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Abstract: Aggregated green infrastructure is the only element that has a relatively concentrated and
well-functioning carbon sink in the city. It plays an important role in achieving carbon neutrality in
urban areas with dense functions and scarce carbon sink resources. However, in contrast to other
regions, aggregated green infrastructure carbon sink performance is more influenced by socioeco-
nomic activities in urban centres. There is a lack of research on the impact between carbon sink
performance and socioeconomic activities at the urban scale. In this study, we evaluated the carbon
sink performance (i.e., carbon sink and location entropy) of aggregated green infrastructure and its
interaction with socioeconomic activities at the urban scale based on Sentinel-2A satellite. The results
showed that: (1) Aggregate green infrastructures with high carbon sink performance have significant
aggregation characteristics in urban areas. (2) Aggregated green infrastructure with poor carbon sink
performance tended to be surrounded by dense socioeconomic activities. Our study provides a new
approach to the assessment of carbon sink performance of aggregated green infrastructure at the
urban scale. More importantly, we make a new attempt to assess the association between carbon sink
performance and socioeconomic activities of urban aggregated green infrastructure. These results
point to a new direction for the realization of carbon neutrality in cities.

Keywords: aggregated green infrastructure; multi-source data; climate change; carbon sink performance

1. Introduction

In the context of increasing global warming, energy and carbon emissions are in-
creasingly influencing and constraining urban development. With the concept of “carbon
neutrality”, energy conservation and emission reduction have become the core of sustain-
able urban development [1]. In addition to reducing fixed energy use and transportation
carbon emissions, increasing urban carbon sinks is also an important means to achieve
“carbon neutrality” [2,3]. Previous studies on carbon sinks have mainly focused on forests,
grasslands, wetlands, oceans and soils [4–7]. The carbon sink function of urban ecosystems
has been neglected. Green infrastructure is a scarce resource for urban ecosystems. Some
studies have shown that it plays an important role in increasing carbon sinks and absorbing
carbon emissions [8,9].

The concept of green infrastructure was first introduced in the United States in 1999,
and it is defined as the National Natural Life Support System. In terms of landscape pattern,
it is divided into aggregated green infrastructure and distributed green infrastructure [10].
In urban area, aggregated green infrastructure is generally park with abundant vegetation
resources and carbon sink capacity. Distributed Green Infrastructure is small and scattered
throughout the man-made landscape as temporary habitats or “stepping stones” [11].
Forman states that the focus of the approach to landscape pattern optimization is the overall
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optimization of the landscape pattern [12]. Therefore, the combination of aggregation
and distribution is considered irreplaceable for the landscape pattern in terms of overall
optimization. In addition, size is closely related to the carbon sequestration capacity of
green infrastructure, with larger green spaces on average performing better than smaller
ones [13]. According to a study, the UK government considers 2 hectares as the minimum
acceptable size of green space in urban area [14]. Therefore, we use 2 ha as the threshold
to define aggregated green infrastructure and distributed green base. This classification
helps to extract green infrastructure with significant carbon sink capacity and facilitates the
study in urban areas.

Aggregated green infrastructure is an urban complex ecosystem with a significant
ecological service function. It can fix carbon and release oxygen [15], effectively alleviate the
heat island effect [16], and reduce urban energy consumption [17]. It is an important carrier
for carbon peaking and carbon neutrality [18,19]. In this study, the carbon sink performance
of aggregated green infrastructure mainly refers to the efficiency of their carbon sinks
within their service scope. At present, the aggregated green infrastructure carbon sink
performance study includes the following three main aspects: (1) evaluating the carbon sink
capacity of aggregated green infrastructure systems at the macro scale based on different
types of vegetation through the City green model [20,21]; (2) calculating the carbon sink
benefits of different tree species using biomass method, regression equation calculation
method, photosynthetic rate method at the microscopic scale [22–24]; (3) assessing of
aggregated green infrastructure carbon sink performance was mainly based on the carbon
sink efficacy of plants at the mesoscopic scale [25,26]. The conclusions are often subject
to a large margin of error, and the results are significantly less compared to the first two
aspects. Many previous research data are limited to the carbon storage and sequestration
benefits of single plant species and individual vegetation type. They have made it difficult
to directly assess the carbon sequestration performance of aggregated green infrastructure
in terms of the overall model. Furthermore, it is well known that unlike natural green
spaces such as forests, human socioeconomic activities have a greater impact on the carbon
sink capacity of aggregated green infrastructure in cities [27,28]. Due to data limitations,
previous studies were mostly limited to the effects of population, GDP, and road density on
the overall urban green infrastructure carbon sink capacity [29–31]. Currently, few studies
have explored the coupling between the carbon sink performance of aggregated green
infrastructure and the socioeconomic activities of inner cities. In general, there is a lack of
results on the ability to comprehensively assess the total carbon sink of aggregated green
infrastructure at the city scale and analyse its association with socioeconomic activities.

