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Abstract: This article presents a method, based on orbital remote sensing, to map the extent of forest
plantations in São Paulo State (Southeast Brazil). The proposed method uses the random forest
machine learning algorithm available on the Google Earth Engine (GEE) cloud computing platform.
We used 30 m annual mosaics derived from Landsat-5 Thematic Mapper (TM) images and from
Landsat-8 Operational Land Imager (OLI) images for the 1985 to 1995 and 2013 to 2021 time periods,
respectively. These time periods were selected based on the planted areas’ rotation, especially the
eucalypt’s short rotation. To classify the forest plantations, green, red, NIR, and MIR spectral bands,
NDVI, GNDVI, NDWI, and NBR spectral indices, and vegetation, shade, and soil fractions were
used for both sensors. These indices and the fraction images have the advantage of reducing the
volume of data to be analyzed and highlighting the forest plantations’ characteristics. In addition, we
also generated one mosaic for each fraction image for the TM and OLI datasets by computing the
maximum value through the period analyzed, facilitating the classification of areas occupied by forest
plantations in the study area. The proposed method allowed us to classify the areas occupied by two
forest plantation classes: eucalypt and pine. The results of the proposed method compared with the
forest plantation areas extracted from the land use and land cover maps, provided by the MapBiomas
product, presented the Kappa values of 0.54 and 0.69 for 1995 and 2020, respectively. In addition, two
pilot areas were used to evaluate the classification maps and to monitor the phenological stages of
eucalypt and pine plantations, showing the rotation cycle of these plantations. The results are very
useful for planning and managing planted forests by commercial companies and can contribute to
developing an automatic method to map forest plantations on regional and global scales.

Keywords: linear spectral mixing model; fraction images; eucalypt; pine; forest plantation; image
processing

1. Introduction

Remote sensing techniques are useful tools for identifying and characterizing land use
and land cover (LULC) classes and changes due to the synoptic view of large geographical
regions associated with lower monetary costs when compared to other acquisition methods
such as field campaigns. Traditionally, less attention has been given to time and, in
particular, to the high-frequency dynamics of several LULC types such as forest plantations.
The increasing availability of time series of orbital remote-sensing-derived images and the
potential contribution of them to environmental management and conservation emphasizes
the need for the development of specific approaches to properly deal with the unique
nature and volume of these data [1].

Time-series analyses of orbital remote sensing data address the identification of LULC
change patterns in time and space and the incorporation of vegetation seasonality and

Forests 2022, 13, 1716. https://doi.org/10.3390/f13101716 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13101716
https://doi.org/10.3390/f13101716
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-1469-8433
https://orcid.org/0000-0003-2105-9055
https://orcid.org/0000-0002-4454-7732
https://orcid.org/0000-0002-4645-0117
https://orcid.org/0000-0001-6728-4712
https://doi.org/10.3390/f13101716
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13101716?type=check_update&version=1


Forests 2022, 13, 1716 2 of 20

phenological cycle information in the analyses [2,3]. The maximum fraction images (veg-
etation, soil, and shade) have been successfully used for mapping LULC, especially in
agricultural areas [4,5]. Many of these investigations have focused on local and regional
scales, incorporating products derived from one or more orbital remote sensors. Such
approaches can be adapted to monitor forest plantations, especially of eucalypt, which
presents a short growth cycle varying from 6 to 8 years. Therefore, this cycle can be assessed
when using time series derived from orbital remote sensing datasets.

The distribution of fast-growing eucalypt plantations across a large part of Brazil,
based on the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m NDVI
variations, was presented by Le Maire et al. [6]. They found that mapping short-rotation
species such as eucalypt demands multiple images across the time and quality of spatial
resolution to identify the patterns of forest stands and reduce mixed-pixel issues. For this,
using linear spectral mixing models improves classification results using remote sensing
data [7–9].

Qiao et al. [10] observed that although the spatial resolution of Landsat sensors
has been improved compared to the MODIS NDVI product, it remained impractical to
map eucalyptus plantations efficiently based on spectral or textural features at a higher
spatial resolution. The reason is that, as an artificial forest, eucalypt has a unique growth
cycle: the wood is harvested, and trees are regenerated or replanted for another growth
cycle after several years. Thus, a method to identify short-rotation eucalypt plantations
by exploring the changing pattern of vegetation indices due to tree crop rotation and
spectral characteristics of eucalypt plantations at the specific wavelengths was presented
by Deng et al. [11].

