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Abstract: Seismic lines are narrow, linear corridors cleared through forests for oil and gas exploration.
Their inconsistent recovery has led to Alberta’s forests being highly fragmented, resulting in the
need for seismic line restoration programs and subsequent monitoring. Light detection and ranging
(LiDAR) is becoming an increasingly popular technology for the fast and accurate measurement of
forests. Mobile LiDAR scanners (MLS) are emerging as an alternative to traditional aerial LiDAR due
to their increased point cloud density. To determine whether MLS could be effective for collecting
vegetation data on seismic lines, we sampled 17 seismic lines using the Emesent Hovermap™
in leaf-on and leaf-off conditions. Processing the LiDAR data was conducted with GreenValley
International’s LiDAR 360 software, and data derived from the point clouds were compared to
physically measured field data. Overall, the tree detection algorithm was unsuccessful at accurately
segmenting the point clouds. Complex vegetation environments on seismic lines, including small
conifers with obscured stems or extremely dense and tall shrubs with overlapping canopies, posed a
challenge for the software’s capacity to differentiate trees As a result, tree densities and diameters
were overestimated, while tree heights were underestimated. Exploration of alternative algorithms
and software is needed if measuring vegetation data on seismic lines with MLS is to be implemented.

Keywords: remote sensing; boreal forest; mobile LiDAR; seismic line; linear disturbance; vegeta-
tion recovery

1. Introduction

As a result of natural resource exploration and extraction, Alberta’s boreal forest
is extensively fragmented, posing significant challenges for the re-establishment of na-
tive species, canopy cover, and ecosystem functions in these areas. The most prominent
anthropogenic disturbance type in this landscape are seismic lines—linear access routes
through the forest created during oil and gas exploration in order to facilitate equipment
access used to identify geologic formations of interest [1,2]. The province of Alberta is
estimated to have over 1.8 million km of seismic lines, with densities in some regions
reaching 10–40 km/km2 [3–5]. Currently there are no regulatory requirements to reclaim
legacy or new seismic lines in Alberta. However, their restoration has been identified
as a priority in recovering the threatened woodland caribou populations, as these access
routes facilitate the mobility and encounter rates of predators (e.g., wolves and bears) with
caribou in areas where historically they would not overlap [6–8]. The restoration of seismic
lines is not without its challenges, particularly those optimizing the methods used in the
prioritization of restoration efforts and the associated costs of intensive versus extensive
vegetation monitoring.
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An integral first step for any reforestation program is determining the current state
of vegetation recovery, thereby enabling the identification and prioritization of areas of
concern [9]. Conventional physical sampling of vegetation inherently provides the highest
accuracy in quantifying current conditions; however, the cost and time required to execute
them can be prohibitive and sometimes impossible due to access and safety concerns.
Consequently, remote sensing technologies continue to be explored as alternatives that
not only provide an acceptable compromise between vegetation-data quality and survey
time and effort but are also able to characterize complex vegetation metrics that cannot be
quantified by conventional field measurement techniques [10].

The use of remote sensing to measure forest vegetation is becoming increasingly com-
mon as various sensors become more widely available and more easily deployed [11–13].
In particular, light detection and ranging (LiDAR) has emerged prominently in forest
assessments due to its ability to operate in multi-layered vegetation environments, often ac-
curately providing georeferenced data along multiple axes, producing 3-dimensional point
clouds of scanned vegetation structure over large areas [14,15]. From a forest inventory
perspective, LiDAR has proven to be an effective tool for accurately assessing a variety of
stand forest features, including measuring individual tree characteristics [16–18], estimat-
ing stand density [19], and determining wood fiber attributes [20,21]. In the broader field of
forest management, LiDAR has been used to monitor fire fuel loads [22–24], insect-related
stand damage and mortality [25–27], and restoration progress [28,29].

Conventionally, LiDAR sensors are mounted onto piloted aircraft (airborne laser
scanning (ALS)), and while this method can efficiently collect data from large spatial
scales, it is associated with low data resolution (particularly of small vegetation) and
high acquisition costs [30–32]. Advancements in LiDAR sensors have enabled them to be
mounted onto and deployed via remotely piloted aircraft systems (RPAS, i.e., drones) and
terrestrial LiDAR scanning (TLS) units, which have gained popularity due to their relatively
low acquisition cost, higher point densities, and effectiveness at detecting mid-canopy
structural components compared to ALS [33–35]. The use of RPASs may have regulatory
limitations and be restricted to individuals with appropriate licenses, potentially significant
barriers to the implementation of these systems [32]. While TLS has similar data acquisition
flexibility as RPAS and lacks the regulatory barriers, stationary TLS is limited to short
functional ranges and spatial areas and, unless deployed in multiple locations (significantly
increasing operation time), the risk of occlusion is high [31,33,36]. To overcome these
limitations, backpack and handheld mobile laser scanning (MLS) units have become of
particular interest for forest management assessments, as they can quickly collect robust
point clouds with minimal occlusion [36–38]. MLS systems often utilize automatic co-
registration algorithms (e.g., simultaneous localization and mapping [SLAM]) to orient
point clouds and do not require navigation satellite systems to accurately function [39,40].