Sentinel missions are joint initiative of the European Commission and European Space
Agency and its information is available for free. The latest land cover information, includ-
ing urban aggregated green infrastructure is a high-resolution optical satellite Sentinel-2A
observation mission [32]. Sentinel-2A satellite was launched in 2015 and has a spatial
resolution of up to 10 m × 10 m [32,33]. It has a higher spatial resolution than Land-
sat 8 satellite data, which is also available free of charge. The cost is lower than that of
commercial satellites. It has been applied to fine scale remote sensing studies in multiple
fields such as environment and ecology [34–36]. The spatial structure of urban aggregated
green infrastructure is complex including vegetation, water bodies and roads. It is on a
much finer scale than the others. Therefore, we try to use Sentinel-2A satellite to discern
aggregated green infrastructures within cities in order to calculate their carbon sink per-
formance. Furthermore, POI data performs well in terms of timeliness and allows for a
more flexible and specific response to inner city functions. It has been used in studies to
explore socioeconomic activity studies within and outside the city [37–39]. Therefore, this
study aims to explore the association between socioeconomic effects and the carbon sink
performance of aggregated green infrastructure at the intra-city level based on Sentinel-2A
and POI data. The overall goals are: (1) to calculate aggregated green infrastructure carbon
sequestration amount by Sentinel-2A satellite information, and use location entropy to eval-
uate their carbon sink performance; (2) to evaluate the spatial distribution characteristics of
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aggregated green infrastructure carbon sink performance in central urban area of Nanjing
on spatial autocorrelation; (3) to assess the relationship between the spatial distribution of
aggregated green infrastructure carbon sink performance and socioeconomic activities on
the POI (Point of Interest).

2. Materials and Methods
2.1. Research Area

Nanjing City (31◦14”−32◦37” N, 118◦22”−119◦14” E) is located in East China. It is a
typical subtropical monsoon climate with hot summers and abundant rainfall, cold and dry
winters, and cool and dry springs and autumns. The vegetation types are mainly deciduous
broad-leaved forests that contain evergreen broad-leaved trees and planted coniferous
forests. The study area is the central urban area delineated in the Draft Nanjing Urban
Master Plan (2018–2035). The total area is about 818 square kilometres, accounting for about
12.42% of the total area of Nanjing. The delimitation of the research area is mainly based on
the following three considerations: (1) the city centre area has a dense built environment
and population distribution, which is suitable for studying the interaction between the
daily life behaviour of individual residents and the aggregated green infrastructure; (2)
the commodity housing prices in Nanjing have generally maintained an upward or stable
trend and never experienced a significant decline since the 21st century; (3) the POI of the
average price, population, transportation, businesses, entertainment, and public facilities
in the residential area of the city centre is easily accessible.

2.2. Data Source
2.2.1. Aggregated Green Infrastructure Data

The study adopted the vectorized extraction operation of the non-offset Google Earth
high-definition satellite imagery of Nanjing in 2021 to demonstrate aggregated green
infrastructure boundary. Then, a total of 90 aggregated green infrastructures within the
central urban area of Nanjing were selected accordingly, under the guidance of the Draft
of Nanjing Urban Master Plan (2018–2035) the correction of on-the-spot investigation
(Figure 1).

The remote sensing data came from the data of ESA’s Sentinel-2A satellite. The
imaging time is July 30, 2021. It has a 0.0174% of cloud with a resolution of 10 m. The
SNAP software was used for pre-processing: cutting according to the scope of the park
and using Envi-met to perform radiometric calibration and atmospheric correction on the
remote sensing images. The study interpreted and divided aggregated green infrastructure
landscape elements in the central urban area of Nanjing into three types of carbon sinks:
woodland, grassland, and water.

2.2.2. Socioeconomic Activities Data

To effectively reflect the activity intensity of the users, the study screened various
network data and selected socioeconomic activities data that are closely related to aggre-
gated green infrastructure. The influencing factors of recreational activities in aggregated
green infrastructures can be roughly summarized as accessibility, population distribution,
and socioeconomic status of the population [5,10]. Therefore, the study selected six factors
including transportation convenience, the richness of cultural and recreational facilities,
employment opportunities, public service convenience, the number of residents, and in-
come as the main influencing factors for human activities. The source of the data came
from six origins, i.e., POI for transportation facilities; POI for dining and shopping; POI
for companies; POI for public facilities; the number of residential households; the average
house. The POIs were captured by Python tool and collected in July 2020 and May 2021.
According to the 2020 Nanjing Statistical Yearbook, the average household population in
Nanjing urban area is 2.77 people, which can be used to estimate the population of each
community (Table 1).
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Figure 1. Location of central Nanjing, China.