In 2020, 78% of the Brazilian planted area consisted of Eucalyptus species, and 18%
consisted of pine [12]. São Paulo State, the one that contributes the most to the Brazilian
economy, planted almost 18.1% of the eucalypt area in Brazil [12]. The planted forests
of São Paulo State are considered not only an important source of income, but also an
alternative for composing permanent preservation areas, legal reserves, and private natural
heritage reserves. Therefore, the accurate identification of the planted forests in São Paulo
State is necessary for their proper management and for developing special policies that
contribute to environmental regulations in the existing areas.

In this context, the primary objective of this work is to present a method to assess the
extent of eucalypt and pine plantation areas located in São Paulo State, Southeast Brazil,
using annual Landsat Thematic Mapper (TM, 1985–1995) and Operational Land Imager
(OLI, 2013–2021) sensors’ time-series images. In addition to multiannual mosaics of TM and
OLI spectral bands, the proposed method also used spectral indices and fraction images
derived from the linear spectral mixing model (LSMM) as input data.

2. Materials and Methods
2.1. Study Area

We have defined the state of São Paulo, located in Southeast Brazil, as the study area.
São Paulo State has 248,209 km2 of extensions and is located between the parallels 19◦5′

and 25◦ south and meridians 44◦ and 53◦5′ west (Figure 1). The state has undergone several
periods of intense land use and land cover changes (LULCC) marked by agriculture cycles.
About 22.9% of the state territory was covered by native vegetation in 2020, whereas, during
the last ten years, the net growth of vegetation was around 2140 km2 (4.9%) [13].
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Two pilot areas were selected for phenological analysis of forest plantations, 

specifically, areas of Eucalyptus and Pinus species. The first one, inserted within the 
municipality of Mogi Guaçu, is located at 22°15′ S and 47°10′ W and is representative of 
pine and eucalypt plantations common in this region (Figure 2). This area includes the 
Campininha Pine Experimental Station of the Forestry Institute of São Paulo State (IFSP), 
the Santa Terezinha Eucalypt Plantation of the Sylvamo Company, and surrounding areas 
(Figure 1). The major Pinus species in Campininha are P. elliottii and P. taeda [14]. Other 
species such as P. caribaea, P. bahamensis, P. oocarpa, and P. palustris are also planted in 
small areas [8]. During the first study period (1985–1995), the eucalypt plantation, due to 
its commercial purpose, presented different phenological stages according to the rotation 
cycle with 8.5 years of average harvesting. The second study period (2013–2021) presented 
eucalypt plantations following several rotation cycles, whereas pine plantations were the 
same as in the previous study [9]. Therefore, pine plantations are older plantations. 

Figure 1. Location of the study area, São Paulo State, within Brazil. The pilot areas are highlighted in
the figure.

2.2. Pilot Areas

Two pilot areas were selected for phenological analysis of forest plantations, specifi-
cally, areas of Eucalyptus and Pinus species. The first one, inserted within the municipality
of Mogi Guaçu, is located at 22◦15′ S and 47◦10′ W and is representative of pine and
eucalypt plantations common in this region (Figure 2). This area includes the Campininha
Pine Experimental Station of the Forestry Institute of São Paulo State (IFSP), the Santa
Terezinha Eucalypt Plantation of the Sylvamo Company, and surrounding areas (Figure 1).
The major Pinus species in Campininha are P. elliottii and P. taeda [14]. Other species such as
P. caribaea, P. bahamensis, P. oocarpa, and P. palustris are also planted in small areas [8]. During
the first study period (1985–1995), the eucalypt plantation, due to its commercial purpose,
presented different phenological stages according to the rotation cycle with 8.5 years of
average harvesting. The second study period (2013–2021) presented eucalypt plantations
following several rotation cycles, whereas pine plantations were the same as in the previous
study [9]. Therefore, pine plantations are older plantations.
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managed by the Fundação Florestal, a section of the São Paulo government. The area is 
composed of Pinus elliottii experimental stands and other species. 
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Figure 2. Location of the pilot area within the municipality of Mogi Guaçu, in São Paulo State. The
sample points are highlighted in the figure.

