Influence of Four Spacings between Trees and Four Samplings Heights on Selected Wood Quality Attributes of White Spruce (Picea glauca (Moench) Voss)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stand Description
2.2. Sample Collection, Preparation, and Wood Quality Attribute Assessments
2.3. Statistical Analyses
3. Results
3.1. Inter-Ring Radial Variation at Breast Height
3.2. Variations between Wood Type
3.3. Inter-Tree Variation of Wood Quality Attributes at Breast Height
3.4. Effects of Spacing between Trees and Height on Juvenile Wood Quality Attributes
4. Discussion
4.1. Impact of Spacing on the Inter-Ring Radial Variation at Breast Height
4.2. Differences between Juvenile Wood and Mature Wood Zones
4.3. Variations Caused by Tree, Sampling Height and Spacing between Trees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natural Resources Canada. 8 Facts about Canada’s Boreal Forest. Available online: https://www.nrcan.gc.ca/our-natural-resources/forests/sustainable-forest-management/boreal-forest/8-facts-about-canadas-boreal-forest/17394 (accessed on 26 October 2022).
- Herman, M.; Dutilleul, P.; Avella-Shaw, T. Growth rate effects on temporal trajectories of ring width, wood density, and mean tracheid length in Norway spruce (Picea abies (L.) Karst.). Wood Fiber Sci. 1998, 30, 6–17. [Google Scholar]
- Larson, P.R.; Kretschmann, D.E.; Clark, A., III; Isebrands, J.G. Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis; General Technical Report, FPL-GTR-129; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2001; p. 42. [Google Scholar]
- Alteyrac, J.; Zhang, S.Y.; Cloutier, A.; Ruel, J.C. Influence of stand density on ring width and wood density at different sampling heights in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber Sci. 2005, 37, 83–94. [Google Scholar]
- Lasserre, J.-P.; Mason, E.G.; Watt, M.S.; Moore, J.R. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For. Ecol. Manag. 2009, 258, 1924–1931. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Chauret, G. Impact of Initial Spacing on Tree and Wood Characteristics, Product Quality and Value Recovery in Black Spruce (Picea Mariana); Forintek Canada Corp: Fredericton, NB, Canada, 2001. [Google Scholar]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer Series in Wood Science: Berlin/Heidelberg, Germany, 1998; p. 300. [Google Scholar]
- Drew, D.M.; Downes, G.M.; Seifert, T.; Eckes-Shepard, A.; Achim, A. A Review of Progress and Applications in Wood Quality Modelling. Curr. For. Rep. 2022, 1–16. [Google Scholar] [CrossRef]
- Cown, D.J. Corewood (juvenile wood) in Pinus radiata—Should we be concerned? N. Z. J. For. Sci. 1992, 22, 87–95. [Google Scholar]
- Koubaa, A.; Zhang, S.Y.; Makni, S. Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry. Ann. For. Sci. 2002, 59, 511–518. [Google Scholar] [CrossRef]
- Jozsa, L.A.; Middleton, G.R. A Discussion of Wood Quality Attributes and Their Practical Implications; FPInnovations; Special Publication SP-34: Vancouver, BC, Canada, 1994; p. 42. [Google Scholar]
- Molteberg, D.; Hoibo, O. Modelling of wood density and fibre dimensions in mature Norway spruce. Can. J. For. Res. 2007, 37, 1373–1389. [Google Scholar] [CrossRef]
- Bowyer, J.L.; Shmulsky, R.; Haygreen, J.G. Le Bois Et Ses Usages; Centre collégial de développement de matériel didactique: Montréal, QC, Canada, 2005; p. 528. [Google Scholar]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Law, K.N.; Lapointe, M. Chemimechanical pulping of boles and branches of white spruce, white birch, and trembling aspen. Can. J. For. Res. 1983, 13, 412–418. [Google Scholar] [CrossRef]