As a result of their improved data quality and reduced field implementation time,
remote sensing technologies are being used more frequently to explore a variety of environ-
mental and site conditions on linear disturbances, including vegetation height, seedling
densities, coarse woody debris volume, and terrain characteristics [41–45]. LiDAR scans
utilized in linear disturbance restoration studies in the boreal forest have primarily been
ALS or RPAS, with little testing of MLS in this field. Due to the re-use of seismic lines
and the slow rate of recovering vegetation, seismic lines in Alberta’s boreal forest rarely
have dense vegetation above 5 m [43], meaning the low-canopy accuracy of MLS could
be well suited for monitoring vegetation recovery on these disturbances accurately and
efficiently [35,38–40]. Additionally, software and algorithms necessary for processing of Li-
DAR point clouds are becoming readily available and user accessible, further incentivising
the use of MLS.

In this study, we assessed the effectiveness of using a handheld Emesent Hovermap™
MLS system with GreenValley International’s LiDAR 360 processing software for measuring
vegetation on recovering seismic lines by comparing data derived from MLS point clouds
to physically measured data on seismic lines in Northwestern Alberta. Furthermore, we
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aimed to better understand the ideal conditions for the use of MLS on seismic lines by
testing this technology in different seasons and across a range of tree densities. Specifically,
the objectives of this study were:

(1) To test the accuracy of using MLS to measure the height, DBH, and density of trees on
seismic lines.

(2) To determine whether the accuracy of data from MLS systems is impacted by leaf-on
or leaf-off conditions.

2. Materials and Methods
2.1. Site Selection

The study area is located approximately 70 km northwest of Manning, Alberta, Canada
within the lower boreal highlands subregion of the boreal forest (Figure A1). This subre-
gion is characterized by extensive wetlands and diverse mixedwood upland stands, with
widespread forestry and oil and gas operations, including seismic lines, throughout [46,47].
The stands selected for this study were characterized as upland forests developed on
fine-textured soils, where early successional species, including Populus tremuloides Michx.
(aspen), Betula papyrifera Marshall (paper birch), and Pinus contorta Douglas ex Loudon
(lodgepole pine), are replaced by Picea glauca (Moench) Voss (white spruce), Picea mariana
(P. Mill.) B.S.P (black spruce), and Abies balsamea (L.) Mill (balsam fir) over time [47]. In ad-
dition to the unmanaged stands, areas under intensive forest management (cutblocks) were
also included in the study. Seismic lines in cutblocks were measured as a representation
of lines that have received active restoration (e.g., site preparation and planting), which
has not otherwise been performed in this area. Based on available historical imagery [48],
seismic lines in the study area were cleared in the mid-1980s. Cutblocks were harvested
between 2004 and 2011 and subsequently planted with either P. contorta or P. glauca. As
a result, seismic line recovery ages in this study were between 15 and 40 years, and all
seismic lines were approximately 5 m wide.

2.2. Plot Layout & Ground Reference Data Collection

To ensure that a breadth of vegetation densities were sampled and tested (Figure 1),
seismic line segments were assigned to one of three predicted recovery categories using
aerial imagery based on the methods described in Van Dongen et al. [49]: recovered (R),
fractionally recovered (FR), and not recovered (NR). In total, 17 seismic line areas were
measured and scanned: nine in cutblocks and eight in unmanaged stands, distributed
between four R, seven FR, and six NR lines (Table A1).
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In July of either 2020 or 2021, a 55 m long transect was established on each seismic line
consisting of 12 offset circular plots, each with an area of 10 m2 (Figure A2). Within each
circular plot, the species, height, and diameter at breast height (DBH) of all trees > 1.3 m
tall were measured using telescopic sectional poles and calipers. Counts of all shrubs that
were taller than 1.3 m were also recorded, and the tallest individual for each species was
measured within each circular plot. Values collected from these plots are referred to as the
“ground” condition data.

