Bibliometric Analysis of the Green Gluing Technique (2000–2020): Trends and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometrics Analysis of Research on Green Gluing
3.1.1. Annual Publications
3.1.2. Leading Publications Contributing to the Research Field
3.1.3. The Leading Country Contributing to the Research Field
3.1.4. Principal Authors Contributing to the Research Field
3.1.5. Most Cited Documents
3.2. Science Mapping: Structure of the Research Field
3.2.1. Main Research Themes: Co-Occurrence of Keywords
3.2.2. Scientific Collaboration Network (Co-Authorship Analysis): Prominent Investigators
3.2.3. Network of Top Countries and Institutions
3.3. Qualitative Interpretation—Identification and Interpretation of Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sterley, M. Green Gluing of Wood; KTH—Royal Institute of Technology: Stockolm, Sweden, 2004. [Google Scholar]
- Wessels, C.B.; Nocetti, M.; Brunetti, M.; Crafford, P.L.; Pröller, M.; Dugmore, M.K.; Pagel, C.; Lenner, R.; Naghizadeh, Z. Green-glued engineered products from fast growing Eucalyptus trees: A review. Eur. J. Wood Wood Prod. 2020, 78, 933–940. [Google Scholar] [CrossRef]
- Sterley, M.; Serrano, E.; Enquist, B. Fracture characterisation of green-glued polyurethane adhesive bonds in mode I. Mater. Struct. Constr. 2013, 46, 421–434. [Google Scholar] [CrossRef]
- Sterley, M.; Gustafsson, P.J. Shear fracture characterization of green-glued polyurethane wood adhesive bonds at various moisture and gluing conditions. Wood Mater. Sci. Eng. 2012, 7, 93–100. [Google Scholar] [CrossRef]
- Pommier, R.; Elbez, G. Finger-jointing green softwood: Evaluation of the interaction between polyurethane adhesive and wood. Wood Mater. Sci. Eng. 2006, 1, 127–137. [Google Scholar] [CrossRef]
- Zhao, L.F.; Liu, Y.; Xu, Z.D.; Zhang, Y.Z.; Zhao, F.; Zhang, S.B. State of research and trends in development of wood adhesives. For. Stud. China 2011, 13, 321–326. [Google Scholar] [CrossRef]
- Pizzi, A. Wood products and green chemistry. Ann. For. Sci. 2016, 73, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a sustainable raw material for green chemistry: A review. Ind. Crops Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Henn, K.A.; Forssell, S.; Pietiläinen, A.; Forsman, N.; Smal, I.; Nousiainen, P.; Bangalore Ashok, R.P.; Oinas, P.; Österberg, M. Interfacial catalysis and lignin nanoparticles for strong fire- and water-resistant composite adhesives. Green Chem. 2022, 24, 6487–6500. [Google Scholar] [CrossRef]
- Moini, N.; Khaghanipour, M.; Faridani, F.; Jahandideh, A. Green Adhesives—Past, Present, and Future Outlook; Elsevier Inc.: Amsterdam, The Netherlands, 2022; ISBN 9780323996433. [Google Scholar]
- Chang, Y.S.; Han, Y.; Shin, H.K.; Kim, M.J. Evaluation of drying and anatomical characteristics of Mongolian oak lumber by kiln drying with respect to storage time after sawing. Eur. J. Wood Wood Prod. 2020, 78, 1017–1022. [Google Scholar] [CrossRef]
- Morlier, P.; Coureau, J.L. An Innovative Technology: Gluing of Wet (Green) Timber. In Proceedings of the 4th International Seminar for Value-Added Innovating Products in Pine, Bordeaux, France, 20–25 July 2003. [Google Scholar]
- Serrano, E.; Oscarsson, J.; Enquist, B.; Sterley, M.; Petersson, H.; Källsner, B. Green-glued laminated beams—High performance and added value. In Proceedings of the 11th World Conference Timber Engineering (WCTE 2010), Trentino, Italy, 24 June 2010; Volume 2, pp. 1664–1669. [Google Scholar]