The second pilot area, the Itapetininga Experimental Station, is within the municipality
of Itapetininga, located at 23◦42′ S and 47◦57′ W (Figure 3). This area is managed by the
Fundação Florestal, a section of the São Paulo government. The area is composed of Pinus
elliottii experimental stands and other species.

2.3. Landsat TM and OLI Images

For this study, we used Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational
Land Imager (OLI) datasets. The characteristics of both sensors are widely available in
the literature. We selected TM and OLI surface reflectance images and processed them
in annual mosaics. The two time periods were defined to classify the forest plantations:
1985 to 1995 (TM) and 2013 to 2021 (OLI). In our classification, we used green (G), red
(R), near-infrared (NIR), and middle infrared (MIR) bands for both time periods. We also
performed the classification using the Normalized Difference Vegetation Index (NDVI, [15],
Enhanced Vegetation Index (EVI, [16]), Green Normalized Difference Vegetation Index
(GNDVI, [17]), Normalized Difference Water Index (NDWI, [18]) and Normalized Burn
Ratio (NBR, [19]), as well as vegetation, soil, and shade fraction images derived from the
linear spectral mixing model (LSMM, [9]).
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2.4. Methodological Approach

Figure 4 shows the flowchart of the methodological approach developed in this work.

2.4.1. Spectral Indices

The spectral indices used in this work are calculated using the equations presented in
Table 1.

Table 1. Spectral Index Equations.

Index NDVI EVI GNDVI NDWI NBR

Equation
(TM)

B4−B3
B4+B3 2.5 B4−B3

B4+6×B3−7.5×B1+1
B4−B2
B4+B2

B4−B5
B4+B5

B5−B7
B5+B7

Equation
(OLI)

B5−B4
B5+B4 2.5 B5−B4

B5+6×B4−7.5×B2+1
B5−B3
B5+B3

B5−B6
B5+B6

B5−B7
B5+B7

NDVI = Normalized Difference Vegetation Index; EVI = Enhanced Vegetation Index; GNDVI = Green Normalized
Difference Vegetation Index; NDWI = Normalized Difference Water Index; NBR = Normalized Burn Ratio.
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2.4.2. Fraction Images

To obtain fraction images, we applied the LSMM [9], which assumes that pixel values
are linear combinations of reflectance from many components inside the pixel, called
endmembers:

Ri =
n

∑
j=i

firi,j + εi (1)

where Ri represents the spectral reflectance in the ith spectral band; ri,j is the spectral
reflectance of the jth component in spectral band ith (endmember); fi is the proportion of
the jth component within the pixel; and εi is the residual for the ith spectral band.

Fraction images can be used for mapping forest plantation areas due to the following
characteristics: (a) vegetation fraction images highlight the forest cover conditions that are
similar to vegetation indices such as the NDVI [12] and the EVI [17]; (b) shade fraction
images highlight areas with low reflectance values such as water, shadow, and burned areas;
and (c) soil fraction images highlight areas with high reflectance values such as bare soil.
For forest cover, the shade fraction images are related to forest structure, i.e., the higher the
shade fraction value, the more heterogeneous the forest cover. First, we applied the LSMM
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to the Landsat TM and OLI images for generating the fraction images of vegetation, soil,
and shade endmembers for the 1985 to 1995 and 2013 to 2021 time periods. Following that,
we built one image mosaic for each endmember composed of the maximum proportion
values in the entire period analyzed.

The endmembers were collected following the visual interpretation of a water body,
eucalypt plantation, and bare soil. The same endmembers were used for the entire study
period, adjusting the values according to the sensors (TM and OLI). In that manner, maxi-
mum vegetation fraction mosaics were used to map the extent of forest plantations focusing
on eucalypt plantations. Maximum soil fraction images were used to map the extent of
forest and non-forest areas each year, and maximum shade fraction images were used to
map the eucalypt and pine areas each year.