2.3. LiDAR Data Collection and Processing

A handheld Hovermap™ scanner by Emesent Pty Ltd. (Figure 2) was used for LiDAR
data acquisition; the scanner has a weight of 1.8 kg, 480 GB of internal storage, a LiDAR
range up to 100 m, position accuracy of 30 mm, a 360◦ × 360◦ angular field of view, and
either 300,000 or 600,000 points per second data acquisition speed [50]. While holding the
HovermapTM sensor, the perimeter of each seismic line area was walked (approximately
1 m in from the seismic line edge with the adjacent forest) in a closed loop to minimize
internal drift and improve navigation [35,51]; on seismic lines with dense vegetation, a zig-
zag pattern was walked when needed around breaks in line-of-sight to minimize occlusion.
Prior to each scan, a marker was placed at the beginning and end of the scan area to assist
with delineation within the point cloud. Data was acquired in leaf-on (July 2021) and
leaf-off (October 2021) conditions, although due to weather and access issues, not all lines
were scanned during both campaigns. In total, 14 seismic lines were scanned during the
leaf-on campaign and 15 during leaf-off (Table A1).
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Processing of the LiDAR data was conducted using GreenValley International’s LiDAR
360, a graphical user interface (GUI) software with built-in functions to manipulate and
process LiDAR point cloud data [52]. Specifically, the software’s TLS Forest module can
directly use terrestrial LiDAR data (including MLS) to estimate the number of trees, segment
individual trees, and measure a variety of parameters including DBH, height, and crown
volume. The software uses a point cloud segmentation method to identify trees based
on the comparative shortest-path algorithm (CSP) [52,53]. A benefit of this tree detection
method is that it was developed with the challenges of irregular and overlapping canopies
in mind [53]. The CSP algorithm consists of three primary steps: point cloud normalization,
trunk detection and DBH calculation, and crown segmentation. The normalization step
calculates the elevation (height) for each point within the cloud based on its relation to a
defined digital elevation or ground layer, which in LiDAR 360 can be calculated through its
Terrain module. The trunk detection and DBH calculation step focuses on the automatic
detection and measurement of individual stems using a density-based spatial clustering of
applications with noise (DBSCAN) approach, where only the minimum cluster size (number
of points) needs to be user defined. This is followed by DBH measurements derived from
radius calculations from weighted trunk centres of the clusters [54]. The final step, crown
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segmentation, aims to distinguish individual tree crowns from one another based on the
metabolic ecology theory. The application of this theory for crown segmentation assumes,
as a generalization of the method, that any given crown point likely belongs to the trunk
with which it has the shortest transportation (i.e., xylem, phloem) distance. To account
for irregular tree and crown sizes, a DBH scaling factor is applied to determine a relative
transportation distance. Therefore, each point not previously assigned to a stem (in step 2)
is assigned a DBH-scaled transporting distance value, and these are used to calculate
transportation paths within the point cloud and facilitate clustering. If transportation paths
cannot be identified, the point is identified as noise and not included in a tree cluster.

To process the collected data, once a LiDAR file was loaded into LiDAR 360, outliers
(defined as any points not within a distance of 3 standard deviations of the average distance
between points within the cloud to at least three nearby points) were removed (Figure 3A).
The point cloud was then clipped to a 3 × 55 m area based on locating the targets within
the point cloud (Figure 3B); although the seismic lines were roughly 5 m wide, they were
clipped to 3 m in the point cloud to ensure exclusion of off-line trees as the seismic lines were
rarely truly straight (Figure 3C) [55]. Ground point classification was then executed in order
to identify the ground layer within the point cloud. This was done by first determining the
maximum terrain angle of the scanned area, which was then adjusted by 10◦ to account for
variability and applied with the software’s Classify Ground Points function (Figure 3D).
The point cloud was then reclassified based on the ground points and run through the
software’s Seed Point Editor to enable segmentation (Figure 3E), the parameters for which
were set to a cluster tolerance of 0.01 m, a minimum cluster size of 5 points, eligible DBH
values of interest were constrained to 0.01–1.0 m, the minimum height of eligible vegetation
was set to 1.3 m (to only include vegetation that was deemed a tree or tall shrub in the field
measurements), and a maximum angle of 30◦ was used to allow for the inclusion of leaning
trees. Using these seed points, point cloud segmentation and batch extraction of DBH was
conducted to produce an output table with vegetation characteristics (Figure 3F). While
DBH is ideally measured at 1.3 m above the ground, the DBH measurement window was
set between 0.3–1.6 m to account for instances where a clear trunk was not visible at 1.3 m
(e.g., young spruce).

2.4. Data Analysis

Data analysis and visualization were carried out using the R language and environ-
ment for statistical computing (version 4.2.1, Vienna, Austria) [56]. Generalized linear
mixed effects models were calculated using the glmmTMB() function of the glmmTMB pack-
age [57]. The fixed effects in these models were measurement technique/period, consisting
of 3 levels: (1) individually measured shrubs and trees in circular plots along the seismic
line which function as a control, (2) LiDAR measured vegetation along the seismic line
in leaf-on condition and (3) LiDAR measured vegetation along the seismic line in leaf-off
condition. The response variables were height, DBH, as well as stem count and stem
density. The stem count and density for the individually measured trees in the circular
plots (control) were counted in two versions, the raw and an adjusted version. The raw
version includes only trees above 1.3 m, while the adjusted version considered all shrubs
that were taller than 1.3 m as trees. This was used to account for the possibility that the
LiDAR measurement identified something as a tree, which, in the circular plot control
measurements, would have been considered a shrub. The random effect for all models
was the seismic line in order to account for spatial dependency among the measurements.
While useful for initial characterization, neither the site type (cutblock, forest) nor the
classification classes (R, FR, NR) were used as factors in analyses. Height, DBH, and density
were modeled using a Gamma distribution, which is a more appropriate choice when data
are truncated at zero, positive, and typically right skewed [58]. Stem count on the other
hand, was modeled using the negative binomial distribution, which is a good choice for
count data that cannot be modeled using the Poisson distribution due to potential over
dispersion [58]. All negative binomial models also included an offset to adjust the stem
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count for the measured area. To assess the fit of each model, we used the simulateResiduals()
function from the DHARMa package [59]. Wald chi-square tests were conducted to test the
fixed effects for their significance via the Anova() function of the car package [60]. Estimated
marginal means were calculated using the emmeans() function of the emmeans package
based on the fitted models [61]. P-values for multiple mean comparisons were adjusted
using the Tukey method.

