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Abstract: Spring frost is a major limiting factor in the production and cultivation of apricot kernels,
an ecological and economic dry-fruit tree in China. The frequent occurrence of spring frost often
coincides with the blooming period of apricot kernels, resulting in significant damage to floral organs
and reductions in yield. We investigated the molecular signature of pistils from two apricot kernel
cultivars with different frost-resistance levels using transcriptome data. A total of 3223 differently
expressed genes (DEGs) were found between two apricot kernel cultivars under freezing stress,
including the bHLH and AP2/ERF-ERF transcription factors. Based on KEGG analysis, DEGs were
mostly enriched in the biosynthesis of the secondary metabolites, in the metabolic pathways, and
in plant-hormone signal transduction. The co-expression network, which included 81 hub genes,
revealed that transcription factors, protein kinases, ubiquitin ligases, hormone components, and
Ca2+-related proteins coregulated the ROS-mediated freezing response. Moreover, gene interaction
relationships, such as ERF109-HMGCR1, ERF109-GRXC9, and bHLH13-JAZ8, were predicted. These
findings revealed the regulatory factors for differences in frost resistance between the two tested
apricot kernel cultivars and contributed to a deeper understanding of the comprehensive regulatory
program during freezing stress. Some of the hub genes identified in this work provide new choices
and directions for breeding apricot kernels with a high frost resistance.

Keywords: freezing stress; apricot kernel; transcriptome; transcription factors; ROS; regulatory
network

1. Introduction

Frost is a common meteorological disaster which refers to a sudden drop in the air and
surface temperature to below 0 ◦C. It has been recognized as a major threat to plant growth,
development, and agricultural and forestry productivity [1,2]. Since climate warming
has increased temperatures in early spring, perennial plants have become increasingly
vulnerable to lower temperatures due to phenological shifts, such as advanced flowering
time [3]. Spring frost has been shown to cause irreparable losses to vegetables, fruit trees,
and crops [4].

An apricot kernel, an apricot (Prunus armeniaca L.) plant with almonds as its main use,
is also a fresh fruit with a unique taste and mainly includes a big flat apricot (Armeniaca
vulgaris × sibirica) and Siberian apricot (Armeniaca sibirica L.). It is an important raw
material for the food and pharmaceutical industries and is mainly distributed in northern
China. Spring frost frequently occurs during their flowering time between late March and
mid-April [5]. Among the apricot flower organs, the freezing resistance of the pistils is
the weakest, followed by the stamen and petals [6]. Spring frost causes severe damage to
apricot kernels’ reproductive organs, resulting in significant yield loss [7]. Frost injury is
the main limiting factor in apricot kernel production.

Cold stress is an environmental stress that can be divided into chilling stress (0–15 ◦C)
and freezing stress (<0 ◦C) (e.g., spring frost) [8]. Plants that suffer from freezing stress have
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developed sophisticated cold-acclimation mechanisms that improve their freezing tolerance
upon exposure to nonlethal lower temperatures [9,10]. A series of cellular responses
and molecular strategies are initiated when a plant perceives freezing stress, such as
the production of ROS and osmolytes, and changes in the cytosolic Ca2+ concentration,
hormone content, and gene expression [10–12]. CBF genes, which are rapidly induced by
low temperatures, play central roles in cold acclimation. Many transcription factors (TFs)
(e.g., ICEs, CAMTAs, and MYB15) act as upstream regulators that regulate the expression
of CBFs [8,10]. Among them, ICE1, a bHLH TF, is the best-characterized transcriptional
activator of CBF genes [13]. Post-translational modifications, such as ubiquitination and
phosphorylation, are important for the function of ICE1 in cold tolerance. For example, the
protein kinases OST1 and MPK3/6 can phosphorylate ICE1, affecting its transcriptional
activity to regulate CBF expression and cold tolerance [14].