- Beaulieu, J. Genetic variation in tracheid length and relationships with growth and wood traits in eastern white spruce (Picea glauca). Wood Fiber Sci. 2003, 35, 609–616. [Google Scholar]
- Mvolo, C.S.; Koubaa, A.; Beaulieu, J.; Cloutier, A.; Mazerolle, M.J. Variation in Wood Quality in White Spruce (Picea Glauca (Moench) Voss). Part I. Defining the Juvenile—Mature Wood Transition Based on Tracheid Length. Forests 2015, 6, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Mvolo, C.S.; Koubaa, A.; Defo, M.; Beaulieu, J.; Yemele, M.-C.; Cloutier, A. Prediction of tracheid length and diameter in white spruce (Picea glauca (Moench) Voss). IAWA J. 2015, 36, 186–207. [Google Scholar] [CrossRef]
- Olson, M.E.; Anfodillo, T.; Rosell, J.A.; Petit, G.; Crivellaro, A.; Isnard, S.; León-Gómez, C.; Alvarado-Cárdenas, L.O.; Castorena, M. Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol. Lett. 2014, 17, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Anfodillo, T.; Petit, G.; Crivellaro, A. Axial conduit widening in woody species: A still neglected anatomical pattern. IAWA J. 2013, 34, 352–364. [Google Scholar] [CrossRef]
- Fries, A.; Ericsson, T.; Morling, T. Measuring relative fibre length in Scots pine by non-destructive wood sampling. Holzforschung 2003, 57, 400–406. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Dahlen, J.; Auty, D. Radial patterns of specific gravity variation in North American conifers. Can. J. For. Res. 2022, 52, 889. [Google Scholar] [CrossRef]
- Koubaa, A.; Zhang, S.Y.; Isabel, N.; Beaulieu, J.; Bousquet, J. Phenotypic correlations between juvenile-mature wood density and growth in black spruce. Wood Fiber Sci. 2000, 32, 61–71. [Google Scholar]
- Koga, S.; Zhang, S.Y. Relationships between wood density and annual growth rate components in balsam fir (Abies balsamea). Wood Fiber Sci. 2002, 34, 146–157. [Google Scholar]
- Lindström, H. Fiber length, tracheid diameter, and latewood percentage in Norway spruce: Development from pith outwards. Wood Fiber Sci. 1997, 29, 21–34. [Google Scholar]
- Mvolo, C.S.; Koubaa, A.; Beaulieu, J.; Cloutier, A.; Defo, M.; Yemele, M.-C. Phenotypic correlations among growth and selected wood properties in white spruce (Picea glauca (Moench) Voss). Forests 2019, 10, 589. [Google Scholar] [CrossRef] [Green Version]
- Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for predicting clearwood mechanical properties of scots pine. Forest science 2016, 62, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Lenz, P.; Cloutier, A.; MacKay, J.; Beaulieu, J. Genetic control of wood properties in Picea glauca—An analysis of trends with cambial age. Can. J. For. Res. 2010, 40, 703–715. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Griçar, J.; Seo, J.W.; Rathgeber, C.B.K.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Yang, K.C. Impact of spacing on juvenile wood and mature wood properties of white spruce (Picea glauca). Taiwan J. For. Sci. 2002, 17, 13–29. [Google Scholar]
- Yang, K.C.; Hazenberg, G. Impact of spacing on tracheid length, relative density, and growth rate of juvenile wood and mature wood in Picea mariana. Can. J. For. Res. 1994, 24, 996–1007. [Google Scholar] [CrossRef]
- Herman, M.; Dutilleul, P.; Avella-Shaw, T. Intra-ring and inter-ring variations of tracheid length in fast-grown versus slow-grown Norway spruces (Picea abies). IAWA J. 1998, 19, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, T.; Makinen, H.; Saren, M.P.; Saranpaa, P. Does thinning intensity affect the tracheid dimensions of Norway spruce? Can. J. For. Res. 2005, 35, 2685–2697. [Google Scholar] [CrossRef]