Forests 2022, 13, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. Visualizing of the data preprocessing in LiDAR 360. Specifically, (A) shows an entire point 
cloud of a sampled seismic line area following outlier removal; (B) includes both a photo and a point 
cloud clip of a target placed on the seismic line area; (C) is a point cloud clipped to the 3 × 55 m area 
of interest; (D) shows an isolation of the identified ground layer points; (E) is a profile view of the 
clipped point cloud normalized based on the identified ground points; (F) is a profile view of the 
same seismic line area as E following point cloud segmentation, with individual trees represented 
by unique colours relative to their neighbours and noise points in grey. 

2.4. Data Analysis 
Data analysis and visualization were carried out using the R language and environ-

ment for statistical computing (version 4.2.1, Vienna, Austria) [56]. Generalized linear 
mixed effects models were calculated using the glmmTMB() function of the glmmTMB 
package [57]. The fixed effects in these models were measurement technique/period, con-
sisting of 3 levels: (1) individually measured shrubs and trees in circular plots along the 
seismic line which function as a control, (2) LiDAR measured vegetation along the seismic 
line in leaf-on condition and (3) LiDAR measured vegetation along the seismic line in leaf-
off condition. The response variables were height, DBH, as well as stem count and stem 
density. The stem count and density for the individually measured trees in the circular 
plots (control) were counted in two versions, the raw and an adjusted version. The raw 
version includes only trees above 1.3 m, while the adjusted version considered all shrubs 

Figure 3. Visualizing of the data preprocessing in LiDAR 360. Specifically, (A) shows an entire point
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of interest; (D) shows an isolation of the identified ground layer points; (E) is a profile view of the
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same seismic line area as E following point cloud segmentation, with individual trees represented by
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The accuracy of estimated values (derived from LiDAR point clouds) was assessed
using three metrics: root-mean-square error (RMSE), relative RMSE (rRMSE), and relative
bias (rBias). To calculate RMSE as well as the rBias, we used the rmse() and pbias() functions
of the hydroGOF package [62] and the rRMSE() function from the Fgmutils package [63].
To measure the association/correlation between the LiDAR collected data and the field
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measured data, we used Kendall’s τ (tau) (rather than Pearson’s correlation coefficient) as
the data are right skewed and do not follow a normal distribution. The R function cor.test()
from the stats package was used for these tests [56].

3. Results

Tree counts were significantly overestimated when derived from LiDAR data com-
pared to the ground collected values, regardless of leaf condition (p < 0.01). This trend
continued when count values were scaled-up to stems-per-hectare (sph) density values,
with the density being significantly over estimated (p < 0.01). When the ground values were
adjusted to include all tall shrubs (> 1.3 m), the LiDAR-derived count and density values
were still significantly greater than the ground values (p < 0.01; Tables 1 and 2). No count or
density values were significantly different between the leaf-on and leaf-off sample periods.

Table 1. Estimated means (and standard errors) of the generalized linear model output for the
measured count, density, height, and DBH response variables measured. Lowercase letters represent
significant differences (α = 0.05) following pairwise comparisons. Adjusted values were calculated
by adding the counted shrubs (≥1.3 m) to the tree values in the ground measurement.

Response Variable
Sampling Period

Ground Leaf-On Leaf-Off

Count 75 (13) b 438 (78) a 449 (778) a
Density
(stems/hectare) 5262 (893) b 30,991 (5583) a 31,759 (5589) a

Adjusted Count 219 (34) b 438 (78) a 449 (778) a
Adjusted Density
(stems/hectare) 15,417 (2378) b 30,991 (5583) a 31,759 (5589) a

Height (m) 4.3 (0.1) a 1.72 (0.0) b 1.72 (0.0) b
DBH (cm) 2.9 (0.1) c 8.3 (0.1) a 7.2 (0.1) b

Table 2. Root-mean-square error (RMSE), relative RMSE (rRMSE), relative bias (rBias), Kendall’s τ
correlation values, and p values from pairwise comparisons for the various density measurements
derived from LiDAR point clouds collected in leaf-on and leaf-off campaigns compared to ground
data. Adjusted values were calculated by adding the counted shrubs (≥ 1.3 m) to the tree values in
the ground measurement.