Table 1. Socioeconomic activities data sources.

Indicators Data

Socioeconomic status The income of residents Average house price

Population Distribution The number of residents Number of households × Average
Population per household

Public service convenience Number of public facility POIs
Employment opportunities Number of company POIs

The richness of cultural and Recreational facilities Number of dining and shopping POIs
Accessibility Transportation convenience Number of transport facilities POIs

2.3. Method

Previous studies have shown that many cities have implemented the low carbon city
evaluation index system [40,41]. Among the indexes, the green environment construction
and carbon sink capacity were the main evaluation indicators [42]. Therefore, based
on the obtained data and the previous-built carbon sink city evaluation systems, the
study regarded aggregated green infrastructure environment construction and carbon sink
capacity as the influencing factors of its carbon sink performance in the central urban
area of Nanjing. We selected aggregated green infrastructure area and density as the
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influencing factors of aggregated green infrastructure construction. In the meantime, the
carbon sequestration amount of aggregated green infrastructure and location entropy were
selected as the influencing factors of the carbon sink performance of aggregated green
infrastructure. The analysis was performed in combination with socioeconomic activities
data, and a more in-depth discussion on urban carbon sink performance was conducted
based on urban development laws. The detailed experimental steps are shown in Figure 2.
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2.3.1. The Carbon Sequestration Amount of Aggregated Green Infrastructure

The study divided the aggregated green infrastructure carbon sink into three types:
woodland, grassland, and water (Table 2). Based on the three types, the calculation model
of carbon sequestration amount of aggregated green infrastructure in the central urban
area of Nanjing is constructed:

Cs = ∑ CF,i ∗ Ai (1)

Cs is the net carbon sequestration of the area (t/a); CF,i is the annual net carbon
sequestration per unit area of the i-th type of carbon sink (t/(ha·a)), and Ai is the total area
of the i-th type of carbon sink (ha).

Table 2. Carbon sink factor.

Parameter Category Value Source

forest land carbon
sequestration (t/(ha·a)) 9.0300 [43]

Grassland carbon
sequestration (t/(ha·a)) 7.7100 [44,45]

water area carbon
sequestration (t/(ha·a)) 2.0900 [46]
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2.3.2. Location Entropy of Aggregated Green Infrastructure

The study used location entropy to analyse the spatial distribution of aggregated green
infrastructure carbon sink performance in each city [47]. Location entropy is also called spe-
cialization rate. It was first proposed by Hagget and applied to location analysis. Location
entropy is efficient in measuring the spatial distribution of certain regional elements. It has
been widely used in the evaluation of industrial agglomeration. The calculation formula is:

LQi = (Ti/Pi)/(T/P) (2)

In the formula, LQi represents the location entropy of the aggregated green infrastruc-
ture carbon sink of the city i; Ti is the carbon sink level of the aggregated green infrastructure
in the city i, i.e., carbon sequestration amount; Pi represents the area of the aggregated
green infrastructure in the city i; T is the total carbon sequestration amount of aggregated
green infrastructure within the study area; P represents the total area of aggregated green
infrastructure within the study area. Location entropy represents the ratio of the carbon
sink level of a city’s aggregated green infrastructure to the average carbon sink level of all
aggregated green infrastructures within the study area. If the location entropy is greater
than 1, it will indicate that the city’s aggregated green infrastructure carbon sink level is
higher than the average level of the study area, and vice versa.

2.3.3. Compactness of Aggregated Green Infrastructure

It has been confirmed that carbon sequestration amount is related to the spatial layout of
carbon sink elements. In order to explore the relationship between the carbon sink level and
the spatial layout of aggregated green infrastructure, the study adopted the Richardson index
to quantify the compactness of aggregated green infrastructure within the research area [14].

C = 2
√

π ∗ A/P (3)

C is the compactness; A is the actual aggregated green infrastructure area; P is the
circumcircle circumference. The larger the value of C, the closer the shape of the aggregated
green infrastructure is to a circle, the more likely the shape presents as block-shaped. The
smaller the value of C is, the more the shape of the aggregated green infrastructure deviates
from the circle and is in the shape of a band.

