Effects of Rhus typhina Invasion on Soil Physicochemical Properties and Carbon Emissions in Urban Green Spaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Investigation and Soil Sampling
2.3. Soil Physicochemical Properties Determination
2.4. SOC Mineralisation and Its Temperature Sensitivity Caculation
2.5. Statistic Anslysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Cumulative CO2 Emissions
3.3. SOC Mineralization Temperature Sensitivity
3.4. Effects of R. typhina Invasion on Soil Ammonia Nitrogen Content
3.5. Relationship between Indicators of Soil under R. typhina Invasion
4. Discussion
4.1. Effect of R. typhina Invasion on Soil Physicochemical Properties
4.2. Effects of R. typhina Invasion on SOC Mineralization and Its Temperature Sensitivity
4.3. Effects of R. typhina Invasion on Soil Ammonia Nitrogen Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Correlation among Soil Indicators under R. typhina Invasion
References
- Yan, X.L.; Liu, Q.R.; Yan, X.L.; Liu, Q.R.; Shou, H.Y.; Zeng, X.F.; Zhang, Y.; Chen, L.; Liu, Y.; Ma, H.Y.; et al. The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants. Biodivers. Sci. 2014, 22, 667–676. [Google Scholar]
- Barney, J.N.; Tekiela, D.R.; Dollete, E.S.; Tomasek, B.J. What is the “real” impact of invasive plant species? Front. Ecol. Environ. 2013, 11, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Vermeij, G.J. An agenda for invasion biology. Biol. Conserv. 1996, 78, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Pyšek, P.; Hulme, P.E. Biological invasions in Europe 50 years after Elton: Time to sound the ALARM. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 73–88. [Google Scholar]
- Sandlund, O.T.; Schei, P.J.; Viken, Å. Invasive Species and Biodiversity Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Shiferaw, W.; Demissew, S.; Bekele, T. Invasive alien plant species in Ethiopia: Ecological impacts on biodiversity a review paper. Int. J. Mol. Biol. 2018, 3, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Mortenson, S.G.; Weisberg, P.J.; Ralston, B.E. Do beavers promote the invasion of non-native Tamarix in the Grand Canyon riparian zone? Wetlands 2008, 28, 666–675. [Google Scholar] [CrossRef]
- Castro-Díez, P.; Godoy, O.; Alonso, A.; Gallardo, A.; Saldaña, A. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 2014, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rout, M.E.; Callaway, R.M. An invasive plant paradox. Science 2009, 324, 734–735. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Stanek, M.; Nobis, M.; Zubek, S. Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biol. Fertil. Soils 2016, 52, 841–852. [Google Scholar] [CrossRef] [Green Version]
- Tong, R.; Zhou, B.Z.; Jiang, L.N.; Cao, Y.H.; Ge, X.G.; Yang, Z.Y. Influence of Moso bamboo invasion on forest plants and soil: A review. Acta Ecol. Sin. 2019, 39, 3808–3815. [Google Scholar]
- Rodgers, V.L.; Wolfe, B.E.; Werden, L.K.; Finzi, A.C. The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests. Oecologia 2008, 157, 459–471. [Google Scholar] [CrossRef]
- Zhang, W.L.; Kolbe, H.; Zhang, R.L. Research Progress of SOC Functions and Transformation Mechanisms. Sci. Agric. Sin. 2020, 53, 317–331. [Google Scholar]
- Zhang, J.L.; Zhang, J.Z.; Shen, J.B.; Tian, J.; Jin, K.M.; Zhang, F.S. Soil Health and Agriculture Green Development: Opportunities and Challenges. Acta Pedol. Sin. 2020, 57, 83–796. [Google Scholar]
