 5 0.000 0.000 0.000 0.000 281

σc max—compressive strength of wood along the fibres.



Forests 2022, 13, 87 11 of 14

Forests 2022, 13, x FOR PEER REVIEW 11 of 15 
 

 

Table 7. Statistical evaluation of the effect of distance from center (DfC) on compressive strength 

using Duncan ś test. 
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ANOVA.

When evaluating the statistical significance of the interaction of the time factor and
the distance from the center of the trunk to compressive strength, a decrease in values with
increasing age of the trunk was also evident (Table 8, Figure 9). However, for samples
originating from individual distances from the center of the trunk, there was a statistically
significantly different direction in the trend of this decrease. Samples originating from
the center of the trunk (No. 1 and 2) exhibited a less downward trend, and, conversely,
samples originating from the outer part of the trunk showed a very steep decrease in values.
Due to the influence of radial position on mechanical properties, a number of studies have
addressed it and drawn clear conclusions. With increases in cambial age, the density of
early wood decreases, while latewood grows at first and does not change significantly.
Regarding some mechanical properties (tensile strength and modulus of elasticity), there
was an increase. The effect of density was then based primarily on changes in the width of
the annual ring and the proportion of early- and latewood [30–32].

Table 8. ANOVA spreadsheet—Age of log and distance from center—influence on compressive
strength.

No. Age of Log
(Years)

Distance
from Center

σc Max
(MPa) Mean

σc Max (MPa)
Std. Err.

σc Max (MPa)
−Std. Err.

σc Max (MPa)
+Std. Err. N

1 0 1 44.934 0.654 44.280 45.588 11
2 0 2 45.523 0.885 44.638 46.408 32
3 0 3 50.283 0.715 49.568 50.997 38
4 0 4 45.803 0.895 44.908 46.698 66
5 0 5 44.332 1.246 43.086 45.578 56
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Table 8. Cont.

No. Age of Log
(Years)

Distance
from Center

σc Max
(MPa) Mean

σc Max (MPa)
Std. Err.

σc Max (MPa)
−Std. Err.

σc Max (MPa)
+Std. Err. N

6 0.5 1 39.588 1.789 37.800 41.377 10
7 0.5 2 41.245 0.676 40.569 41.921 19
8 0.5 3 43.043 0.600 42.443 43.643 48
9 0.5 4 43.565 0.696 42.869 44.261 67
10 0.5 5 36.987 0.648 36.339 37.635 48

11 1 1 42.472 1.340 41.133 43.812 10
12 1 2 39.319 0.771 38.548 40.090 27
13 1 3 37.985 0.578 37.408 38.563 57
14 1 4 37.672 0.598 37.074 38.269 55
15 1 5 34.740 0.675 34.065 35.415 56

16 2 1 35.600 1.174 34.426 36.774 10
17 2 2 42.981 0.915 42.066 43.895 30
18 2 3 40.828 0.667 40.161 41.495 52
19 2 4 38.655 0.690 37.964 39.345 50
20 2 5 34.185 0.623 33.561 34.808 56

21 3 1 38.673 0.909 37.764 39.582 28
22 3 2 38.564 0.810 37.754 39.374 35
23 3 3 37.459 0.889 36.569 38.348 49
24 3 4 32.121 0.569 31.552 32.690 58
25 3 5 29.750 0.460 29.289 30.210 65

σc max—compressive strength of wood along the fibres.
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4. Conclusions

Based on the results obtained, it is possible to say that the longer the infested tree is
left standing in the forest, the more the compressive and tensile strength are negatively
affected. Research has shown statistically significant differences in the effect of age of log on
compressive and tensile strength. It was clear that the 3-year-old tree had the lowest values,
and conversely, the reference tree (not infested by bark beetle) had the highest values.

The distance from center of the trunk had a statistically significant effect on both the
compressive and tensile strength only in the case of the furthest section from the center
of the trunk compared to the other sections. This was mostly caused by cracks (Figure 2),
which were mainly in the circumferential sections.

The decrease in tensile strength had an abrupt character. In the outer layers, it occurred
1 year after bark beetle infestation, while the middle part was significantly affected after
2 years. Changes in compressive strength properties were gradual, and they were faster
near the trunk surface and slower at the center of the trunk.

Looking at the overall results, we can state that compressive and tensile strength were
affected both by the age of storing and distance from the center of the trunk, as well as by
the formation and density of cracks. This research suggests that the use of heartwood timber
without the presence of moulds and fungi should not be a problem. While maintaining the
required density and quality, this timber can also be used as a building material.
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the published version of the manuscript.
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