2.3.4. Spatial Autocorrelation

Spatial autocorrelation can analyse the law of spatial distribution. The study focused
on the correlation between a certain attribute value of a unit in space and that of the
surrounding units, and then analysed the statistical distribution law of spatial units and the
correlations of different spatial data. It can be divided into global space autocorrelation and
local space autocorrelation. Global spatial autocorrelation is used to describe the overall
distribution of things and analyse the spatial agglomeration of things, while local spatial
autocorrelation is to analyse the correlation between a certain element in space and its
adjacent elements [47,48].

The value range of the global Moran’s I is [−1, 1]. When the I has a positive value,
it means that the space is positively correlated, and the spatial units tend to aggregate;
when taking a negative value, it means that the space is negatively correlated, and the
spatial units tend to be spatially discrete; while 0 means that the spatial units are randomly
distributed. The significance test is usually performed with the Z value. When |Z score|
> 1.96 (p = 0.05), it indicates that there is significant spatial autocorrelation. If Ii (local
autocorrelation index of the i-th street) > 0 in the local spatial autocorrelation index (LISA)
agglomeration graph, it indicates that the equivalent values of adjacent streets are similar
(“low–low” or “high–high”); if Ii < 0, it indicates that the equivalence values of adjacent
streets are dissimilar (“low–high” or “high–low”).
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3. Results
3.1. Spatial Distribution Analysis of Aggregated Green Infrastructure Carbon Sink Performance
3.1.1. Aggregated Green Infrastructure Carbon Sequestration

There are three types of carbon sinks extracted based on remote sensing information:
forest land, grassland, and water area. The carbon sequestration model and related param-
eters were adopted to calculate the total annual CO2 sequestration in the aggregated green
infrastructure in the central urban area of Nanjing, which reached 34,439.78 t/a (Table 3).
After calculating the carbon sequestration amount of 90 aggregated green infrastructures in
the central urban area of Nanjing respectively, the study found a significantly large standard
deviation of the central urban area of Nanjing, which was at 2354.3169 t/a. It is shown
that the carbon sequestration capacity of aggregated green infrastructures in Nanjing had a
relatively large variation, with a middle range of 4.7915−96.4523 t/a (Table 4).

Table 3. Carbon sequestration in each carbon sink of urban green space in central Nanjing.

Carbon Sink Area (ha) Carbon Sink Volume (t/a)

Forest land 3386.10 30,576.48
Grassland 349.58 2695.26
Water area 558.87 1168.04

Total 4987.13 34,439.78

Table 4. Statistical characteristics of in each carbon sink of urban green space in central Nanjing.

Statistical Characteristics Carbon Sink Volume (t/a)

Sample size 90
Min 0.1922
Max 22,157.1381

Mean 375.6586
Standard Deviation 2354.3169

Upper quartile 4.7915
Median 27.2026

Lower quartile 96.4523
Quartile distance 69.2496

3.1.2. Spatial Distribution of Aggregated Green Infrastructure Carbon Sink Performance

The study paid close attention to the needs of residents’ well-being and sets a threshold
of 1200 m, a 15-min walking distance, to delineate the service range along the boundary of
aggregated green infrastructure [14]. It is set to characterize the range of residents’ daily
activities and life trajectories. Under this scenario, the allocation of the aggregated green
infrastructure resources that residents can enjoy in their daily lives is rationally monitored
accordingly. The study superimposed the above-mentioned six types of data and the ag-
gregated green infrastructure service range that satisfies the above two factors for further
analysis. In the meantime, the factors of carbon sequestration amount and location entropy
are selected to characterize the carbon sink performance of aggregated green infrastructure.
The carbon sequestration amount of aggregated green infrastructure was evenly divided into
three parts according to the numerical value, while location entropy was divided into two
parts the average amount “1” as the boundary. The service area was measured according to
the street unit and the natural interval method. The natural breakpoint method was adopted
to divide the service area of each street into three categories: high, medium, and low.

The effective carbon sequestration area of the aggregated green infrastructure with
an area larger than 100 ha is the highest, which should be attributed to the excellent
ecological environment. The highest annual carbon sequestration is 22,157.1381 t/a. These
aggregated green infrastructures are mainly located in the central and northeastern areas of
the city. Due to the natural landscape pattern and the age of urban development, only a few
clustered green infrastructures are located in the northwestern part of the city. Their carbon



Forests 2022, 13, 1661 8 of 17

sink performance tends to be poor. Most of the aggregated green infrastructures with low
carbon sequestration amount were located in the high-density central old urban area. The
carbon sequestration amount of them was less than 1 t/a. They were generally small in
these areas, which was related to their lack of better ecological benefits. In addition, the
central urban area was resource-intensive with frequent Socioeconomic activities, which
also caused more challenges to build medium and large aggregated green infrastructures
with strong carbon sequestration capabilities. In general, the carbon sequestration capacity
of aggregated green infrastructures in the central urban area of Nanjing varies, and the
northwestern part of the city lacked aggregated green infrastructures with high carbon
sequestration capability.