- Ehrenfeld, J.G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Horn, J.; Escobedo, F.J.; Hinkle, R.; Hostetler, M.; Timilsina, N. The role of composition, invasives, and maintenance emissions on urban forest carbon stocks. Environ. Manag. 2015, 55, 431–442. [Google Scholar] [CrossRef]
- Escobedo, F.; Varela, S.; Zhao, M.; Wagner, J.E.; Zipperer, W. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environ. Sci. Policy 2010, 13, 362–372. [Google Scholar] [CrossRef]
- Huang, X.; Huang, X.J.; Chen, C. The Characteristic, Mechanism and Regulation of Urban Spatial Expansion of Changchun. Areal Res. Dev. 2009, 5, 68–72. [Google Scholar]
- Li, Y.M.; Xiu, C.L.; Wei, Y.; Sun, P.J. Analysis on mechanism and spatial-temporal features of urban sprawl: A case study of Changchun. Econ. Geogr. 2012, 32, 59–64. [Google Scholar]
- Vila, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarosik, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pysek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef]
- Ishii, H.; Ichinose, G.; Ohsugi, Y.; Iwasaki, A. Vegetation recovery after removal of invasive Trachycarpus fortunei in a fragmented urban shrine forest. Urban For. Urban Green. 2016, 15, 53–57. [Google Scholar] [CrossRef]
- Shannon-Firestone, S.; Reynolds, H.L.; Phillips, R.P.; Flory, S.L.; Yannarell, A. The role of ammonium oxidizing communities in mediating effects of an invasive plant on soil nitrification. Soil Biol. Biochem. 2015, 90, 266–274. [Google Scholar] [CrossRef]
- Cusack, D.F.; Lee, J.K.; McCleery, T.L.; LeCroy, C.S. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient. Glob. Chang. Biol. 2015, 21, 4481–4496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöman, H.; Morgenroth, J.; Sjöman, J.D.; Sæbø, A.; Kowarik, I. Diversification of the urban forest—Can we afford to exclude exotic tree species? Urban For. Urban Green. 2016, 18, 237–241. [Google Scholar] [CrossRef]
- Liu, T.; Li, Z.Q.; Li, R.; Cui, Y.; Zhao, Y.L.; Yu, Z.G. Composition analysis and antioxidant activities of the Rhus typhina L. stem. J. Pharm. Anal. 2019, 9, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Timiş-Gânsac, V.; Dincă, L. Staghorn sumac (Rhus typhinal.) from dobrogea’s forests. Ann. West Univ. Timis. Ser. Biol. 2020, 23, 179–188. [Google Scholar]
- Zhang, M.R.; Zhai, M.P.; Jia, L.M.; Shen, Y.B.; Wang, X.Y. A study on the characteristics of the growth and the biomass of clonal ramets in Rhus typhina. Sci. Silvae Sin. 2004, 40, 38–45. [Google Scholar]
- Doust, J.L.; Doust, L.L. Modules of production and reproduction in a dioecious clonal shrub. Rhus Typhina. Ecol. 1988, 69, 741–750. [Google Scholar] [CrossRef]
- Peterson, C.J.; Facelli, J.M. Contrasting germination and seedling growth of Betula alleghaniensis and Rhus typhina subjected to various amounts and types of plant litter. Am. J. Bot. 1992, 79, 1209–1216. [Google Scholar] [CrossRef]
- Hou, Y.P.; Liu, L.; Chu, H.; Ma, S.J.; Zhao, D.; Liang, R.R. Effects of exotic plant Rhus typhina invasion on soil properties in different forest types. Acta Ecol. Sin. 2015, 35, 5324–5330. [Google Scholar]