2.4.3. Classification of Forest Plantations

The classification of forest plantations in the state of São Paulo follows the eucalypt
rotation [6]. To perform the classification, we used green (G), near-infrared (NIR), and
middle-infrared (MIR) spectral bands; the NDVI, Green Normalized Difference Vegetation
Index (GNDVI), Normalized Difference Water Index (NDWI), and Normalized Burn Ratio
(NBR) indices; and soil, shade, and vegetation fractions for both time periods (TM for
1985–1995 and OLI for 2013–2021). To calculate the spectral indices, the bands of green, red,
near-infrared, short-wave infrared 1, and short-wave infrared 2 were used according to the
equations described in Table 1.

The time-series image compositions used as inputs in the classification were reduced
using the algorithm “ee. Ghg reducer.percentile”, in which every time series is converted
into percentile images. An example of this reduction is a single image of the entire time
series composed for a given band, e.g., to calculate the 0 percentile (p0). The resulting
image would be composed of the minimum values of the entire series for the 50th percentile
(p50) and the resulting image would be composed of the median values of the entire series.
The percentiles of each band used in the classification are presented in Table 2.

Table 2. Percentiles of each band used in the classification.

Band B3 B5 NDVI GNDVI NDWI NBR F_shade F_vege

Percentile
p25 p90 p50 p50 p50 p75 p10 p50
p50 p90 p75 p90 p75

p90 p90

The classifications were obtained by running a script developed using the random
forest machine learning algorithm [20] on the Google Earth Engine (GEE) cloud computing
platform.

2.5. Validation of the Classification

We performed a confusion matrix using the forest plantation class extracted from the
MapBiomas annual LULC map collection 6.0 [21] for the years 1995 and 2020 as the reference
product. We reclassified MapBiomas classes into only two classes: forest plantation and
all the other LULC classes together (non-forest plantation). We created 20,000 stratified
random points within each class based on the pixel classification. The stratified random
points strategy is based on the proportional distribution to each relative area of the classes.
Then, we generated a confusion matrix using MapBiomas LULC classes as the reference
to estimate the accuracy of the classification results of the proposed method. MapBiomas
classifications are also based on annual Landsat mosaics.
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3. Results
3.1. Study Area

Figure 5 shows the classification of forest plantations for the first period (1985–1995)
in the study area.
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Figure 6 shows the classification of forest plantations for the second period (2013–2021)
in the study area. The classification for the first period (1985–1995) presented an area
of 5868.89 km2 of forest plantations, whereas the second period (2013–2021) presented
9874.85 km2, that is, an increase of 68.26% in forest plantation area between the two time
periods. During both periods, 5554.00 km2 of forest plantation areas persisted.

For both periods of forest plantation classifications, we compared the results of the
proposed method with the forest plantation class derived from the MapBiomas annual
LULC map collection 6.0 [19] for the years of 1995 (Figure 7, Table 3) and 2020 (Figure 8,
Table 4).
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Table 3. Confusion matrix for the forest plantation classification in 1995.

Reference (MapBiomas)

Others Forest Plantation Total User Accuracy

C
la

ss
ifi

ca
ti

on Others 19,423 104 19,527 0.99
Forest Plantation 256 217 473 0.46

Total 19,679 321 20,000 Overall accuracy = 98.2%

Producer Accuracy 0.99 0.67 Kappa = 0.54
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Table 4. Confusion matrix for the forest plantation classification in 2020.

Reference (MapBiomas)

Others Forest Plantation Total User Accuracy

C
la

ss
ifi

ca
ti

on Others 19,000 204 19,204 0.99
Forest Plantation 251 545 769 0.69

Total 19,251 749 20,000 Overall accuracy = 97.7%

Producer Accuracy 0.99 0.73 Kappa = 0.69

In Figures 7 and 8, the visual similarity between the classifications obtained by the
proposed method and the classification from MapBiomas products can be observed. The
estimated areas for the proposed method are 5868.89 km2 and 9874.85 km2 in 1995 and 2020,
respectively, and 4595.36 km2 and 10,025.26 km2 in 1995 and 2020 for MapBiomas. The
overall accuracy and kappa value are 98.2% and 0.54 for 1995 and 97.7% and 0.69 for 2020.
MapBiomas is a multidisciplinary network that reconstructs annual land use and land cover
information from 1985 to the present for Brazil, based on a random forest algorithm applied
to the Landsat archive using Google Earth Engine. MapBiomas maps five major classes:
forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes
were broken into two sub-classification levels, leading to the most comprehensive and
detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of
the land use and land cover time series, based on a stratified random sample of 75,000 pixel
locations, was 89%, ranging from 73 to 95% in the biomes [21].