- Nocetti, M.; Pröller, M.; Brunetti, M.; Dowse, G.P.; Wessels, C.B. Investigating the potential of strength grading green Eucalyptus grandis lumber using multi-sensor technology. BioResources 2017, 12, 9273–9286. [Google Scholar]
- Sterley, M.; Blümer, H.; Wålinder, M.E.P. Edge and face gluing of green timber using a one-component polyurethane adhesive. Holz Roh Werkst. 2004, 62, 479–482. [Google Scholar] [CrossRef]
- Lavalette, A.; Cointe, A.; Pommier, R.; Danis, M.; Delisée, C.; Legrand, G. Experimental design to determine the manufacturing parameters of a green-glued plywood panel. Eur. J. Wood Wood Prod. 2016, 74, 543–551. [Google Scholar] [CrossRef]
- Pommier, R.; Grimaud, G.; Prinçaud, M.; Perry, N.; Sonnemann, G. LCA (Life Cycle Assessment) of EVP—Engineering veneer product: Plywood glued using a vacuum moulding technology from green veneers. J. Clean. Prod. 2016, 124, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.; Kang, H.; Zhang, W.; Li, J.; Zhang, S.; Huang, A. Reduction of energy consumption of green plywood production by implementing high-efficiency thermal conductive bio-adhesive: Assessment from pilot-scaled application. J. Clean. Prod. 2019, 210, 1366–1375. [Google Scholar] [CrossRef]
- Díaz-López, C.; Carpio, M.; Martín-Morales, M.; Zamorano, M. Analysis of the scientific evolution of sustainable building assessment methods. Sustain. Cities Soc. 2019, 49, 101610. [Google Scholar] [CrossRef]
- Ekanayake, E.M.A.C.; Shen, G.; Kumaraswamy, M.M. Mapping the knowledge domains of value management: A bibliometric approach. Eng. Constr. Archit. Manag. 2019, 26, 499–514. [Google Scholar] [CrossRef]
- Martinez, P.; Al-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for construction. Autom. Constr. 2019, 107, 102947. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, Y.; Zhong, Y.; Dong, H.; Liu, Z. A bibliometric analysis on waste electrical and electronic equipment research. Environ. Sci. Pollut. Res. 2019, 26, 21098–21108. [Google Scholar] [CrossRef]
- Properzi, M.; Pizzi, A.; Uzielli, L. Comparative wet wood glueing performance of different types of glulam wood adhesives. Holz Roh Werkst. 2003, 61, 77–78. [Google Scholar] [CrossRef]
- Vick, C.B.; Okkonen, E.A. Durability of one-part polyurethane bonds to wood improved by HMR coupling agent. For. Prod. J. 2000, 50, 69–75. [Google Scholar]
- Alawode, A.O.; Eselem-Bungu, P.S.; Amiandamhen, S.O.; Meincken, M.; Tyhoda, L. Evaluation of Irvingia kernels extract as biobased wood adhesive. J. Wood Sci. 2020, 66, 12. [Google Scholar] [CrossRef]
- Sterley, M.; Serrano, E.; Enquist, B.; Hornatowska, J. Finger Jointing of Freshly Sawn Norway Spruce Side Boards—A Comparative Study of Fracture Properties of Joints Glued with Phenol-Resorcinol and One-Component Polyurethane Adhesive. In RILEM International Symposium on Materials and Joints in Timber Structures; Springer: Dordrecht, The Netherlands, 2014; Volume 9, pp. 325–339. [Google Scholar]
- Na, B.; Pizzi, A.; Delmotte, L.; Lu, X. One-component polyurethane adhesives for green wood gluing: Structure and temperature-dependent creep. J. Appl. Polym. Sci. 2005, 96, 1231–1243. [Google Scholar] [CrossRef]