Results of the location entropy of aggregated green infrastructure showed 72 aggre-
gated green infrastructures have a location entropy of less than 1, densely distributed in
the central old urban area. The green spaces of northwestern part of the city area all had
a location entropy of less than 1, exhibiting a relatively bad performance of aggregated
green infrastructure carbon sinks. There were a total of 18 aggregated green infrastructures
with a location entropy greater than 1, which were concentrated in the central old city and
northwestern part of the city. Overall, the carbon sink performance of aggregated green
infrastructures in the central urban area of Nanjing varies, and northeast of the city lacked
aggregated green infrastructure with better carbon sink performance (Figure 3).

3.1.3. Spatial Autocorrelation of Aggregated Green Infrastructure Carbon Sink Performance

From the perspective of carbon sequestration amount, spatial autocorrelation analysis
showed that the first group of carbon sequestration exhibited the largest Moran’s I index
and the largest Z value, while the third group showed the smallest Moran’s I index and the
smallest Z value (Table 5). It indicated that the aggregated green infrastructures with small
carbon sequestration amounts had a relatively high degree of aggregation. In addition, the
p values of carbon sequestration in the three groups were all less than 0.01, indicating that
the carbon sequestration in the three groups had extremely significant space autocorrelation.
From the perspective of location entropy, the largest Moran’s I index of location entropy
appears in the first group, and it also showed the largest Z value. However, the second
group exhibited the smallest Moran’s I index of location entropy and the smallest Z value. It
indicated that aggregated green infrastructures that have less location entropy will appear
relatively significant space aggregation. In the meantime, the p-values of the two groups
were both less than 0.01, indicating that the two groups had extremely significant space
autocorrelation. Overall, the lower the carbon sequestration amount in aggregated green
infrastructure, the more significant the spatial correlation, and vice versa.

Table 5. Moran’s I index of carbon sink performance of aggregated green infrastructure.

Indicator Group Moran’s I Z Value p Value

Carbon sink
Group1 0.4192 13.9772 0.0000
Group2 0.1826 5.9574 0.0000
Group3 0.1522 5.4640 0.0000

Location entropy Group1 0.4369 14.1768 0.0000
Group2 0.2076 6.7441 0.0000

From the perspective of carbon sequestration amount, it can also be seen the first
group is dominated by low–low clusters: a total of 24 streets of this type are distributed in
the northern urban area. In addition, there are 11 streets in the high–high cluster type and
10 streets in the low–high cluster type, mainly distributed in the central old city. The second
group is dominated by high–high clusters with a total of 15 streets, mainly distributed in the
central old city. In addition, there are 14 low–low clusters, 2 high–low clusters, and 7 low–
high clusters, distributed at the edge of the central urban area. The third group is dominated
by low–low clusters: a total of 18 are distributed in the northwestern and southwestern
parts of the city. It has a total of 4 low–high clusters, and 10 high–high clusters, distributed
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in the northwest of the central urban area. From the perspective of location entropy, the first
group demonstrated both 17 high–high and low–low clusters. The high–high clusters were
distributed in the central urban area, and the low–low clusters were distributed in the north
of the central urban area. In addition, there were a total of 13 streets in the low–high cluster
type, which were distributed in the central old city. The second group of high–high clusters
showed a total of 14 streets, distributed in the northwest of the central city. There were
12 streets in low–low cluster type, distributed in the southwest of the central city. There
were respectively 2 streets in low–high clusters and high–low clusters, distributed in the
fringe area of the central urban area. In summary, the aggregated green infrastructures with
lower carbon sequestration amount and location entropy were concentrated in the central
old city, and those with higher indexes were concentrated in the southwest of the central
city. It showed that aggregated green infrastructures with low carbon sink performance
were concentrated in the central old urban areas, and those with higher performance were
concentrated in the southwest of the central city with better natural resources. Combined
with the global spatial autocorrelation analysis, results showed that aggregated green
infrastructures with low carbon sink performance had the most significant feature of space
agglomeration (Figure 4).

Forests 2022, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. Spatial distribution of carbon sink performance in aggregated green infrastructure. 