• Eucalypt and Pine phenological assessment

We used Landsat TM and OLI mosaics to perform the LSMM for phenological as-
sessment of eucalypt and pine plantations over the 1985–2021 time period. For eucalypt
plantations, we selected six sample areas from the classification map. In Figure 9, we can
observe the rotation cycle for the selected samples that is characteristic of eucalypt planta-
tions, i.e., the soil fraction (high value) shows the beginning of the cycle, and vegetation
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(high values) shows the eucalypt cover during the growing phase. The eucalypt trees have
fast-growing behavior if the roots are well developed, with a rapid increase in leaf area [11].
In this region, the rotation length for this species is around 6 years, but it may range from
4 to 8 years. After the species are harvested using clear-cut methods, the vegetation fraction
drops. Therefore, the length rotation and the spectral responses were the main information
used to identify the eucalypt plantation in the study area. Since we used only TM and
OLI, there is a lack of data in 2012 (none of these sensor images were available). These
phenological curves refer to the field data of the pilot area described in Table 5.
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Figure 9. Phenological assessment of eucalypt plantation samples (A–F) for 1985–2021 period based
on the vegetation, soil, and shade fraction-image time series.

Table 5. Eucalyptus rotation cycles according to field data for each selected point in the pilot area.

Plot Cycles Plantation Harvesting Age

A Cycle 1 01/November/1977 06/June/1983 7 years and 7 months
A Cycle 2 23/October/1986 25/September/1995 8 years and 11 months
A Cycle 3 14/February/1996 24/December/2001 5 years and 10 months
A Cycle 4 21/June/2002 19/May/2008 5 years and 10 months
A Cycle 5 30/June/2008 25/December/2013 5 years and 5 months
A Cycle 6 25/August/2014 22/January/2021 6 years and 4 months
A Cycle 7 14/October/2021 - -

B Cycle 1 06/August/2002 09/December/2008 6 years and 4 months
B Cycle 2 28/January/2009 18/April/2015 6 years and 2 months
B Cycle 3 09/December/2015 09/March/2021 5 years and 3 months
B Cycle 4 04/October/2021 - -

C Cycle 1 27/October/1998 20/May/2004 5 years and 6 months
C Cycle 2 23/August/2004 25/October/2010 6 years and 2 months
C Cycle 3 21/February/2011 19/January/2017 5 years and 10 months
C Cycle 4 07/June/2017 - -

D Cycle 1 21/May/1998 05/February/2005 6 years and 8 months
D Cycle 2 25/May/2005 12/January/2012 6 years and 7 months
D Cycle 3 31/July/2012 23/January/2018 5 years and 5 months
D Cycle 4 18/May/2018 - -
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Table 5. Cont.

Plot Cycles Plantation Harvesting Age

E Cycle 1 31/October/1999 15/January/2007 7 years and 2 months
E Cycle 2 10/February/2007 09/April/2012 5 years and 1 month
E Cycle 3 26/June/2013 15/November/2018 5 years and 4 months
E Cycle 4 25/June/2019 - -

F Cycle 1 11/November/1977 13/June/1983 5 years and 7 months
F Cycle 2 25/October/1986 15/July/1995 8 years and 8 months
F Cycle 3 19/September/1995 28/December/2001 6 years and 3 months
F Cycle 4 20/April/2002 15/May/2008 6 years
F Cycle 5 24/June/2008 20/March/2013 4 years and 8 months
F Cycle 6 09/December/2013 29/December/2019 6 years
F Cycle 7 20/March/2020 - -