- Wang, G.M.; Jiang, G.M.; Yu, S.L.; Li, Y.H.; Liu, H. Invasion possibility and potential effects of Rhus typhina on Beijing municipality. J. Integr. Plant Biol. 2008, 50, 522–530. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Xu, H.; Fan, Z.W.; Hou, Y.P. Effects of Rhus typhina invasion into young Pinus thunbergii forests on soil chemical properties. Ecol. Environ. Sci. 2013, 22, 1119–1123. [Google Scholar]
- Wang, C.Y.; Xiao, H.G.; Liu, J.; Zhou, J.W.; Du, D.L. Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina. Pol. J. Environ. Stud. 2016, 25, 1279–1284. [Google Scholar] [CrossRef]
- Jiang, L.L.; Zhao, X.L. Research on the biological invasion of the exotic species Rhus Typhina. J. Liaoning For. Sci. Technol. 2013, 03, 47–48. [Google Scholar]
- Zhang, D.; Zheng, H.F.; He, X.Y.; Ren, Z.B.; Zhai, C.; Yu, X.Y.; Mao, Z.X.; Wang, P.J. Effects of forest type and urbanization on species composition and diversity of urban forest in Changchun, Northeast China. Urban Ecosyst. 2016, 19, 455–473. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2008. [Google Scholar]
- Wang, Q.; Zhang, D.; Zhou, W.; He, X.Y.; Wang, W.J. Urbanization led to a decline in glomalin-soil-carbon sequestration and responsible factors examination in Changchun, Northeastern China. Urban For. Urban Green. 2020, 48, 126506. [Google Scholar] [CrossRef]
- Wu, J.H.; Pan, J.J.; Ge, X.J.; Wang, H.Q.; Yu, W.F.; Li, B.Y. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types. J. Soil Water Conserv. 2015, 29, 130–135. [Google Scholar]
- Qu, T.B.; Ma, W.Y.; Yang, C.X.; Wang, Y. Effect of extract from Rhus typhina on carbon source utilization by soil microbial of Rudbeckia hirta. J. Northeast For. Univ. 2019, 47, 56–60. [Google Scholar]
- Niu, H.B.; Liu, W.X.; Wan, F.H. Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecol. Sin. 2007, 27, 3051–3060. [Google Scholar]
- Guo, X.; Xu, Z.W.; Li, M.Y.; Ren, X.H.; Liu, J.; Guo, W.H. Increased soil moisture aggravated the competitive effects of the invasive tree Rhus typhina on the native tree Cotinus coggygria. BMC Ecol. 2020, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Gao, X.R.; Zhao, D.; Zhao, H.; Wan, M.; Qin, G.X. Research on species diversity and soil property change of Rhus typhina community in degraded Hilly Taihang Mountain. Jounal Henan Agric. Univ. 2008, 03, 99–302. [Google Scholar]
- Fröhlich, B.; Niemetz, R.; Gross, G.G. Gallotannin biosynthesis: Two new galloyltransferases from Rhus typhina leaves preferentially acylating hexa-and heptagalloylglucoses. Planta 2002, 216, 168–172. [Google Scholar] [CrossRef]
- Levine, J.M.; Vilà, M.; Antonio CM, D.; Dukes, J.S.; Grigulis, K.; Lavorel, S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B Biol. Sci. 2003, 270, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Abhilasha, D.; Quintana, N.; Vivanco, J.; Joshi, J. Do allelopathic compounds in invasive Solidago canadensis sl restrain the native European flora? J. Ecol. 2008, 96, 993–1001. [Google Scholar] [CrossRef]
- Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Belnap, J.; Kitchen, S.G.; Zak, J.C.; Sobek, E.; Tracy, M.; Montante, J. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biol. Fertil. Soils 2003, 38, 72–77. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.Y.; Eller, F.; Luo, Y.J.; Nong, Y.L.; Xing, L.J.; Xu, Z.W.; Li, H.M.; Lu, H.C.; Guo, X. Trait value and phenotypic integration contribute to the response of exotic Rhus typhina seedlings to heterogeneous nitrogen deposition: A comparison with native Rhus chinensis. Sci. Total Environ. 2022, 844, 157199. [Google Scholar] [CrossRef] [PubMed]