In plants, ROS act as a double-edged sword. Excessive ROS accumulation due to
stress induces oxidative stress, which can damage plant cells; at this time, ROS-scavenging
systems consist of an endogenous defensive mechanism that comprises different enzymatic
(e.g., superoxide dismutase, SOD, and catalase, CAT) and nonenzymatic (e.g., glutathione,
GSH) antioxidants that are activated to maintain ROS levels [15–17]. Moreover, ROS, as
messenger molecules, participate in acclimation responses to freezing stress. ROS can
interact with different hormones (e.g., ET, JA, and BRs) to control gene expression and
induce physiological changes in response to cold stress [18]. In addition, emerging evidence
indicates that some key signaling components participate in ROS-mediated stress response
processes, such as messenger molecules (e.g., Ca2+ and NO), protein kinases (e.g., CIPKs
and MAPKs), and TFs (e.g., MYC and MYB) [18,19].

In apricot kernels, research on freezing resistance primarily focuses on the physio-
logical level and differences between different varieties [20,21]. It has been reported that
the activities of antioxidant enzymes, such as SOD, in apricots show a change pattern
in which they first increase and then decrease under freezing stress, with their activities
higher in variety with a strong freezing resistance [7,22]. Our previous study found that
many regulators (such as TFs and protein kinases) and some of the genes involved in the
oxidation reduction process were regulated in apricot under natural spring frost condi-
tions via transcriptome analysis [7]. However, the underlying relationship and functional
mechanism of differentially expressed genes (DEGs) are still largely unknown. We investi-
gated the comparative transcriptome of pistils in this work based on two apricot kernel
varieties (‘Weixuan 1’ and ‘Longwangmao’) (Armeniaca vulgaris × sibirica) with different
frost-resistance levels under simulated spring frost conditions. Our study aims to analyze
the DEGs and different biological processes between ‘Weixuan 1’ and ‘Longwangmao’
and elucidate ROS-mediated molecular mechanisms in response to freezing stress. This
may provide new insights into the response mechanisms underlying freezing stress in
apricot kernels.

2. Materials and Methods
2.1. Plant Materials and Treatment

For the analysis of apricot kernel pistils’ freezing resistance, two main cultivated
varieties were selected, namely ‘Weixuan 1’ and ‘Longwangmao’. ‘Weixuan 1’ is a frost-
resistant variety selected from ‘Longwangmao’ through bud mutation [23].

During hibernation, flower branches from cold-tolerant ‘Weixuan 1’ (CtW) and cold-
sensitive ‘Longwangmao’ (CsL) were collected from the Apricot Germplasm Resource
nursery in Shanxi, China. Flower branches were brought to full bloom via hydroponic
cultures in an incubator (20 ◦C) and were treated with temperatures of −2 ◦C, −3 ◦C, and
−4 ◦C for 1 h. The cooling method involved reducing the temperature from 20 ◦C to 2 ◦C
at a rate of 10 ◦C/0.5 h, and then reducing the temperature from 2 ◦C to the treatment
temperature at a rate of 3 ◦C/h in a low-temperature incubator. The flower branches were
then placed in the incubator (20 ◦C) to recover for 3 h; that is, when the browning of the
pistils showed no significant change. The pistils undergoing and not undergoing freezing
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treatments were collected for transcriptome sequencing and quantitative real-time PCR
(qRT-PCR) analysis in liquid nitrogen and were stored at −80 ◦C.

2.2. RNA-seq

The pistils of CsL and CtW undergoing and not undergoing freezing treatments
were used for RNA exaction. According to the differences in the temperature treat-
ments between CsL and CtW, the samples were named CsL1 (20 ◦C), CsL2 (−2 ◦C), CsL3
(−3 ◦C), CsL4 (−4 ◦C), CtW1 (20 ◦C), CtW2 (−2 ◦C), CtW3 (−3 ◦C), and CtW4 (−4 ◦C),
and every sample contained three biological replicates (every five flower branches repre-
sented a biological repeat, containing 50–70 pistils). Total RNA was extracted with the
RNAprep Pure Plant Plus Kit (polysaccharide- and polyphenolic-rich; Tiangen, Beijing,
China). RNA quality estimation, including purity, integrity, and concentration, was checked
by 1% agarose gel, a Nano Photometer spectrophotometer (Implen, Westlake Village, CA,
USA), a Qubit 2.0 Fluorometry (Life Technologies, Carlsbad, CA, USA), and an Agilent
2100 Bioanalyzer (Agilent Technologies, CA, USA). High-quality RNAs were used to con-
struct cDNA libraries sequenced by Illumina paired-end sequencing technology on an
Illumina HiSeq platform (Illumina, San Diego, CA, USA) at Metwell Biotechnology Co.,
Ltd. (Wuhan, China). The raw data were cleaned by removing adapter sequences, the reads
with more than 10% N bases, and low-quality reads with a percentage of base quality value
≤ 5 exceeding 50%. The clean reads were mapped onto the apricot (Prunus armeniaca L.)
reference genome using the HISAT2 software using the default parameters [24].