Response
Variable

LiDAR
Period

RMSE (Unit of
Variable) rRMSE (%) rBias (%) Kendall’s τ p Value

Count
Leaf-On 179 60.0 −53.2 0.21 <0.001
Leaf-Off 125 39.6 −45.7 0.44 * <0.001

Density (stems/hectare) Leaf-On 5754 23.2 −14.4 0.41 * <0.001
Leaf-Off 5097 19.3 13.1 0.44 * <0.001

Adjusted Count Leaf-On 321 39.6 −54.2 0.30 <0.001
Leaf-Off 484 56.7 −63.2 0.45 * <0.001

Adjusted
Density (stems/hectare)

Leaf-On 20,344 30.0 −46.6 0.32 <0.001
Leaf-Off 25,408 35.7 −49.5 0.45 * <0.002

* indicates Kendall’s τ values that were significant at α = 0.05.

Relative to the ground data, the RMSEs for the leaf-on count, density, adjusted count,
and adjusted density were 179 trees, 5754 sph, 321 trees, and 20,344 sph, respectively;
rRMSE values were 60%, 23%, 40%, and 30%, respectively; and rBias values were all
negative, indicating an overestimation of densities (Table 2). The correlation coefficients
(Kendall’s τ) between the leaf-on count, density, adjusted count, and adjusted density
values to the ground data were 0.21, 0.41 (p < 0.05), 0.30, and 0.32, respectively, although
only the density relationship was significant (Table 2). The RMSEs for the leaf-off count,
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density, adjusted count, and adjusted density were 125 trees, 5097 sph, 484 trees, and
25,408 sph, respectively; rRMSE values were 40%, 19%, 57%, and 36%, respectively; and
rBias values were also all negative, indicating an overestimation of densities (Table 2). The
correlation coefficients between the leaf-off count, density, adjusted count, and adjusted
density values to the ground data were 0.44 (p < 0.05), 0.44 (p < 0.05), 0.45 (p < 0.05), and
0.45 (p < 0.05), respectively; all relationships were significant (Table 2).

There was a significant effect of sample period on both tree height (p < 0.001) and tree
DBH (p < 0.001). Field-measured tree heights ranged from 1.3 to 13.7 m, leaf-on from 1.3 to
17.2 m, and leaf-off from 1.3 to 15.6 m, although the majority of LiDAR-derived heights
were below 5 m (Figure 4). As a result, the field-measured tree heights were significantly
greater than those derived from the leaf-on (p < 0.001) and leaf-off (p < 0.001) sampling
periods; heights derived from both LiDAR datasets were not significantly different between
sampling periods (Table 1). In contrast to the height values, the DBH values derived from
the leaf-on (p < 0.001) and leaf-off (p < 0.001) scans were significantly greater than those
measured in the field (Table 1). DBH values measured in the field ranged from 0.1 to
15.5 cm, leaf-on from 1.2 to 77.7 cm, and leaf-off from 1.1 to 85.9 cm (Figure 4). Additionally,
data derived from the leaf-on scans were significantly greater than those from the leaf-off
(p < 0.001).
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4. Discussion
4.1. Vegetation Density

The overestimated density values derived from the LiDAR point clouds compared to
the field validated ground data represents a significant commission difference when using
this combination of MLS and LiDAR 360 to identify and count trees in these environments.
The presence of a commission difference is in stark contrast to other studies in which
omission differences were observed, often as a result of insufficient point returns on narrow
trees that resulted in whole stems being absent from the point cloud [36,64]. The accuracy
of the Hovermap™ system is stated to be 30 mm by the manufacturer [50], which is similar
to the accuracy of other tested systems [36,64], suggesting that the commission difference is
unlikely to be hardware based and is likely a result of model failure during data processing.

Specifically, multi-stemmed individual trees and shrubs were identified by the soft-
ware during point cloud classification as multiple individual trees rather than as a single
tree. Over-segmentation has been observed in highly clustered environments when DB-
SCAN methods are utilized [65], and this is supported by the adjusted ground count and
density data (those that included all shrubs ≥ 1.3 m tall in the plots) still being significantly
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lower than the counts and densities produced from the point cloud. A single Alnus viridis
shrub can have dozens of stems, and although they all originate from a single base, these
stems could be spaced apart enough at 1.3 m to be considered individual trees by the CSP
algorithm (as per the parameters set for Point Cloud Segmentation in this study). For exam-
ple, in Figure 5, a single A. viridis individual has been identified as at least five individual
trees. In the ground dataset, this one individual would not have been included in the tree
count and density values and would only have been represented by a single shrub in the
adjusted values (which includes both shrubs and trees). As A. viridis formed dense thickets
on some of the lines measured (Figure 1), having each shrub stem identified as an individ-
ual tree likely accounts for the greater density values derived from the point clouds than
those measured in the field. The development of algorithms to differentiate multi-stemmed
individuals as a single tree, as well as to identify and remove tall, multi-stemmed shrubs
within the point clouds, is needed to improve accuracy in complex environments like those
found in this study.
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Figure 5. A tall (> 1.3 m), multi-stemmed Alnus viridis individual; the left is a photo showing its base
and stems on a seismic line measured this study, and the right is a clip of a similarly sized A. viridis
plant from LiDAR 360 following point cloud segmentation where each colour indicates an individual
“tree” stem identified by the CSP algorithm.