- Windham, L.; Lathrop, R.G. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica river, New Jersey. Estuaries 1999, 22, 927–935. [Google Scholar] [CrossRef]
- Lu, J.Z.; Qiu, W.; Chen, J.K.; Li, B. Impact of invasive species on soil properties: Canadian goldenrod (Solidago canadensis) as a case study. Biodivers. Sci. 2005, 13, 347–356. [Google Scholar] [CrossRef]
- Barbosa, M.V.; Pedroso, D.D.F.; Curi, N.; Carneiro, M.A.C. Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Ciência e Agrotecnologia 2019, 43, e003519. [Google Scholar] [CrossRef]
- Cissé, G.; Oort, F.V.; Chenu, C.; Essi, M.; Staunton, S. Is the operationally defined fraction of soil organic matter, “GRSP” (glomalin-related soil protein), stable in soils? Evidence from trends in long-term bare fallow soil. Eur. J. Soil Sci. 2020, 72, 1101–1112. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.J.; Zhong, Z.L.; Wang, H.M.; Fu, Y.J. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China. J. For. Res. 2020, 31, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Wang, Q.; Zhou, W.; Xiao, L.; Wang, H.M.; He, X.Y. Glomalin changes in urban-rural gradients and their possible associations with forest characteristics and soil properties in Harbin City, Northeastern China. J. Environ. Manag. 2018, 224, 225–234. [Google Scholar] [CrossRef]
- Chen, S.X.; Zhang, X.T.; She, D.Q.; Zhang, Z.H.; Zhou, Z.Q.; Wang, H.M.; Wang, W.J. Effects of plant species diversity, dominant species importance, and soil properties on glomalin-related soil protein. Biodivers. Sci. 2022, 30, 21115. [Google Scholar] [CrossRef]
- González, A.L.; Kominoski, J.S.; Danger, M.; Ishida, S.; Iwai, N.; Rubach, A. Can ecological stoichiometry help explain patterns of biological invasions? Oikos 2010, 119, 779–790. [Google Scholar] [CrossRef]
- Leishman, M.R.; Thomson, V.P.; Cooke, J. Native and exotic invasive plants have fundamentally similar carbon capture strategies. J. Ecol. 2010, 98, 28–42. [Google Scholar] [CrossRef]
- Liang, X. Effects of Phyllostachys Pubscens Invasion of Native Broadleaf Forest on Community Characteristics of Soil CO2-Fixing Bacteria and Its Mechanism; Zhejiang A&F University: Lin’an, China, 2017. [Google Scholar]
- Gao, X.R.; Zhao, H.; Yang, H.Q.; Ling, X.Y.; Fan, W. Biomass and carbon storage of Rhus typhina in hilly area of Taihang Mountain. J. Cent. South Univ. For. Technol. 2012, 32, 172–175. [Google Scholar]
- Liu, B.Q. Effects of N Deposition, Strong Rainfall and Snowpack on Carbon Emission from Sproce-fir-Korean Pine Forest in Lesser Xing’an Mountains; Northeast Forestry University: Harbin, China, 2017. [Google Scholar]
- Zhu, Z.K.; Ge, T.D.; Liu, S.L.; Hu, Y.J.; Ye, R.Z.; Xiao, M.L.; Tong, C.L.; Kuzyakov, Y.; Wu, J.S. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 2018, 116, 369–377. [Google Scholar] [CrossRef]
- Zhang, C.P.; Niu, D.C.; Hall, S.J.; Wen, H.Y.; Li, X.D.; Fu, H.; Wan, C.G.; Elser, J.J. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in asemiarid grassland. Soil Biol. Biochem. 2014, 75, 113–123. [Google Scholar] [CrossRef]
- Wei, S.Z.; Tie, L.H.; Liao, J.; Liu, X.; Du, M.L.; Lan, S.X.; Li, X.R.; Li, C.S.; Zhan, H.C.; Huang, C.D. Nitrogen and phosphorus co-addition stimulates soil respiration in a subtropical evergreen broad-leaved forest. Plant Soil 2020, 450, 171–182. [Google Scholar] [CrossRef]