- Kang, K.Y.; Zhang, S.Y.; Mansfield, S.D. The effects of initial spacing on wood density, fibre and pulp properties in jack pine (Pinus banksiana Lamb.). Holzforschung 2004, 58, 455–463. [Google Scholar] [CrossRef]
- Corriveau, A.; Beaulieu, J.; Mothe, F. Wood density of natural white spruce populations in Quebec. Can. J. For. Res. 1987, 17, 675–682. [Google Scholar] [CrossRef]
- Dutilleul, P.; Herman, M.; Avella-Shaw, T. Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies). Can. J. For. Res. 1998, 28, 56–68. [Google Scholar] [CrossRef]
- Fu, S.; Chen, H.Y.H.; Bell, F.W.; Sharma, M.; Delaney, J.R.; Peterson, G. Effects of timing of glyphosate application on jack pine, black spruce, and white spruce plantations in northern Manitoba. For. Chron. 2008, 84, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Brändström, J. Micro and ultrastructural aspects of Norway spruce tracheids: A review. IAWA J. 2001, 22, 333–353. [Google Scholar] [CrossRef] [Green Version]
- Dinwoodie, J.M. Variation in Tracheid Length in Picea Sitchensis CARR; Special Report No 16; Department of Scientific and Industrial Research, Forest products research Laboratory: Princes Risborough, United Kingdom, 1963; p. 60. [Google Scholar]
- Briggs, D.G.; Smith, W.R. Effect of silvicultural practices on wood properties of conifers: A review. In Douglas Fir: Stand Management for the Future; Oliver, C., Hanley, D., Johnson, J., Eds.; University of Washington Press: Seattle, WA, USA, 1986; pp. 108–117. [Google Scholar]
- Jaakkola, T.; Makinen, H.; Saranpaa, P. Wood density in Norway spruce: Changes with thinning intensity and tree age. Can. J. For. Res. 2005, 35, 1767–1778. [Google Scholar] [CrossRef]
- Pape, R. Influence of thinning and tree diameter class on the development of basic density and annual ring width in Picea abies. Scand. J. For. Res. 1999, 14, 27–37. [Google Scholar] [CrossRef]
- Erickson, H.D.; Harrison, A.T. Douglas-fir wood quality studies part I: Effects of age and stimulated growth on wood density and anatomy. Wood Sci. Technol. 1974, 8, 207–226. [Google Scholar] [CrossRef]
- Vincent, M.; Krause, C.; Koubaa, A. Variation in black spruce (Picea mariana (Mill.) BSP) wood quality after thinning. Ann. For. Sci. 2011, 68, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Savidge, R. Intrinsic regulation of cambial growth. J. Plant Growth Regul. 2001, 20, 52–77. [Google Scholar] [CrossRef]
- Larson, P.R. A biological approach to wood quality. Tappi 1962, 45, 443–448. [Google Scholar]
- Echols, R.M. Effects of growing space on wood specific gravity in loblolly pine. In Proceedings of the Society of American Foresters; Society of American Foresters: Washington, DC, USA, 1960; pp. 140–143. [Google Scholar]
- Geyer, W.A.; Gilmore, A. Effect of Spacing on Wood Specific Gravity in Loblolly Pine in Southern Illinois; Department of Forestry, Agricultural Experiment Station, University of Illinois: Champaign, IL, USA, 1965. [Google Scholar]
- Panshin, A.J.; de Zeuuw, C. Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, 4th ed.; McGraw-Hill Book Co.,: New York, NY, USA, 1980; p. 722. [Google Scholar]
- Nienstaedt, H.; Zasada, J.C. White spruce. In Sylvics—Volume 1: Conifers; Burns, R.M., Honkala, B.H., Eds.; USDA, forest service: Washington, DC, USA, 1990; Agriculture Handbook 654; pp. 389–442. [Google Scholar]
- Little, E.L., Jr. Checklist of United States Trees (Native and Naturalized); United States, Department of Agriculture, Forest Service: Washington, DC, USA, 1979; Agriculture Handbook, 541; p. 375. [Google Scholar]