For pine plantations, one area was selected in the Itapetininga Experimental Station
(Forestry Institute of São Paulo State—IFSP). In Figure 10, which comprises a long time
series of 35 years, for the points J, K, and L, in 1985 the proportion of soil fraction was
higher, suggesting the beginning of the cycle, followed by vegetation and shade fractions,
increased. The same pattern was observed in the higher proportion of shade fraction due
to Pinus sp. canopy cover. Then, in 2017 the soil fraction was higher again, marked by the
harvesting. This was validated by the official document of forest harvesting (Process FF
296/2019—NIS 2132618).
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Analyzing these results, it is possible to identify eucalypt and pine plantation areas
through the areas classified. For eucalypt, it is also possible to detect the planted dates of
the stands according to the fraction-image time series.
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3.2. Pilot Area

• Eucalypt and Pine plantation classifications

Figure 11A shows the classification of eucalypt plantation areas using 30 m Landsat TM
mosaics composed of the maximum vegetation fraction values during the 1985–1995 period.
The Santa Terezinha Eucalypt Plantation is an older site with historical eucalypt growth
cycles. As observed from Figure 11, the classification for the first period performed well
in this pilot area, accurately detecting the forest plantation. Figure 11B shows the median
image composition of fraction images where it is possible to observe the high proportion
of vegetation fraction (green) in the eucalypt area. Additionally, the Campininha Pine
Experimental Station was highlighted with a higher proportion of shade fraction (blueish),
representing the spectral response of pine to the fraction images due to its canopy cover,
and also low standard deviation for all fractions throughout the study period because of
the weak seasonality compared with the eucalypt plantation.
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Figure 11. (A) Classification of forest plantation areas in the pilot area during the first study period
(1985–1995), based on the TM mosaic of maximum vegetation fraction values. (B) Median image RGB
composition of soil (R), vegetation (G), and shade (B) fraction images for 1985–1995 time period.

In opposition, Figure 12 shows the classification of eucalypt plantation areas from 2013
to 2021 using the 30 m Landsat OLI mosaics composed of the maximum vegetation fraction
values. Since this classification uses multiple images for a time series, the Campininha
Pine Experimental Station had been harvested and was in a transition stage. Therefore,
the classification did not map these areas as forest plantations as expected. On the other
hand, the Santa Terezinha site still presents the rotation cycles of eucalypt plantations in
the same location.
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Figure 12. (A) Classification of forest plantation areas in the pilot area during the second study period
(2013–2021), based on the OLI mosaics. (B) Median image RGB composition of soil (R), vegetation
(G), and shade (B) fraction images for 2013–2021 time period.

• Eucalypt and Pine phenological assessment

Figure 13 shows the phenological assessment of different points of eucalypt plantations
based on the fraction-image time series. The eucalypt rotation is well defined by harvested
times and characterized by a high soil-fraction proportion (Figure 13A,B,F). In Figure 13C,
the fraction images show that the area was harvested in 1986 (high soil fraction), followed
by regrowth (starting the vegetation fraction in the following years). In the first two years
after planting, the vegetative vigor has a high increase, which is a characteristic of eucalypt.
This result corroborates with the literature findings that mapped short-rotation eucalypt
plantations in Brazil and presented a high vegetative response only a few years after
planting [6].

For pine, the time series shows that the vegetation-, shade-, and soil-fraction propor-
tions were constant while the plantation was established (Figure 14). Therefore, this area
represents the pine plantations which have longer rotation cycles when compared with the
eucalypt plantations. Therefore, at the Campininha Pine Experimental Station, we could
not detect the Pinus rotation cycle, since the plantation rotation of pine is longer than 10
years (time series of images used in this work). The pine rotation of 18–20 years and the
eucalypt rotation of 5–6 years [11] supports our findings.
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Figure 14. Phenological assessment of pine plantation in the pilot area during the 1985–1995 period
based on the median fraction-image time series for six samples, as shown in Figure 2.

Figure 15 shows the phenological assessment of point A in the Santa Terezinha Euca-
lypt Plantation based on the median fraction-image time series from OLI mosaics. For this
plot (A), the area was harvested in 2014 (high soil fraction), followed by regrowth (starting
to increase the vegetation fraction in the following years) with a peak vegetation fraction
two years later, and then harvested again in 2021. The full rotation cycle occurred over
6 years and 4 months according to the field data, which were accurately detected by the
fraction-image time series.