- Zhang, M.G.; Shi, Z.Y.; Yang, M.; Lu, S.C.; Wang, X.G.; Xu, X.F. Elevational distribution of glomalin-rated soil proteins in a tropical montane rain forest. Ecol. Environ. Sci. 2020, 29, 457–463. [Google Scholar]
- Huang, J.X.; Xiong, D.C.; Liu, X.F.; Yang, Z.J.; Xie, J.S.; Yang, Y.S. Effects of warming on soil organic carbon mineralization: A review. Acta Ecol. Sin. 2017, 37, 12–24. [Google Scholar]
- Zhang, D.; Gong, C.; Zhang, W.G.; Zhang, H.; Zhang, J.; Song, C.C. Labile carbon addition alters soil organic carbon mineralization but not its temperature sensitivity in a freshwater marsh of Northeast China. Appl. Soil Ecol. 2021, 160, 103844. [Google Scholar] [CrossRef]
- Kourtev, P.S.; Ehrenfeld, J.G.; Häggelom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 2003, 35, 895–905. [Google Scholar] [CrossRef]
- Blank, R.R. Biogeochemistry of plant invasion: A case study with downy brome (Bromus tectorum). Invasive Plant Sci. Manag. 2008, 1, 226–238. [Google Scholar] [CrossRef]
- Gong, C.; Song, C.C.; Zhang, D.; Zhang, J.S. Litter manipulation strongly affects CO2 emissions and temperature sensitivity in a temperate freshwater marsh of northeastern China. Ecol. Indic. 2019, 97, 410–418. [Google Scholar] [CrossRef]
- Zhang, D.; Gong, C.; Song, C.C.; Zhang, J.S. Effects of inorganic nitrogen addition on CO2 and N2O emissions from wetland soil. Soils Crops 2019, 8, 373–380. [Google Scholar]
- Allison, S.D.; Czimczik, C.I.; Treseder, K.K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob. Chang. Biol. 2008, 14, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Song, C.C.; Sun, L.; Zhang, D.; Zhang, J.; Liu, X.H. Response of methane emissions to litter input manipulation in a temperate freshwater marsh, Northeast China. Ecol. Indic. 2020, 115, 106377. [Google Scholar] [CrossRef]
Invasion Degree | Area 2014 (m2) | Area 2016 (m2) | Number of Expansion (I) | Number of Expansion (II) | Number of Expansion (III) | Expansion Rate |
---|---|---|---|---|---|---|
CK | 0 | 0 | 0 | 0 | 0 | 0 |
Mild | 204.94 | 327.35 | 42 | 69 | 213 | 6.56 |
Moderate | 181.06 | 298.44 | 64 | 115 | 297 | 8.39 |
Severe | 235.76 | 836.85 | 26 | 157 | 375 | 22.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, J.; Zhang, D.; Gong, C.; Wang, Q.; Zhai, C.; Dai, X. Effects of Rhus typhina Invasion on Soil Physicochemical Properties and Carbon Emissions in Urban Green Spaces. Forests 2022, 13, 1827. https://doi.org/10.3390/f13111827
Wang Z, Wu J, Zhang D, Gong C, Wang Q, Zhai C, Dai X. Effects of Rhus typhina Invasion on Soil Physicochemical Properties and Carbon Emissions in Urban Green Spaces. Forests. 2022; 13(11):1827. https://doi.org/10.3390/f13111827
Chicago/Turabian StyleWang, Zihan, Junjie Wu, Dan Zhang, Chao Gong, Qiong Wang, Chang Zhai, and Xinzhu Dai. 2022. "Effects of Rhus typhina Invasion on Soil Physicochemical Properties and Carbon Emissions in Urban Green Spaces" Forests 13, no. 11: 1827. https://doi.org/10.3390/f13111827
APA StyleWang, Z., Wu, J., Zhang, D., Gong, C., Wang, Q., Zhai, C., & Dai, X. (2022). Effects of Rhus typhina Invasion on Soil Physicochemical Properties and Carbon Emissions in Urban Green Spaces. Forests, 13(11), 1827. https://doi.org/10.3390/f13111827