- Franklin, G.L. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 1945, 155, 51. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. 2016. Available online: https://svn.r-project.org/R-packages/trunk/nlme/ (accessed on 20 April 2016).
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 30 August 2022).
- Ikonen, V.P.; Peltola, H.; Wilhelmsson, L.; Kilpeläinen, A.; Väisänen, H.; Nuutinen, T.; Kellomäki, S. Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. For. Ecol. Manag. 2008, 256, 1356–1371. [Google Scholar] [CrossRef]
- Mäkinen, H.; Hynynen, J. Predicting wood and tracheid properties of Scots pine. For. Ecol. Manag. 2012, 279, 11–20. [Google Scholar] [CrossRef]
- Mäkinen, H.; Jaakkola, T.; Piispanen, R.; Saranpaa, P. Predicting wood and tracheid properties of Norway spruce. For. Ecol. Manag. 2007, 241, 175–188. [Google Scholar] [CrossRef]
- Fabris, S.P. Influence of Cambial Ageing, Initial Spacing, Stem Taper and Growth Rate on the Wood Quality of Three Coastal Conifers. PhD Thesis, UBC Theses and Dissertations. The University of British Columbia, Vancouver, BC, Canada, 2000. [Google Scholar]
- Sanio, K. Über die Grösse der Holzzellen bei der gemeinen Kiefer (Pinus sylvestris), Jahrb. Wiss. Bot. 1872, 8, 401–420. [Google Scholar]
- Zhang, S.Y. Effect of age on the variation, correlations and inheritance of selected wood characteristics in black spruce (Picea mariana). Wood Sci. Technol. 1998, 32, 197–204. [Google Scholar]
- Bannan, M.W. Anticlinal divisions and cell length in conifer cambium. For. Prod. J. 1967, 17, 63–69. [Google Scholar]
Acronym | Description |
---|---|
EWW | Earlywood width |
IDV | Intra-ring density variation |
JW | Juvenile wood |
LWP | Latewood proportion |
LWW | Latewood width |
MW | Mature wood |
RA | Ring area |
RD | Ring density |
RFP | Ring from pith |
RW | Ring width |
TD | Tracheid diameter |
TL | Tracheid length |
WQA | Wood quality attributes |
Part 1: Inter-Ring Radial Variations at Breast Height. | ||||
---|---|---|---|---|
WQA | Predictor | Num-DF | Den-DF | F-Value |
log (RW) ‡ | Ring from pith | 32 | 406 | 23.56 *** |
RD | 32 | 406 | 1.978 * | |
IDV | 32 | 398 | 10.6268 *** | |
log (LWP) ‡ | 32 | 397 | 1.17 ns | |
TL | 7 | 76 | 116.92 *** | |
TD | 7 | 75 | 13.10 *** | |
log (RA) ‡ | 32 | 405 | 20.93 *** | |
log (EWW) ‡ | 32 | 397 | 16.67 *** | |
log (LWW) ‡ | 32 | 397 | 6.62 *** | |
Part 2: Inter-tree variation at breast height | ||||
log (RW) ‡ | Tree | 15 | 434 | 5.66 *** |
RD | 15 | 435 | 2.351 * | |
IDV | 15 | 427 | 6.74 *** | |
log (LWP) ‡ | 15 | 427 | 2.21 * | |
TL | 15 | 80 | 1.36 ns | |
TD | 15 | 79 | 2.19 * | |
log (RA) ‡ | 15 | 434 | 8.92 *** | |
log (EWW) ‡ | 15 | 426 | 4.82 *** | |
log (LWW) ‡ | 15 | 426 | 2.77 ** | |
Part 3: Intra-ring longitudinal variation of juvenile wood | ||||
log (RW) ‡ | Height | 3 | 691 | 12.67 *** |
RD | 3 | 692 | 2.38 ns | |
IDV | 3 | 687 | 7.741 *** | |
log (LWP) ‡ | 3 | 686 | 0.16 ns | |
TL | 3 | 112 | 3.74 * | |
TD | 3 | 111 | 0.28 ns | |
log (RA) ‡ | 3 | 691 | 15.24 *** | |
log (EWW) ‡ | 3 | 686 | 8.64 *** | |
log (LWW) ‡ | 3 | 686 | 4.08 * | |
Part 4: Inter-tree variation for different spacings between trees (I_Spacing) and heights | ||||
log (RW) ‡ | I_Spacing | 3 | 12 | 11.85 ** |
Height | 3 | 1061 | 11.19 *** | |
I_Spacing × Height | 9 | 1061 | 1.69 ns | |
RD | I_Spacing | 3 | 12 | 1.24 ns |
Height | 3 | 1062 | 1.33 ns | |
I_Spacing × Height | 9 | 1062 | 1.25 ns | |
IDV | I_Spacing | 3 | 12 | 1.73 ns |
Height | 3 | 1045 | 12.18 *** | |
I_Spacing × Height | 9 | 1045 | 5.13 *** | |