2.3. Identification of DEGs and Enrichment Analyses

The number of reads mapped to each gene were counted using HTSeq v0.6.1, and
the fragments per kilobase of transcript per million fragments mapped (FPKM) of each
gene were calculated based on the gene length and the read count mapped to the gene. The
DEG analysis between two groups was performed using the DESeq2 R package. The false
discovery rate (FDR) was obtained from p-values adjusted using the Benjamini–Hochberg
method. The DEGs were screened with |log2Fold Change| >= 1 and FDR < 0.01. KEGG
enrichment analyses of the DEGs were conducted using KOBAS software.

2.4. Weighted Gene Co-Expression Network and Hub Genes Analysis

The antioxidant enzymes (POD, SOD, and CAT) were determined using water-soluble
tetrazolium salt-(WST-1), guaiacol-, and hydrogen-peroxide-based methods, respectively [25].
The mixed pistils undergoing and not undergoing freezing treatments were used to analyze
the activities of the antioxidant enzymes, and each experiment contained four biological
replicates. SPSS 25 was used to analyze the data of the enzyme activities by one-way
ANOVA and Duncan’s multiple comparison analysis.

The activity of the antioxidant enzymes and DEGs was used for weighted gene co-
expression network analysis (WGCNA). WGCNA was conducted in R using the default
parameters. The FPKM values of the DEGs were normalized, and Pearson’s correlation
coefficient was calculated for each pair of genes to construct an adjacency matrix. Gene
modules were identified based on TOM and converted by the adjacency matrix, using
the WGCNA package. The correlation between modules and traits was estimated. The
hub genes within a selected module were screened by kME (intra-module connectivity)
> 0.9 and GS (gene significance) > 0.2. Cytoscape (version 2.7.2) was used to visualize the
relationships between hub genes.

2.5. Protein–Protein Interaction (PPI) Network Prediction

For the PPI analysis, hub genes associated with the activity of antioxidant enzymes
were used to retrieve genes interacting with STRING 11 in Prunus armeniaca var. bungo. A
required confidence score (combined score) greater than 0.4 was used as the threshold for
the interaction. The disconnected genes were hidden in the network. The PPI network was
constructed using STRING and was further analyzed using Cytoscape (version 2.7.2).
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2.6. Verification of qRT-PCR Analysis

Nine genes were selected from the hub genes related to the antioxidant enzyme for
qRT-PCR analysis. Total RNA extraction was performed with a TIANGEN kit (Beijing,
China), and cDNA was synthesized using a reverse transcription kit (Takara Dalian, Japan).
A qRT-PCR test containing three biological replicates was conducted using the KAPA SYBR
FAST qPCR Master Mix (Kapa Biosystems, Boston, MA, USA) on a LightCycler 480 II
Real-time PCR Instrument (Roche) according to the manufacturer’s protocols. In that test,
18S was used as a reference gene. The primers are listed in Table S1.

3. Results
3.1. Transcriptome Analysis of Apricot Kernel Pistils under Freezing Stress

RNA-seq data were generated for eight different freezing-treated and untreated pistils
to explore the molecular mechanism of the freezing resistance between CsL and CtW pistils.
In total, 120.78 Gb of clean reads were obtained from 24 libraries, ranging from 4.16 to 6.02
Gb per library, with an average GC content of 45.81% (Table 1). The high Q30 (>91.73%)
represents bases with error rates < 0.1% for libraries showing high-quality RNA-seq. The
rate of clean reads mapped to the apricot genome ranged from 87.55% to 94.74%, in which
uniquely mapped reads exceeded 84.85%.