For the selected points, we presented the phenological assessment demonstrating the
years of harvesting and planting, detected by the annual median fraction images derived
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from OLI mosaics (Figure 16). The median fraction images used to detect the eucalypt
rotations were validated by field data provided by a commercial company (Table 5). When
a plot was harvested, the soil fraction presents a higher proportion than the vegetation
fraction. At this time, all the phenological assessments were validated with field data.
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For pine, the time series of the 2013–2021 period shows that these areas are in a land
cover transition with a predominance of soil (probably due to replanting the pine stands).
Therefore, this area does not represent the pine plantations for the 2013–2021 time period.

4. Discussion

This work proposed a new method to classify the extension of forest plantations in
the São Paulo State. It is based on the eucalypt and pine plantations’ rotation cycles that
require multiannual sensor images, as provided by the Landsat time series. The results
showed that an eucalypt plantation has a rotation cycle of around 6 years for commercial
application. For pine, it was not possible to define the growth cycle since the area analyzed
was in the experimental area of the Forestry Institute of São Paulo State. These results
were validated in the pilot areas, where the ground-truth data was made available by the
commercial company. The study of rotation cycles was performed by analyzing the time
series of the vegetation, soil, and shade fraction images, as described earlier. These profiles
allow us to identify the eucalypt and pine plantations through the study area based on
their rotation characteristics.

According to le Maire et al. [6], a classification using only one annual time series
may classify the eucalypt plantations as “evergreen broadleaf forest”, “bare ground/low
vegetation cover”, or “deciduous forest” because of clear-cuts. Our work showed that the
eucalypt plantation areas during the study period were represented by eucalypt cover,
bare soil due to clear-cuts, or new plantations in the initial stage. Therefore, our proposed
method was able to map the areas occupied by eucalypt and pine plantations.

The resulting maps showed the forest plantation areas for the study periods (1985–
1995 and 2013–2021), i.e., the mapped areas were occupied by forest plantations during the
whole period. It can be observed that the methodology allowed us to detect the different
phenological stages of these forest plantations, especially eucalypt plantations during
the study period (Figure 17). In addition, it can be seen that the maximum vegetation,
shade, and soil fraction images (Figure 18) highlighted the whole area occupied by forest
plantations, helping to classify these areas.

When compared with the MapBiomas forest plantation class, there is a visual agree-
ment, but a kappa of 0.54 and 0.69 for the 1985–1995 and 2013–2021 time periods, respec-
tively. The importance of a time-series analysis for eucalypt plantations is shown by Le
Maire et al. [6] and Deng et al. [11] via MODIS NDVI images, and by Qiao et al. [10] via
Landsat NDVI images. In our study, the vegetation, soil, and shade fraction images were
able to highlight the eucalypt and pine plantations during the study periods, helping to
classify these areas.
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5. Conclusions

The Landsat TM and OLI mosaics composed of the maximum vegetation fraction
values accurately highlighted the areas occupied by forest plantations during the two
study periods (1985–1995 and 2013–2021) in São Paulo State. In addition, the annual
and the maximum TM shade fraction images highlighted the areas that were occupied
by pine plantations. These areas showed a higher shade proportion (due to the canopy
structure) than eucalypt plantations in the pilot area during the 1985–1995 time period. The
phenological stages of eucalypt plantations were observed in the annual time series of the
three fraction images (vegetation, shade, and soil). For pine plantations, the phenological
stages were not observed because these areas presented old-growth trees. On the other
hand, for eucalypt plantations, the TM time series analyzed in this work was adequate to
cover the rotation cycles, whereas for pine, a longer time series is required for analyzing its
rotation cycles.

Considering the difficulty of mapping forest plantations according to the tree species
using remote sensing, this paper aims to contribute different methods for the classification
and identification of rotation cycles. For this reason, these results are very useful for
planning and management, especially for private and government organizations, and for
helping to develop an automatic method to map forest plantation areas on regional and
global scales.
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