- He, M.; Sun, X.; Li, Z.; Feng, W. Bending, shear, and compressive properties of three-and five-layer cross-laminated timber fabricated with black spruce. J Wood Sci 2020, 66, 38. [Google Scholar] [CrossRef]
- Crafford, P.L.; Wessels, C.B. The potential of young, green finger-jointed Eucalyptus grandis lumber for roof truss manufacturing. South. For. 2016, 78, 61–71. [Google Scholar] [CrossRef]
- Tarvainen, V. Measures for Improving Quality and Shape Stability of Sawn Softwood Timber during Drying and Under Service Conditions: Best Practice Manual to Improve Straightness of Sawn Timber; VTT Publ.: Helsinki, Finland, 2005; pp. 3–149. [Google Scholar]
- Karastergiou, S.; Mantanis, G.I.; Skoularakos, K. Green gluing of oak wood (Quercus conferta L.) with a one-component polyurethane adhesive. Wood Mater. Sci. Eng. 2008, 3, 79–82. [Google Scholar] [CrossRef]
- Berchane, N.S.; Andrews, M.J.; Kerr, S.; Slater, N.K.H.; Jebrail, F.F. On the mechanical properties of bovine serum albumin (BSA) adhesives. J. Mater. Sci. Mater. Med. 2008, 19, 1831–1838. [Google Scholar] [CrossRef]
- Makomra, V.; Oum Lissouck, R.; Pommier, R.; Ngoc, A.P.; Breysse, D.; Denaud, L.; Ayina Ohandja, L.M. Analysis of drying stresses in green-glued plywood of Bete (Mansonia Altissima) specie. J. Wood Sci. 2020, 66, 1–12. [Google Scholar] [CrossRef]
- Clouet, B.; Pommier, R.; Danis, M. New composite timbers: Full-field analysis of adhesive behavior. J. Strain Anal. Eng. Des. 2014, 49, 155–160. [Google Scholar] [CrossRef]
- Puettmann, M.E.; Wilson, J.B. Life-cycle analysis of wood products: Cradle-to-gate LCI of residential wood building materials. Wood Fiber Sci. 2005, 37, 18–29. [Google Scholar]
- Aguilar Soto, M. Bibliometric and Webmetric Presence of Nanoscience and Nanotechnology Authors: Web of Science-2012/web-2014—Dialnet, Universidad de Granada. 2016. Available online: https://digibug.ugr.es/handle/10481/48602 (accessed on 26 August 2022).
- Guzmán Sánchez, M.V.; Trujillo Cancino, J. Bibliometric maps or maps of science: A useful tool for developing metric studies of information. Bibl. Univ. 2013, 16, 95–108. [Google Scholar]
- Cantos-Mateos, G.; Vargas-Quesada, B.; Chinchilla-Rodríguez, Z.; Zulueta, M.A. Stem cell research: Bibliometric analysis of main research areas through KeyWords Plus. Aslib Proc. 2012, 64, 561–590. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, C. Visualizing Research Lines in Public Health: An analysis Based on Bibliometric Maps Applied to the Revista Española de Salud Pública (2006–2015). Rev. Esp. Salud Publica 2016, 90, e1–e10. [Google Scholar] [PubMed]
- Garfield, E. KeyWords Plus-ISI’s breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Curr. Content 1990, 32, 5–9. [Google Scholar]
- Na, B.; Pizzi, A.; Lu, X. Green wood gluing by traditional honeymoon PRF adhesives. Holz Roh Werkst. 2005, 63, 473–474. [Google Scholar] [CrossRef]
- Na, B.; Lu, X.; Pizzi, A. Creep and temperature-dependent creep of one component polyurethane adhesives for green wood gluing. Wood Res. 2014, 59, 265–272. [Google Scholar] [CrossRef]
- He, Q.; Ziegler-Devin, I.; Chrusciel, L.; Obame, S.N.; Hong, L.; Lu, X.; Brosse, N. Lignin-First Integrated Steam Explosion Process for Green Wood Adhesive Application. ACS Sustain. Chem. Eng. 2020, 8, 5380–5392. [Google Scholar] [CrossRef]