Table 1. Summary of mapping transcriptome reads to reference sequence.

Variety Treatment Sample Clean Reads GC (%) Q20 (%) Q30 (%) Read
Mapped (%)

Unique
Mapped (%)

‘Longwangmao’
(CsL)

CsL1
CsL11 60,245,518 45.92 97.21 92.15 94.14 91.47
CsL12 48,251,936 45.93 97.01 91.73 93.41 90.81
CsL13 48,950,240 46.25 97.06 91.86 93.94 91.31

CsL2
CsL21 47,482,406 45.86 97.66 93.19 94.74 92.12
CsL22 45,957,672 45.72 97.67 93.26 93.90 90.94
CsL23 54,500,124 45.50 97.50 92.88 93.69 90.63

CsL3
CsL31 56,350,610 45.30 97.64 93.21 93.29 90.70
CsL32 56,506,172 45.78 97.65 93.25 92.27 89.72
CsL33 55,646,854 45.85 97.67 93.31 92.45 89.86

CsL4
CsL41 54,666,004 45.78 97.66 93.34 87.55 84.85
CsL42 44,453,966 45.72 97.60 93.14 93.55 91.11
CsL43 49,831,556 45.90 97.58 93.12 94.34 91.61

‘Weixuan 1’
(CtW)

CtW1
CtW11 41,850,108 45.93 97.30 92.29 92.11 89.62
CtW12 41,637,772 46.20 97.32 92.34 94.16 91.59
CtW13 50,142,906 46.10 97.29 92.29 93.79 91.23

CtW2
CtW21 45,960,022 45.49 97.62 93.05 94.17 91.66
CtW22 55,251,738 45.38 97.75 93.40 94.46 91.98
CtW23 51,158,772 45.88 97.61 93.14 94.37 91.71

CtW3
CtW31 43,518,372 45.87 97.72 93.45 93.96 91.45
CtW32 60,004,540 45.87 97.44 92.79 93.50 91.03
CtW33 60,219,916 45.69 97.55 93.03 94.03 91.44

CtW4
CtW41 45,356,754 45.84 97.65 93.25 90.25 87.83
CtW42 46,029,912 45.81 97.83 93.67 94.45 91.78
CtW43 43,832,166 45.84 97.70 93.37 93.16 90.58

3.2. Identification and Functional Analysis of DEGs of Apricot Kernel Pistils under Freezing Stress

In total, 5206, 2032, and 3223 DEGs were identified under freezing treatment in CsL,
CtW, and CsL vs. CtW. Among all of the DEGs, 509 shared DEGs that were found in
the three comparison groups (CsL, CtW, and CsL vs. CtW). In the three CsL freezing-
treatment groups, 438 genes were up-regulated, and 68 genes were down-regulated. In
the three CtW freezing-treatment groups, 367 genes were up-regulated, and 142 genes
were down-regulated; in CsL vs. CtW, 355 genes were up-regulated, and 157 genes were
down-regulated (Figure 1a).
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Figure 1. Venn diagram and significantly enriched KEGG pathways of differently expressed genes
(DEGs) under freezing treatment. (a) Venn diagram showing the shared and specific number of
up-regulated and down-regulated DEGs identified in CtW, CsL, and CtW vs. CsL. CtW: cold-tolerant
‘Weixuan 1’; CsL: cold-sensitive ‘Longwangmao’. (b,c) Significantly enriched KEGG pathways of
DEGs in CtW (b), CsL (c), and CtW vs. CsL (d).

DEGs were characterized using KEGG databases to understand their biological roles
in CsL and CtW. There were 15, 21, and 15 significantly enriched pathways (p < 0.05) in
CsL, CtW, and CsL vs. CtW, respectively. In CsL, most of the DEGs were enriched in
plant-hormone signal transduction (7.17%), the MAPK signaling pathway (4.89%), the
biosynthesis of secondary metabolites (25.40%), and plant–pathogen interaction (9.83%)
(Figure 1b). In CtW, most DEGs were enriched in the biosynthesis of secondary metabolites
(26.96%), plant–pathogen interaction (11.65%), plant-hormone signal transduction (6.28%),
and phenylpropanoid biosynthesis (5.76%) (Figure 1c). In CsL vs. CtW, more DEGs
were enriched in the biosynthesis pathways of the secondary metabolites (27.90%), in
the metabolic pathways (45.42%), in plant-hormone signal transduction (6.24%), and in
phenylpropanoid biosynthesis (6.00%) (Figure 1d).
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3.3. Differentially Expressed Transcription Factors of Apricot Kernel Pistils under Freezing Stress