4.2. Tree Height

A limitation of early MLS systems in monitoring forest structure was their relatively
short scan ranges [33,66]. While this could be compensated for in the horizontal plane, it
limited the types of trees that could be sampled to those shorter than the scan range, as
taller trees could not be entirely measured. The scanner used in this study, the Emesent
Hovermap™, is reported to have a LiDAR range up to 100 m [50], well above the max-
imum height measured in the ground-validated plots for this study (14 m). Despite its
increased scan range, tree height was severely underestimated when derived from the MLS
point clouds.

While the data points for the treetops were present in the point cloud, tree segmenta-
tion in LiDAR 360 was unable to appropriately distinguish individual trees once canopies
or branches began overlapping, with many trees only being identified up to the base of their
crowns. As a result, the measured heights of the trees from the point clouds were much
shorter than they should have been had their canopy been distinguished and included. This
is demonstrated in Figure 6, in which stems assigned to a tree following point cloud seg-
mentation are shown in colour, whereas aspects of the point cloud that were not assigned
to a tree remain grey. In areas where vegetation was sparse, entire trees were successfully
identified (Figure 6A), unlike in areas with dense vegetation (Figure 6B). Although similar
CSP algorithms have successfully delineated trees with overlapping canopies in LiDAR
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point clouds [53,65,67], the crown conditions present on most of the seismic lines found
in this study appear to have been too complex to be accurately separated by LiDAR 360’s
CSP-based tree detection algorithm. The algorithm was able to identify individual trees in
the canopy (Figure 6C), albeit very rarely.

Forests 2022, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. Examples of point clouds shown in the LiDAR 360 software following point cloud seg-
mentation; grey represents points that were unassigned to a tree, whereas coloured areas denote 
points assigned to an individual tree in a poorly vegetated (A) and densely vegetated (B) seismic 
line; (C) shows a tree where a portion of the canopy was successfully identified following segmen-
tation. 

The complex nature of natural stands makes single tree detection in point clouds 
challenging; utilizing a simpler canopy detection method that does not explicitly attempt 
to distinguish overlapping canopies may be an alternative solution for tree segmentation 
in these types of environments. An example of such a method that has been successful in 
mature mixedwood forests is the distance judgment clustering approach [68,69]. This 
method assumes that the distance between trees is greater at their apex compared to the 
ground and uses those distances to cluster and segment trees. This technique could im-
prove accuracy in low-density or conifer-dominated seismic lines (Figure 6A) where tree 
crowns are clearly distinguishable, but in high-density areas with uniform crown heights 
(Figure 6B) or deciduous stands, this method may struggle to identify tree “tops”. As this 
method is based on height relationship assumptions and not clearly distinguishable 
branch relationships and pathways, there is a risk that an assigned canopy may either not 
be truly associated with its assigned trunk or may not be the trunk’s true height. 

Another commonly used tree segmentation approach is the cubical voxel method 
[70–72]. This is a type of connected component labeling that utilizes octree segmentation 
to detect connected areas within a point cloud. This is a hierarchal approach, where a 
central node voxel is identified and repetitively subdivided, with empty voxels being re-
moved from the process until a minimum threshold (e.g., pixel size, levels of divisions) is 
achieved. As this method does take into consideration potential branching patterns of tree 
canopies, it may better relate canopies to their stem. However, in environments such as 
those found in this study, this segmentation process may also be unable to detect patterns 
in the cluttered and overlapping canopies. 

The trunk growth (TG) algorithm segmentation method also takes branching pat-
terns of canopies into consideration [65]. This method has four primary steps: trunk ex-
traction, fragment merging, trunk growth, and localization of branch and leaf points. 
While it has a similar workflow to the CSP algorithm, it does not utilize DBSCAN for 
trunk detection or a DBH adjustment to determine branch and stem relationships. A study 
comparing the two segmentation methods in a vertically complex natural forest observed 
similar detection results, although the TG overall was more accurate compared to the CSP 
operation [65]. While the TG method is of interest for the processing of LiDAR data from 
complex environments, it is relatively new and has yet to be adopted as a pre-pro-
grammed segmentation method in LiDAR processing software, limiting its ability to be 
widely tested and implemented in analyses. Further exploration of tree segmentation 
methods is critical if LiDAR is to be used for stand characterization in densely vegetated 
seismic lines. 