3.1.3. Spatial Autocorrelation of Aggregated Green Infrastructure Carbon Sink  
Performance 

From the perspective of carbon sequestration amount, spatial autocorrelation analy-
sis showed that the first group of carbon sequestration exhibited the largest Moran’s I 
index and the largest Z value, while the third group showed the smallest Moran’s I index 
and the smallest Z value (Table 5). It indicated that the aggregated green infrastructures 
with small carbon sequestration amounts had a relatively high degree of aggregation. In 
addition, the p values of carbon sequestration in the three groups were all less than 0.01, 
indicating that the carbon sequestration in the three groups had extremely significant 
space autocorrelation. From the perspective of location entropy, the largest Moran’s I in-
dex of location entropy appears in the first group, and it also showed the largest Z value. 
However, the second group exhibited the smallest Moran’s I index of location entropy 
and the smallest Z value. It indicated that aggregated green infrastructures that have less 
location entropy will appear relatively significant space aggregation. In the meantime, the 
p-values of the two groups were both less than 0.01, indicating that the two groups had 
extremely significant space autocorrelation. Overall, the lower the carbon sequestration 

Figure 3. Spatial distribution of carbon sink performance in aggregated green infrastructure.



Forests 2022, 13, 1661 10 of 17
Forests 2022, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. LISA of carbon sink performance of aggregated green infrastructure. 

  

Figure 4. LISA of carbon sink performance of aggregated green infrastructure.

3.1.4. Spatial Distribution Statistical of the Socioeconomic Activities and Aggregated Green
Infrastructure Carbon Sink Performance

In the paper, boxplots were adopted to analyse the correlation characteristics between
factors. After comparing the correlation between aggregated green infrastructures with
different carbon sequestration levels and human activities, it presented the following six
types of data, i.e., the population, income, employment opportunities, and richness of
cultural and recreational facilities within the area (Table 6). All exhibited good value if
the carbon sequestration amount was in the range of 0.1922–7.5511 t/a. It means that
aggregated green infrastructures with this range of carbon sequestration amount have
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more population, higher income, and more employment opportunities. This range also
indicated better transportation convenience, better public service convenience, and more
cultural and entertainment facilities. After comparing the relationship between aggregated
green infrastructures of different location entropy and human activities, it is found that the
six types of data (i.e., the population, income, transportation convenience, public service
convenience, employment opportunities, and cultural and recreational facilities richness
within the area) presented good value when location entropy was in the range of 0.0387-1.
It means that the aggregated green infrastructures with this range of location entropy
have more population, higher population income, better transportation convenience, bet-
ter public service convenience, more employment opportunities, and more cultural and
recreational facilities (Figure 5).
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Table 6. Pearson correlation coefficient.

Variables Area Shape
Carbon

Sink
Volume

Location
Entropy

The Income
of Residents

The
Number of
Residents

Public
Service Con-

venience

Employment
Opportuni-

ties

The Richness
of Cultural and

Recreational
Facilities

Transportation
Convenience

Area
1 −0.03 0.993 ** 0.206 −0.015 0.273 ** 0.466 ** 0.174 0.211 * 0.397 **

(0.778) (0) (0.051) (0.885) (0.009) (0) (0.102) (0.046) (0)

Shape −0.03 1 −0.036 0.107 −0.121 −0.309 ** −0.317 ** −0.119 −0.216 * −0.279 **
(0.778) (0.738) (0.315) (0.256) (0.003) (0.002) (0.263) (0.041) (0.008)

Carbon sink volume
0.993 ** −0.036 1 0.223 * −0.025 0.246 * 0.435 ** 0.143 0.184 0.355 **

(0) (0.738) (0.035) (0.818) (0.019) (0) (0.18) (0.082) (0.001)

Location entropy 0.206 0.107 0.223 * 1 −0.143 −0.109 0.012 −0.163 −0.178 −0.081
(0.051) (0.315) (0.035) (0.179) (0.304) (0.914) (0.125) (0.094) (0.448)

The income of residents
−0.015 −0.121 −0.025 −0.143 1 0.302 ** 0.251 * 0.374 ** 0.226 * 0.347 **
(0.885) (0.256) (0.818) (0.179) (0.004) (0.017) (0) (0.032) (0.001)

The number of residents
0.273 ** −0.309 ** 0.246 * −0.109 0.302 ** 1 0.865 ** 0.819 ** 0.875 ** 0.892 **
(0.009) (0.003) (0.019) (0.304) (0.004) (0) (0) (0) (0)

Public service convenience
0.466 ** −0.317 ** 0.435 ** 0.012 0.251 * 0.865 ** 1 0.762 ** 0.817 ** 0.919 **