The transcriptional regulation of cold stress has been widely studied in model plants.
To identify the TFs involved in apricot kernels’ response to freezing stress, we analyzed
differentially expressed TFs in CsL and CtW under freezing stress. As shown in Figure S1,
423 DEGs were assigned to 50 TF families in CsL; 151 DEGs were assigned to 33 TF families
in CtW; and 242 DEGs were assigned to 48 TF families in CsL vs. CtW. Genes belonging
to the NAC, AP2/ERF-ERF, MYB, WRKY, and bHLH TF families in the CsL, CtW, and
CsL vs. CtW groups accounted for more than 40%. Furthermore, there were 44 shared
TFs, including 10 AP2/ERF-ERF TFs, 6 bHLH TFs, 5 MYB TFs, 3 NAC TFs, and 2 WRKY
TFs in the three groups (Figure 2). Out of these TFs, the expression level of most genes
under freezing stress was up-regulated compared to the control, except for the down-
regulated PARG01786 (RAP2.4), PARG12349 (MYB6), PARG06699 (MYB21), and PARG30216
(NAC25) TFs in CtW and the PARG29164 (WRKY70) TF in CsL (Figure 2b). These findings
demonstrate that these TFs, especially NAC, AP2/ERF-ERF, MYB, WRKY, and bHLH, may
govern the transcriptional changes through both transcriptional activation and repression
in response to freezing stress.
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Figure 2. Analysis of differently expressed transcription factors (TFs) under freezing treatment.
(a) Venn diagram showing the shared and specific number (and ratio) of differently expressed TFs
identified in CtW, CsL, and CtW vs. CsL. (b) Heatmap of overlapping TFs between CtW, CsL, and
CtW vs. CsL. Each column represents the gene expression at different temperatures (20 ◦C, −2 ◦C,
−3 ◦C, and −4 ◦C) in CtW and CsL.

3.4. The Co-Expression Network Analysis of DEGs Related to the Antioxidant Enzyme Activity

Freezing stress produces excessive ROS scavenged by antioxidant mechanisms, such
as enzymatic and nonenzymatic systems, to regulate cold resistance in plants [26,27]. We
employed WGCNA to detect the co-expressed genes associated with antioxidant enzyme
activities, including POD, SOD, and CAT, that may be involved in regulating freezing resis-
tance in CsL and CtW (Table S2). The network was constructed with 3223 DEGs, and nine
co-expressed gene modules labeled with different colors were determined (Figure 3a). Then,
the correlations between the module eigengenes (MEs) and antioxidant enzyme parameters
were analyzed. Only the magenta module with 173 genes was significantly associated with
SOD activity (r = 0.73, p = 0.04) (Figure 3b). In addition, the module membership and GS of
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the magenta module were highly correlated (Table 2), further demonstrating that genes in
the magenta module were significantly associated with SOD activity.
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Figure 3. WGCNA of DEGs and antioxidant enzyme activity. (a) Cluster dendrogram presents nine
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Table 2. Correlations between module membership and gene significance of modules.