Figure 6. Examples of point clouds shown in the LiDAR 360 software following point cloud seg-
mentation; grey represents points that were unassigned to a tree, whereas coloured areas denote
points assigned to an individual tree in a poorly vegetated (A) and densely vegetated (B) seismic line;
(C) shows a tree where a portion of the canopy was successfully identified following segmentation.

The complex nature of natural stands makes single tree detection in point clouds
challenging; utilizing a simpler canopy detection method that does not explicitly attempt
to distinguish overlapping canopies may be an alternative solution for tree segmentation
in these types of environments. An example of such a method that has been successful
in mature mixedwood forests is the distance judgment clustering approach [68,69]. This
method assumes that the distance between trees is greater at their apex compared to
the ground and uses those distances to cluster and segment trees. This technique could
improve accuracy in low-density or conifer-dominated seismic lines (Figure 6A) where tree
crowns are clearly distinguishable, but in high-density areas with uniform crown heights
(Figure 6B) or deciduous stands, this method may struggle to identify tree “tops”. As this
method is based on height relationship assumptions and not clearly distinguishable branch
relationships and pathways, there is a risk that an assigned canopy may either not be truly
associated with its assigned trunk or may not be the trunk’s true height.

Another commonly used tree segmentation approach is the cubical voxel method [70–72].
This is a type of connected component labeling that utilizes octree segmentation to detect
connected areas within a point cloud. This is a hierarchal approach, where a central node
voxel is identified and repetitively subdivided, with empty voxels being removed from the
process until a minimum threshold (e.g., pixel size, levels of divisions) is achieved. As this
method does take into consideration potential branching patterns of tree canopies, it may
better relate canopies to their stem. However, in environments such as those found in this
study, this segmentation process may also be unable to detect patterns in the cluttered and
overlapping canopies.

The trunk growth (TG) algorithm segmentation method also takes branching patterns
of canopies into consideration [65]. This method has four primary steps: trunk extraction,
fragment merging, trunk growth, and localization of branch and leaf points. While it has
a similar workflow to the CSP algorithm, it does not utilize DBSCAN for trunk detection
or a DBH adjustment to determine branch and stem relationships. A study comparing
the two segmentation methods in a vertically complex natural forest observed similar
detection results, although the TG overall was more accurate compared to the CSP op-
eration [65]. While the TG method is of interest for the processing of LiDAR data from
complex environments, it is relatively new and has yet to be adopted as a pre-programmed
segmentation method in LiDAR processing software, limiting its ability to be widely tested
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and implemented in analyses. Further exploration of tree segmentation methods is critical
if LiDAR is to be used for stand characterization in densely vegetated seismic lines.

4.3. Tree DBH

One of the benefits of MLS relative to RPAS LiDAR is the increased point cloud density
in the lower canopy which facilitates DBH measurements [39,69]. A number of studies
have observed acceptable ranges of DBH accuracy when sampling trees in both planted
and natural stands; however, the general consensus is that accuracy is highest for trees
with DBHs between 10 and 20 cm [40,66,73]. The minimum measured DBH in the field
for this study was 0.1 cm, and the average was 2.9 cm, well below the recommended
DBH limits. The accuracy of the Hovermap™ hardware itself is only 3 cm [50], far larger
than many of the tree diameters sampled in this study. While recent work with MLS has
achieved more accurate tree detection and even DBH measurements at 4–6 cm [39,74,75],
these require ideal environmental conditions and complex preprocessing to reduce noise in
the point clouds.

The DBH values from the LiDAR data were highly skewed and much exceeded the
maximum DBH value measured in the field. The stems of young conifer trees were often
obscured by branches in the point cloud (Figure 7A), and the related DBH estimation
included those branches, resulting in a large overestimation. In a study where trees with
DBHs as small as 6 cm were accurately measured from an MLS point cloud, there was no
branching or obstruction in the forest below 2 m to facilitate clear lines-of-sight between
the sensor and tree [75]. While this may be achievable in highly managed environments,
this is not a feasible condition to expect in most natural forests.
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Figure 7. Close-ups of individual trees identified within LiDAR 360 following point cloud segmenta-
tion. Specifically, (A) illustrates a section where two coniferous trees were identified as a single tree
(orange), a single coniferous tree (dark blue) and a single deciduous tree (light blue) were identified
appropriately, and a tall shrub (cyan) was identified as a tree; while (B) shows an area with multiple
deciduous trees identified.

While the challenge with overestimation of DBH as a result of conifer branches is
a concern on recovering seismic lines, many of the sites measured in this study were
dominated by deciduous trees and shrubs. In these sites, stems were clearly visible and
point cloud segmentation to identify individual “trees” (including tall shrubs) was feasible
within the DBH measurement zone (0.3–1.6 m) (Figure 7B). Despite these unobstructed
conditions, DBH measurements were still highly overestimated for these trees, likely a
result of the combination of high stem densities and relatively small trees. For small trees
that are detected, the proportion of valid reference points relative to the surrounding noise
points is lower compared to large trees (i.e., > 10 cm DBH), resulting in overestimated
DBHs and larger error values [39]. An integral part of any MLS hardware is the automatic
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co-registration of points, which in the Hovermap™ is through SLAM algorithms. In areas
with high stem densities, the co-registration accuracy is reduced as a result of increased
slight offsets, creating “fuzzier” point clouds than in lower density areas [40,75].