(0) (0.002) (0) (0.914) (0.017) (0) (0) (0) (0)

Employment opportunities 0.174 −0.119 0.143 −0.163 0.374 ** 0.819 ** 0.762 ** 1 0.890 ** 0.866 **
(0.102) (0.263) (0.18) (0.125) (0) (0) (0) (0) (0)

The richness of cultural and
Recreational facilities

0.211 * −0.216 * 0.184 −0.178 0.226 * 0.875 ** 0.817 ** 0.890 ** 1 0.889 **
(0.046) (0.041) (0.082) (0.094) (0.032) (0) (0) (0) (0)

Transportation convenience 0.397 ** −0.279 ** 0.355 ** −0.081 0.347 ** 0.892 ** 0.919 ** 0.866 ** 0.889 ** 1
(0) (0.008) (0.001) (0.448) (0.001) (0) (0) (0) (0)

Note: ** and * indicate 1% and 5% significance levels, respectively.

In summary, aggregated green infrastructures with a carbon sequestration range of
0.1922–7.5511 t/a and location entropy range of 0.0387–1 were mainly distributed in the
areas of the old urban area. These aggregated green infrastructures are the most attractive
to socioeconomic activities.

4. Discussion
4.1. Carbon Sink Performance of Urban Aggregated Green Infrastructure

According to the latest urban planning of Nanjing, the urban green infrastructure
construction focuses on the northwest and southwest regions. These regions overlap with
most of the green infrastructure concentration areas with low carbon sink performance
in our results. It is noteworthy that the carbon sink performance of the concentrated
green infrastructure in the urban centre area does not perform well in our study findings.
However, this part of the region has not received much attention from policy makers.
Kopecka, M. et al. study of urban aggregated green infrastructure in Slovakia showed the
limitations of Sentinel-2A data in identifying tree and shrub cover. This is similar to our
identification results. Therefore, we used the average of the carbon sink coefficients of trees
and shrubs from previous studies as the carbon sink coefficients of woodlands. We more
accurately calculated the carbon sink performance of tree and shrub covered land for urban
aggregated green infrastructure compared to the study of Kopecka, M. et al. [32].

There have been studies on urban green carbon sinks, mainly involving macro-level
studies on large-scale urban forests and fine-scale studies on the carbon sink capacity of
individual vegetation type [26,49]. The results on the carbon sink performance of aggre-
gated green infrastructure at the city level are scarce due to data precision limitations. As
the resolution of the Sentinel-2A satellite is high enough, we try to use it to discern aggre-
gated green infrastructure within cities. In addition, we analysed the spatial distribution
characteristics in areas with concentrated urban functions through spatial autocorrelation.
It has been shown that spatial autocorrelation can analyse the correlation of the same
variable in different spatial locations and is a measure of the degree of agglomeration in a
spatial domain. At present, it is mostly applied to studies where the economic geography
has obvious polarization and diffusion effects or the ecological environment has obvious
regional differentiation characteristics [50,51]. In this paper, global spatial autocorrelation
and local spatial autocorrelation are introduced to identify the spatial agglomeration char-
acteristics of carbon sink performance of aggregated green infrastructure in metropolitan
areas. Our results show that the aggregated green infrastructure with excellent carbon
sink performance exhibits aggregation effect spatially. The clusters with poor carbon sink
performance are relatively dispersed. In the future, we should focus on the concentrated
areas of aggregated green infrastructures with poor carbon sink performance. Based on
previous studies and the findings of this study, we conclude that concentrating the clus-
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tered green infrastructure with excellent carbon sink performance can bring about better
carbon sink effects [34,52–54]. Therefore, we suggest focusing on optimizing the existing
clustered green infrastructure with poor carbon sink performance. The best carbon sink
performance of the forest floor in this study. In addition, some studies have indicated that
tree species with large leaf area have better carbon sink capacity due to their excellent
photosynthetic effect [55,56]. In summary, we could reasonably increase the proportion of
tree species with larger leaf area for optimizing the carbon sink performance of aggregated
green infrastructure. It is advisable to build small aggregated green infrastructure with
excellent carbon sink performance in areas where aggregated green infrastructure with
poor carbon sink performance is concentrated to produce better carbon sink effects.

4.2. Effects of Human Socioeconomic Activities

Due to previous urban development and pristine topography, socioeconomic activities
are concentrated in the urban centre and the southwest part of the city. In particular, those
aggregated green infrastructures with excellent vegetation conditions and potentially better
carbon sink performance are concentrated in the northeastern part of the city. These areas
are not densely populated with socioeconomic activities and have a higher topography.
This is generally consistent with the results of our study. Dietmar Sattler et al. showed
that topographic conditions are an important influence on the performance of vegetation
carbon sinks in Brazil. The carbon sink performance of vegetation with flat topography
was better than that of sloping land [57]. This has some differences with our study. We
consider that it is mainly related to the dense population around urban aggregated green
infrastructure in China, which is more influenced by socioeconomic activities.