Module No. of Genes
Module Membership vs. Gene Significance

Correlation (r2) p-Value

Orange 997 −0.0094 0.77
Dark orange 526 −0.2 3.8 × 10−6

Blue 734 −0.65 2.4 × 10−89

Tan 270 −0.51 2.8 × 10−19

Violet 51 −0.36 0.0095
Dark olive green 121 0.027 0.77

Turquoise 230 0.04 0.55
Magenta 173 0.58 6.2 × 10−17

Grey 121 0.036 0.7

Subsequently, the DEGs in the magenta module that exhibited the strongest corre-
lation with the SOD parameter were further analyzed. These genes were significantly
up-regulated in CsL3 (treated with −3 ◦C) and in CtW2 (treated with −2 ◦C) (Figure S2),
implying that the genes in CtW were modulated earlier than those in CsL in order to
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adapt to and defend against freezing stress when suffering from lower temperatures.
Hub genes within the magenta module, referring to the most highly connected nodes
within the module, were used to construct the gene network. A total of 81 hub genes
containing 77 up-regulated and 4 down-regulated genes in CsL vs. CtW were identified
based on kME > 0.9 and GS > 0.2 (Figure 4; Table S3). The co-expression network had
ten hormone-related genes and five Ca2+-related genes: ERF025, ERF109, JAZ8, JAZ10B,
CAMBP25, and PBP1-like genes were highly connected within the module. Moreover,
twelve TFs, including one CBF/DREB subfamily member, three WRKY members, three
bHLH members, and two NAC members, were related to the SOD parameter, and NAC090,
bHLH35, ZAT11, and GTE12 had higher connections within the module. In addition,
twelve post-translational modified proteins with five protein kinases, one phospholipase
PP2C25, five E3 ubiquitin-protein ligases, and the F-box protein SKIP27, were also con-
nected with the SOD parameter; the kME of the PUB21-like, SKIP27, EFR, and PARG02353
(LRR receptor-like serine/threonine-protein kinase At3g47570) were high. Some structural
functional genes, such as the redox genes HMCGR1 and GRXC9, and the jasmonic acid
(JA) synthesis genes, namely AOS1 and OPR3, were correlated with the SOD parameter
(Figure 4; Table S3).
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In addition, the co-expression relationship of TF–TF, TF–post-translational modified
protein, and TF–structural functional genes were identified in the gene network (Figure 4).
The TFs ERF025, WRK18, and ERF109, as well as the E3 ubiquitin-protein ligases ATL7 and
PUB23, showed a higher correlation with CBF3. The repressor proteins JAZ8 and JAZ10B in
JA signaling were co-expressed with NAC090, WRKY53, ERF109, PUB21-like, and SKIP27.
A co-expression relationship between HMCGR1 and the TFs (ERF109, WRKY40, NAC090,
bHLH35, and ZAT11) was found in the gene network. These relationships can act as a
reference for the research on the freezing response.
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3.5. Interaction Network Analysis of Hub Genes Related to Antioxidant Enzyme Activity

A PPI regulatory network of 81 hub genes in the magenta module was constructed
to explain the potential regulatory mechanism in apricot kernels responding to freezing
stress. As shown in Figure 5, JAZ8 has a direct relationship with bHLH13, WRKY18/40,
ERF109, and GATA25, and especially with bHLH13, in addition to the genes in the JA signal
pathways (JAZ1/10/12, NINJA, and COI1) and the JA biosynthesis genes (OPR3, AOC3/4,
and AOS). bHLH13 plausibly interacts with the JA-related genes (JAZ1/8/10, NINJA,
COL1, OPR3, and AOS1), GATA25, and bHLH92, whereas bHLH35 may only interact with
JAZ1 and bHLH92. There may also be interactions between ERF109 and WRKY18/40,
HMGCR1, GRXC9, and PP2C25. Moreover, WRKY18/40 and bHLH92, GRXC9 and JAZ12,
and RGI3 and RGL1 were found to have direct relationships. PP2C25, NPR4, CCR4, ZAT11,
and PBP1 were all related to PP2Cc. The JA-related genes (JAZ8, AOS1, and OPR3) and
bHLH13 were considered to be key genes in the network, suggesting that they may play an
important role in the ROS-mediated freezing response.
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3.6. qRT-PCR Validation of Key DEGs Involved in the Response of Apricot Kernels to
Freezing Stress

We selected nine key genes in the magenta module for qRT-PCR analysis to verify
the expression pattern’s accuracy for these hub genes in the transcriptome data. With
the exception of NAC090 in CtW3 and CtW4, the expression levels of ERF109, ZAT11,
PBP1, NAC090, PP2C25, and PUB21 were higher under lower temperatures, higher in
CsL3 or CsL4 in ‘Longwangmao’, and higher in CtW2 in ‘Weixuan 1’ (Figure 6). JAZ8
was induced by freezing stress in CsL, whereas it had no significant change or decrease
in CtW. In addition, the expression levels of bHLH35 and OPR3 obviously increased in
CsL4 in ‘Longwangmao’ and decreased in CtW3 in ‘Weixuan 1’. The qRT-PCR results were
consistent with the RNA-Seq results, indicating the reliability of the RNA-Seq data.
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4. Discussion
4.1. Transcriptional Regulation in Freezing Response of Apricot Kernels