log (LWP) ‡ | I_Spacing | 3 | 12 | 0.48 ns |
Height | 3 | 1044 | 0.14 ns | |
I_Spacing × Height | 9 | 1044 | 1.08ns | |
TL | I_Spacing | 3 | 12 | 0.16 ns |
Height | 2 | 134 | 0.21 ns | |
I_Spacing × Height | 6 | 134 | 0.92 ns | |
TD | I_Spacing | 3 | 12 | 0.28 ns |
Height | 2 | 133 | 0.14 ns | |
I_Spacing × Height | 6 | 133 | 1.05 ns | |
log (RA) ‡ | I_Spacing | 3 | 12 | 11.56 *** |
Height | 3 | 1061 | 27.63 *** | |
I_Spacing × Height | 9 | 1061 | 3.42 ** | |
log (EWW) ‡ | I_Spacing | 3 | 12 | 10.39 * |
Height | 3 | 1044 | 7.21 ** | |
I_Spacing × Height | 9 | 1044 | 1.05 ns | |
log (LWW) ‡ | I_Spacing | 3 | 12 | 14.98 ** |
Height | 3 | 1044 | 2.91 ** | |
I_Spacing × Height | 9 | 1044 | 1.70 * |
Part 1—with Height | |||||||||
---|---|---|---|---|---|---|---|---|---|
Height (m) | RD (kg/m3) | IDV (kg/m3) | LWP (%) | RW (mm) | TD (µm) | TL (mm) | RA (mm2) | EWW (mm) | LWW (mm) |
1.3 | 452.4 (1.6) | 507.9 (6.7) | 21.8 (0.6) | 3.9 (0.1) | 32.3 (0.2) | 2.2 (0.0) | 784.7 (37.8) | 3.0 (0.1) | 0.9 (0.0) |
4.3 | 447.9 (1.9) | 555.2 (7.4) | 22.0 (0.8) | 4.1 (0.1) | 33.4 (0.2) | 2.5 (0.0) | 855.6 (39.9) | 3.1 (0.1) | 0.9 (0.1) |
7.3 | 444.3 (2.6) | 537.1 (9.3) | 22.2 (1.0) | 3.5 (0.1) | 33.3 (0.2) | 2.4 (0.0) | 662.3 (38.7) | 2.7 (0.1) | 0.8 (0.1) |
10.3 | 443.5 (2.5) | 501.9 (13.0) | 22.4 (1.3) | 3.6 (0.1) | - | - | 517.9 (34.5) | 2.9 (0.1) | 0.8 (0.1) |
Part 2—with spacing | |||||||||
Spacing (m) | RD (kg/m3) | IDV (kg/m3) | LWP (%) | RW (mm) | TD (µm) | TL (mm) | RA (mm2) | EWW (mm) | LWW (mm) |
1.2 | 445.6 (2.6) | 537.1 (9.9) | 21.6 (0.9) | 2.9 (0.1) | 31.9 (0.3) | 2.3 (0.0) | 429.7 (19.7) | 2.3 (0.1) | 0.6 (0.0) |
1.8 | 445.9 (2.0) | 473.5 (10.1) | 22.4 (0.9) | 2.9 (0.1) | 32.7 (0.2) | 2.3 (0.0) | 394.2 (15.7) | 2.3 (0.1) | 0.6 (0.0) |
4.3 | 453.4 (2.8) | 534.4 (10.0) | 20.1 (1.0) | 4.2 (0.1) | 33.5 (0.3) | 2.3 (0.0) | 812.9 (43.4) | 3.3 (0.1) | 0.9 (0.1) |
6.1 | 446.2 (2.7) | 568.7 (9.0) | 24.1 (1.2) | 5.4 (0.1) | 32.9 (0.4) | 2.2 (0.0) | 1323.0 (66.4) | 4.0 (0.1) | 1.4 (0.1) |
Part 3—in the juvenile and mature wood zones | |||||||||
Wood zone | RD (kg/m3) | IDV (kg/m3) | LWP (%) | RW (mm) | TD (µm) | TL (mm) | RA (mm2) | EWW (mm) | LWW (mm) |
JW | 447.5 (1.3) | 527.6 (5.2) | 22.1 (0.5) | 3.8 (0.1) | 32.8 (0.2) | 2.3 (0.0) | 727.4 (24.4) | 2.96 (0.0) | 0.84 (0.0) |
MW | 442.0 (2.2) | 616.0 (6.9) | 21.9 (0.7) | 2.3 (0.1) | 36.0 (0.2) | 3.1 (0.0) | 1206.6 (58.0) | 1.86 (0.1) | 0.50 (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mvolo, C.S.; Goudiaby, V.; Koubaa, A.; Stewart, J.D. Influence of Four Spacings between Trees and Four Samplings Heights on Selected Wood Quality Attributes of White Spruce (Picea glauca (Moench) Voss). Forests 2022, 13, 1807. https://doi.org/10.3390/f13111807
Mvolo CS, Goudiaby V, Koubaa A, Stewart JD. Influence of Four Spacings between Trees and Four Samplings Heights on Selected Wood Quality Attributes of White Spruce (Picea glauca (Moench) Voss). Forests. 2022; 13(11):1807. https://doi.org/10.3390/f13111807
Chicago/Turabian StyleMvolo, Cyriac S., Venceslas Goudiaby, Ahmed Koubaa, and James D. Stewart. 2022. "Influence of Four Spacings between Trees and Four Samplings Heights on Selected Wood Quality Attributes of White Spruce (Picea glauca (Moench) Voss)" Forests 13, no. 11: 1807. https://doi.org/10.3390/f13111807
APA StyleMvolo, C. S., Goudiaby, V., Koubaa, A., & Stewart, J. D. (2022). Influence of Four Spacings between Trees and Four Samplings Heights on Selected Wood Quality Attributes of White Spruce (Picea glauca (Moench) Voss). Forests, 13(11), 1807. https://doi.org/10.3390/f13111807