Accurate detection of stems > 6 cm in diameter has occurred in studies with stand
densities around 2000 sph [75,76], which is less than half the tree density of the sites
sampled for this study (not including shrubs). In Alberta, vegetation recovery standards
for forested uplands is a minimum stand density of 2000 sph and vegetation height of
3 m [55,77]. As such, some seismic lines included in this study were far denser than the
normal conditions, particularly in the cutblocks as a result of the reforestation work (i.e.,
site preparation and planting). Even though the lines sampled in this study had densities
above the minimum recovery standard, it is important to note that accurate measurements
of vegetation from LiDAR begins to deteriorate at 2000 sph, when all other conditions are
ideal. As observed in this study, seismic line recovery is highly variable, and lines rarely
have ideal sampling conditions. Some seismic lines can have high densities of trees and
shrubs, significantly limiting the applicability of current MLS hardware and software to
accurately assess these environments.

4.4. Leaf Condition

Until appropriate tree detection algorithms can be identified, disseminating the differ-
ences between sampling periods and subsequent conclusions regarding the ideal conditions
for MLS systems cannot be determined. Anecdotally, the majority of density values derived
from the leaf-on period were not significantly correlated to the ground data, whereas
all of the leaf-off data were correlated. Although the density values were overestimated
regardless of leaf condition, the leaf-off data more accurately captured the density patterns
present. In complex canopies where the CSP algorithm is unable to segment trees above the
stem, it stands to reason that this issue would be compounded by the presence of leaves, as
they would further complicate the point cloud environment. The presence of leaves has
been found to increase point cloud “fuzziness” from MLS systems as a result of increased
co-registration errors associated with moving vegetation [75,78].

4.5. Field Challenges

There were a number of challenges associated with implementing the MLS scans
and data processing in the environments selected for this study. High stem densities on
some seismic lines, particularly in the cutblocks where A. viridis could exceed 23,000 sph,
proved challenging. Unlike TLS, which can be placed in a safe stationary location where
the hardware will not be damaged by nearby vegetation, there is a much higher risk of
damaging the hardware while walking through dense vegetation. The Hovermap™ is
light, easy to maneuver, and can compensate for the movement of the operator; however, in
densely vegetated areas, preventing the equipment from coming into contact with nearby
vegetation was nearly impossible (Figure 1). In areas where dense vegetation proves to be
a risk to the hardware and TLS occlusion risk is high, ALS or RPAS may be the preferred
LiDAR scan options.

5. Conclusions

Data acquisition using the MLS system was reasonably easy to implement on recover-
ing seismic lines, where conditions allowed. However, analysis of the collected data in the
LiDAR 360 software using the CSP detection algorithm was unsuccessful at accurately de-
scribing the density or characteristics of trees on the recovering seismic lines, regardless of
leaf condition. Complex vegetation environments on seismic lines, including small conifers
with obscured stems or extremely dense and tall shrubs with overlapping canopies posed
a challenge for the software’s capacity to differentiate trees. Exploration of alternative
tree detection algorithms and software, as well as functions to differentiate tall shrubs
from young trees, are needed if measuring vegetation data on seismic lines with MLS is to
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be widely implemented; until then, field-based measurements will likely continue to be
the standard.
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Appendix A

Table A1. Stand type, regeneration classification, and location of all seismic line areas measured,
including whether MLS scans were completed in leaf-on (July) and/or leaf-off (October) conditions.

Stand
Type ClassificationDirection Latitude Longitude Leaf-On

Scan
Leaf-Off
Scan

Forest FR NE-SW −118.287 57.226 4

Forest FR E-W −118.429 57.400 4 4

Forest FR E-W −118.384 57.387 4 4

Forest FR NE-SW −118.254 57.219 4

Forest NR NE-SW −118.399 57.283 4 4

Forest NR NE-SW −118.292 57.224 4

Forest NR E-W −118.347 57.387 4 4

Forest NR NE-SW −118.289 57.227 4

Cutblock R NE-SW −118.290 57.226 4 4

Cutblock R E-W −118.355 57.387 4

Cutblock R E-W −118.372 57.385 4 4

Cutblock R N-S −118.426 57.398 4 4

Cutblock FR SE-NW −118.393 57.275 4 4

Cutblock FR NE-SW −118.298 57.218 4 4

Cutblock FR N-S −118.379 57.383 4 4

Cutblock NR E-W −118.227 57.235 4 4

Cutblock NR E-W −118.221 57.235 4 4
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