TFs are important regulators for controlling gene expression to modulate the stress
response. Many TFs regulate the expression of cold-stress-responsive genes (CORs) and
adapt the tolerance of plants to cold stress, such as the AP2/ERF, NAC, WRKY, MYB, and
bZIP TFs [28]. In the pistils of CsL and CtW, these families were also the main differentially
expressed TFs under freezing stress (Figure S1). Recent studies show that CBFs elevate
antioxidant enzymes to regulate cold tolerance [29,30]. Consistent with these observations,
one CBF/DREB TF, CBF3, was regulated by freezing stress and was found to be associated
with antioxidant enzyme activity (SOD) in apricot kernels (Figure 4). No ICEs, which are
key inducers of CBFs expression, were differentially expressed in CtW and CsL under
freezing stress, whereas other bHLH TFs (such as bHLH13 and bHLH35) were induced
by freezing stress and were correlated with antioxidant enzyme activity (Figures 2 and 4).
Moreover, bHLH13 and bHLH35 were predicted to interact with JAZ8 or JAZ1, suggesting
that they link with JA signaling to regulate the SOD-mediated freezing response.

In addition to the ICE1-CBF pathway, many other TFs regulate plant resistance in a
CBF-dependent or CBF-independent way [10]. For example, MYB15 inhibits the expression
of CBFs and negatively regulates the freezing tolerance of Arabidopsis thaliana [31]. In
soybean, the overexpression of GmNAC20 increases the activity of antioxidant enzymes
and enhances cold tolerance via the CBF-COR pathway [32,33]. On the contrary, some
CBF-independent TFs, such as MYB73, WRKY33, and ZAT10, function parallel to CBFs
and modulate COR expression [10,28,30]. In this work, some TFs, including ERF109,
bHLH35, and WRKY18, were found to be related to antioxidant enzyme activity and to
be co-expressed with CBF3 (Figure 4). Furthermore, ERF109 may directly regulate the
expression of redox proteins HMGCR1 and GRXC9 in response to freezing stress (Figure 5).
Our results suggest that these TFs regulate the antioxidant-enzyme-mediated freezing
response by modulating CBFs.



Forests 2022, 13, 1655 11 of 14

4.2. Post-Translational Regulation in the Freezing Response of Apricot Kernels

Besides transcriptional regulation, post-translational modifications, such as phospho-
rylation and ubiquitination, also play important roles in the responses of plants to cold [10].
Many protein kinases and phosphatases have been confirmed to regulate the cold tolerance
of plants, such as OST1/SnRK2.6, MPK3, MPK6, and BIN2 [34]. In Arabidopsis, a type 2C
phosphatase, ABI1, dephosphorylates protein kinase OST1 to repress kinase activity and
to negatively regulate freezing tolerance [35]. In the pistils of apricot kernels, five protein
kinases (RGI3, EFR, CCR4, GSO2, and At3g47570-like) and one phosphatase (PP2C25) were
identified as hub genes in the magenta module: they were highly correlated with antioxi-
dant enzyme activity under freezing stress (Figures 3 and 4). Previous studies have shown
that OsCPK24 functions as a positive regulator of cold tolerance by phosphorylating and
inhibiting OsGrx10 to improve glutathione (an antioxidant) levels [36]. The PPI network
predicted the direct relationship between PP2C25-ERF109, PP2Cc-ZAT11, and RGI3-RGL1
(Figure 5), indicating that these protein kinases and phosphatase may control the tolerance
of apricot kernels to freezing stress by regulating the phosphorylation level of the targets
related to the antioxidant process.