Ranking | Source Name | Research Area OECD | Total Papers | Highest Quartile | Total Cites | Most Cited Papers |
---|---|---|---|---|---|---|
1 | European Journal of Wood and Wood Products | Engineering & Technology | 8 | Q1 | 64 | [24] |
2 | World Conference on Timber Engineering | Agricultural Sciences | 5 | N/A | 5 | [13] |
3 | Forest Products Journal | Engineering & Technology | 5 | Q3 | 48 | [25] |
4 | Wood Material Science and Engineering | Engineering & Technology | 3 | Q2 | 30 | [5] |
5 | Journal of Wood Science | Engineering & Technology | 2 | Q3 | 0 | [26] |
6 | Rilem Bookseries: Materials and Joints in Timber Structures | Engineering & Technology | 2 | Q3 | 8 | [27] |
7 | Journal of Applied Polymer Science | Natural Sciences | 2 | Q1 | 29 | [28] |
8 | Bioresources | Engineering & Technology | 2 | Q2 | 9 | [14] |
9 | Journal of Cleaner Production | Engineering & Technology | 2 | Q1 | 45 | [19] |
10 | ACS Sustainable Chemistry & Engineering | Engineering & Technology | 1 | Q1 | 4 | [29] |
Country | Total Papers | Total Papers (%) | WoS Cites | Scopus Cites | International Collaborations | Organization | Organization Type | References |
---|---|---|---|---|---|---|---|---|
France | 17 | 33 | 153 | 183 | 47% | University of Bordeaux | Academic | [17] |
China | 10 | 19 | 83 | 87 | 70% | Nanjing Forestry University | Academic | [28] |
United States | 8 | 15 | 134 | 156 | 50% | USDA Forest Service | Government | [25] |
Sweden | 7 | 13 | 27 | 36 | 0% | Linnaeus University | Academic | [4] |
South Africa | 5 | 10 | 26 | 23 | 60% | Stellenbosch University | Academic | [30] |
Italy | 4 | 8 | 38 | 36 | 100% | Istituto per la Valorizzazione del Legno e delle Specie Arboree | Research Institute | [14] |
Finland | 3 | 6 | 11 | 11 | 33% | VTT | Research Institute | [31] |
Greece | 2 | 4 | 4 | 13 | 0% | Technological Education Institute (TEI) of Larissa | Academic | [32] |
United Kingdom | 2 | 4 | 12 | 10 | 50% | University of Cambridge | Academic | [33] |
Cameroon | 2 | 4 | 0 | 0 | 100% | The University of Yaounde I | Academic | [34] |
Author | Affiliation | Country | Total Papers | WoS Cites | Scopus Cites | First Author | References |
---|---|---|---|---|---|---|---|
Pommier, R. | University of Bordeaux | France | 9 | 19 | 44 | 4 | [5] |
Sterley, M. | SP Technical Research Institute of Sweden | Sweden | 7 | 27 | 36 | 5 | [15] |
Pizzi, A. | University of Lorraine | France | 6 | 131 | 135 | 1 | [7] |
Lu, X. | Nanjing Forestry University | China | 5 | 33 | 35 | 0 | [28] |
Danis, M. | University of Bordeaux | France | 4 | 6 | 9 | 0 | [35] |
Enquist, B. | Linnaeus University | Sweden | 4 | 6 | 14 | 0 | [27] |
Serrano, E. | Linnaeus University | Sweden | 4 | 6 | 14 | 2 | [13] |
Na, B. | Nanjing Forestry University | China | 4 | 30 | 31 | 4 | [28] |
Wessels, C.B. | Stellenbosch University | South Africa | 4 | 26 | 23 | 1 | [2] |
Proller, M. | Stellenbosch University | South Africa | 3 | 14 | 13 | 1 | [14] |
Document Title | Document Type | Year | Highest Quartile | WoS Cites | Scopus Cites | Source | References |
---|---|---|---|---|---|---|---|
Wood products and green chemistry | Review | 2016 | Q1 | 77 | 81 | Annals of Forest Science | [7] |
Life-cycle analysis of wood products: Cradle-to-gate LCI of residential wood building materials | Article | 2005 | Q2 | 71 | 100 | Wood and Fiber Science | [36] |