Many studies found that carbon sink changes are closely related to human activities.
Zhang’s study shows that aggregated green infrastructure carbon sinks are significantly
influenced by human activities [58]. The more intensive the human activity, the worse the
carbon sink capacity. Previously, human activity data have been studied using nighttime
lights, population-kilometre grid, official government data, etc. [59–61]. Since the data
are macro-level, it is difficult to reflect the socioeconomic situation within urban cities.
POI data are immediate and flexible. As a result, they are excellent for research exploring
socio-economic activities inside and outside the city. In this study, we introduce six types of
POI data representing socioeconomic activities to analyse their correlation with aggregated
green infrastructure carbon sink performance [14]. The results showed that aggregated
green infrastructure with carbon sink (0.1922–7.5511 t/a) and locational entropy (0.0387-1)
had the strongest effect on the aggregation of socioeconomic activities. Most of these
clustered green infrastructures have an area of less than 25 ha and a spacing of less than
0.3. This represents a concentration of socioeconomic activities in the surrounding area,
although the carbon sink performance of small and medium-sized strip aggregated green
infrastructures is poor. Obviously, it is difficult to add large and medium-sized aggregated
green infrastructure in densely populated and resource-intensive urban centres. We can
build small aggregated green infrastructures in appropriate spaces. This will greatly
improve the performance of the urban ecosystem carbon sink. It is advisable to build
ecological corridors along the strip-shaped spaces such as roads and river. Although the
carbon sink performance of ribbon aggregated green infrastructure is poorer than that
of compact aggregated green infrastructure, the results of this study and some previous
findings suggest that the aggregation effect of ribbon green infrastructure on socioeconomic
activities is stronger. In general, the establishment of ecological corridors along ribbon
spaces such as roads and rivers are desirable. This is a way to strengthen the links between
different green infrastructures. It is preferable to plant trees with larger leaves and increase
species richness to enhance carbon sink capacity [62–64].

4.3. Research Limitations and Future Development Direction

The present study has two main limitations. One limitation is that we used coefficients
from previous studies for the carbon sink calculations, which may be different from the
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actual situation. Another limitation is that the POI data lack comparisons of socioeconomic
activities in the same region over time. It is weaker than traditional data in responding to
a period of time. Combining previous studies and the findings of this study, we suggest
the following future directions: (1) Sentinel-2A is a new satellite with high accuracy that
performs well for the measurement of green infrastructure carbon sinks within cities. It
could be used as a new way for fine-scale carbon sink research. (2) POI is a flexible and
instantaneous data representing urban socioeconomic activities. It could be widely applied
to the study of human–ecosystem interaction in the future. (3) Spatial autocorrelation is a
method to study the spatial aggregation relationship of geographical elements. It could be
used as an interdisciplinary research method in ecology in the future to study the spatial
relationship of ecological elements within cities.

5. Conclusions

This study was conducted based on the Sentinel-2A satellite, combining it with six
types of socioeconomic activities POI. We calculated the carbon sink performance of 90
aggregated green infrastructures. In addition, the carbon sequestration and location entropy
spatial aggregation relationships of 79 street aggregated green infrastructures were evaluated
by spatial autocorrelation methods. The results showed that the carbon sequestration and
location entropy of aggregated green infrastructures in the northeastern part of the city were
higher than those in the southwestern part. However, socioeconomic activities are more
dispersed in the northeastern part, while they were more intensive in the southwest. This
indicated a spatial distribution inconsistency between Socioeconomic activities and carbon sink
performance in aggregated green infrastructures. Due to the dense urban development caused
by resource constraints and topographic constraints, the aggregated green infrastructures
area was different, and the connection was insufficient, resulting in the differentiation of
Socioeconomic activities needs. Overall, our study provides to a new direction for calculating
the carbon sink performance of urban aggregated green infrastructure at a fine scale. Moreover,
we also reveal in depth the pattern between the carbon sink performance of urban aggregated
green infrastructure and human socioeconomic activities. It is critical for more efficient
utilization of carbon sink performance of urban aggregated green infrastructure in the future.
The most important point is that these findings provide an important reference for green
infrastructure planning in urban areas with intensive human socioeconomic activities. They
indicate the way to achieve carbon neutrality in cities.
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