Ubiquitination and protein-degradation mediated by the E3 ubiquitin ligases are also
important for cold signaling. E3 ubiquitin ligases such as HOS1, PUB25, ATL78, and
ATL80 have been extensively studied to be involved in cold stress in plants [34,37,38]. Two
U-box type E3 ubiquitin ligases, PUB25 and PUB26, improve their E3 ligases activity by the
phosphorylation of OST1 and function as negative regulators in response to cold stress by
targeting MYB15 for degradation [39]. Four PUBs E3 ubiquitin ligases (PUB21, PUB21-like,
PUB23, and PUB35) were differentially expressed in apricot kernel pistils during freezing
stress and were highly related to antioxidant enzyme activity (Figure 4). OsSRFP1, a RING
finger E3 ligase, negatively regulates the activity of antioxidant enzymes and cold stress
tolerance in Oryza sativa [40]. However, there are few studies on the mechanism in ubiquitin
ligase that regulates antioxidant enzyme activity. In addition to PUB35, other E3 ubiquitin
ligases have co-expressive relationships with ERF109 (Figure 4), suggesting that these E3
ubiquitin ligases regulate ROS homeostasis and the freezing resistance of apricot kernels
through ERF109.

4.3. Ca2+ and Hormone Signaling in Freezing Response of Apricot Kernels

Ca2+ is an important secondary messenger in plant response to cold stress. Previous
research has shown that calmodulin (CAM) activity is essential for the expression of CORs and
CAMTAs, which harbor conserved CAM-binding sites and activate CBF expression [10,41].
In this study, two CAM-binding proteins, CAMBP60B and CAMBP25, were induced by
freezing stress and were found to be associated with antioxidant enzyme activity in apricot
kernels (Figure 4). However, our results did not observe a co-expression relationship
between CAMBPs and CBFs. There is the possibility that CAMBP60B and CAMBP25 are
involved in the freezing response in apricot kernel pistils via a CBF-independent pathway.

Plant hormones that play key roles in cold stress tolerance by regulating ROS balance
have been found [18]. Cold-activated BZR1, a positive transcriptional factor in BRs signal-
ing, directly promotes RBOH1 expression and H2O2 production [42]. In Arabidopsis and
peas, SLs positively regulate chilling tolerance via increasing glutathione and ascorbate
accumulation [43]. Two JAZ proteins (JAZ8 and JAZ10B), two ethylene-responsive TFs
(ERF109 and CRF4), one DELLA protein RGL1, and the SA receptor NPR4 were found
to be highly associated with antioxidant enzyme activity in apricot kernel pistils under
freezing stress (Figure 4). Consistent with these findings, JA, SA, ET, and GA were also
involved in the response to cold stress; PtrERF109 directly promotes the expression of Ptr-
Prx1 to improve peroxidase activity [12,18,44]. Moreover, the direct relationships between
JAZ8 and bHLH13, ERF109, WRKY18, and WRKY40 were predicted, suggesting that JA
signaling cooperates with other TFs and hormones to affect the ROS-mediated freezing
response. These potential functional genes involved in freezing stress can provide a choice
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for genetic-engineering-assisted breeding through gene-editing technology and a direction
reference for molecular-marker-assisted breeding.

5. Conclusions

In the present study, we investigated gene co-expression networks in the SOD-mediated
response to freezing stress in the pistils of two apricot kernel cultivars with a different
level of frost resistance. One gene network was identified to correlate with the antioxidant
enzyme SOD activity under freezing stress. The direct relationship of regulatory and
functional hub genes within this network were predicted. Our study confirmed some novel
hub genes and potential mechanisms underlying the variation in the freezing resistance of
apricot kernels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13101655/s1, Figure S1: The distribution of differently expressed
transcription factor families in CsL (a), CtW (b), and CsL vs. CtW (c). CtW: cold-tolerant ‘Weixuan
1’; CsL: cold-sensitive ‘Longwangmao’. Figure S2: The expression analysis of DEGs in the magenta
module. (A) Heatmap of DEGs in the magenta module. (B) The overall expression level of eigengenes
identified in the magenta module for each sample. Table S1: List of primers used for qRT-PCR.
Table S2: The antioxidant enzyme activities in apricot kernel pistils under freezing stress. Table S3:
The annotation of hub genes in the magenta module.
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