Reduction of energy consumption of green plywood production by implementing high-efficiency thermal conductive bio-adhesive: Assessment from pilot-scaled application | Article | 2019 | Q1 | 28 | 29 | Journal of Cleaner Production | [19] |
Durability of one-part polyurethane bonds to wood improved by HMR coupling agent | Article | 2000 | Q3 | 27 | 25 | Forest Products Journal | [25] |
Comparative wet wood glueing performance of different types of Glulam wood adhesives | Article | 2003 | Q1 | 24 | 23 | European Journal of Wood and Wood Products | [24] |
One-component polyurethane adhesives for green wood gluing: Structure and temperature-dependent creep | Article | 2005 | Q1 | 22 | 23 | Journal of Applied Polymer Science | [28] |
Edge and face gluing of green timber using a one-component polyurethane adhesive | Article | 2004 | Q1 | 14 | 13 | European Journal of Wood and Wood Products | [15] |
LCA (Life Cycle Assessment) of EVP—engineering veneer product: plywood glued using a vacuum moulding technology from green veneers | Article | 2016 | Q1 | 13 | 16 | Journal of Cleaner Production | [17] |
On the mechanical properties of bovine serum albumin (BSA) adhesives | Article | 2008 | Q1 | 12 | 10 | Journal of Materials Science-Materials in Medicine | [33] |
The potential of young, green finger-jointed Eucalyptus grandis lumber for roof truss manufacturing | Article | 2016 | Q2 | 12 | 10 | Southern Forests | [30] |
Keyword | Occurrences | Total Link Strength | Cluster | Avg. Pub. Year | Avg. Citation |
---|---|---|---|---|---|
gluing | 26 | 410 | 2 | 2012 | 5 |
polyurethane | 21 | 262 | 1 | 2009 | 8 |
adhesives | 20 | 314 | 1 | 2013 | 10 |
green gluing | 20 | 279 | 1 | 2011 | 6 |
wood | 15 | 275 | 1 | 2011 | 20 |
finger joint | 12 | 120 | 2 | 2010 | 5 |
timber | 11 | 182 | 2 | 2010 | 4 |
moisture | 9 | 132 | 2 | 2011 | 7 |
wood products | 8 | 133 | 1 | 2016 | 19 |
drying | 7 | 128 | 3 | 2014 | 1 |
strength properties | 7 | 94 | 2 | 2011 | 13 |
glue | 6 | 112 | 2 | 2011 | 9 |
wood adhesive | 6 | 102 | 1 | 2014 | 3 |
lumber | 6 | 91 | 2 | 2011 | 7 |
strength | 6 | 87 | 1 | 2012 | 7 |
glulam | 6 | 69 | 1 | 2010 | 6 |
elasticity | 5 | 101 | 2 | 2010 | 5 |
adhesive bond | 5 | 93 | 3 | 2012 | 2 |
plywood | 5 | 87 | 2 | 2017 | 10 |
thermoanalysis | 5 | 85 | 1 | 2018 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Grau, G.; Marín-Uribe, C.; Cortés-Rodríguez, P.; Montero, C.; Rosales, V.; Galarce, C. Bibliometric Analysis of the Green Gluing Technique (2000–2020): Trends and Perspectives. Forests 2022, 13, 1714. https://doi.org/10.3390/f13101714
Rodríguez-Grau G, Marín-Uribe C, Cortés-Rodríguez P, Montero C, Rosales V, Galarce C. Bibliometric Analysis of the Green Gluing Technique (2000–2020): Trends and Perspectives. Forests. 2022; 13(10):1714. https://doi.org/10.3390/f13101714
Chicago/Turabian StyleRodríguez-Grau, Gonzalo, Carlos Marín-Uribe, Patricio Cortés-Rodríguez, Claudio Montero, Víctor Rosales, and Carlos Galarce. 2022. "Bibliometric Analysis of the Green Gluing Technique (2000–2020): Trends and Perspectives" Forests 13, no. 10: 1714. https://doi.org/10.3390/f13101714
APA StyleRodríguez-Grau, G., Marín-Uribe, C., Cortés-Rodríguez, P., Montero, C., Rosales, V., & Galarce, C. (2022). Bibliometric Analysis of the Green Gluing Technique (2000–2020): Trends and Perspectives. Forests, 13(10), 1714. https://doi.org/10.3390/f13101714