Subjective Preference and Visual Attention to the Attributes of Ornamental Plants in Urban Green Space: An Eye-Tracking Study
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Stimuli
- (1)
- Vegetation type: grassland (I-A), shrub (I-B), broad-leaf tree (I-C), coniferous tree (I-D), bamboo (I-E), and palm (I-F)
- (2)
- Flower color: blue flower (II-A), red flower (II-B), pink flower (II-C), purple flower (II-D), white flower (II-E), and yellow flower (II-F)
- (3)
- Leaf color: green leaf (III-A), yellow leaf (III-B), and red leaf (III-C)
- (4)
- Layer: tree + shrub + grass (IV-A), shrub + grass (IV-B), shrub (IV-C), and grass (IV-D)
2.3. Procedure
2.4. Measure
2.4.1. Subjective Ratings
2.4.2. Eye-Tracking Measures
2.5. Data Analysis
3. Results
3.1. Eye-Tracking Heatmap
3.2. Subjective Ratings
3.3. Eye-Tracking Measures
3.3.1. Vegetation Type
3.3.2. Flower Color
3.3.3. Leaf Color
3.3.4. Layer
3.4. Hierarchical Clustering Analysis
3.5. Chi-Squared Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilkie, S.; Clements, H. Further exploration of environment preference and environment type congruence on restoration and perceived restoration potential. Landsc. Urban Plan. 2018, 170, 314–319. [Google Scholar] [CrossRef]
- Scott, N.; Le, D.; Becken, S.; Connolly, R.M. Measuring perceived beauty of the Great Barrier Reef using eye-tracking technology. Curr. Issues Tour. 2020, 23, 2492–2502. [Google Scholar] [CrossRef]
- Avolio, M.L.; Pataki, D.E.; Pincetl, S.; Gillespie, T.W.; Jenerette, G.D.; McCarthy, H.R. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 2015, 18, 73–86. [Google Scholar] [CrossRef]
- Al-Samarraie, H.; Sarsam, S.M.; Alzahrani, A.I.; Alalwan, N. Personality and individual differences: The potential of using preferences for visual stimuli to predict the Big Five traits. Cogn. Technol. Work. 2018, 20, 337–349. [Google Scholar] [CrossRef]
- Hofmann, M.; Gerstenberg, T.; Gillner, S. Predicting tree preferences from visible tree characteristics. Eur. J. For. Res. 2017, 136, 421–432. [Google Scholar] [CrossRef]
- Van den Berg, A.E.; Koole, S.L.; van der Wulp, N.Y. Environmental preference and restoration: (How) are they related? J. Environ. Psychol. 2003, 23, 135–146. [Google Scholar] [CrossRef]
- Goller, J.; Mitrovic, A.; Leder, H. Effects of liking on visual attention in faces and paintings. Acta Psychol. 2019, 197, 115–123. [Google Scholar] [CrossRef]
- Van der Laan, L.N.; Hooge, I.T.C.; de Ridder, D.T.D.; Viergever, M.A.; Smeets, P.A.M. Do you like what you see? The role of first fixation and total fixation duration in consumer choice. Food Qual. Prefer. 2015, 39, 46–55. [Google Scholar] [CrossRef]
- Jiang, B.; Larsen, L.; Deal, B.; Sullivan, W.C. A dose–response curve describing the relationship between tree cover density and landscape preference. Landsc. Urban Plan. 2015, 139, 16–25. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Antrop, M.; Van Etvelde, V. Testing the validity of a saliency-based method for visual assessment of constructions in the landscape. Landsc. Urban Plan. 2017, 167, 325–338. [Google Scholar] [CrossRef]
- Behe, B.K.; Huddleston, P.T.; Childs, K.L.; Chen, J.; Muraro, I.S. Seeing through the forest: The gaze path to purchase. PLoS ONE 2020, 15, e240179. [Google Scholar] [CrossRef] [PubMed]
- Staples, A.; Behe, B.K.; Huddleston, P.; Malone, T. What you see is what you get, and what you don’t goes unsold: Choice overload and purchasing heuristics in a horticulture lab experiment. Agribusiness 2022, 38, 620–635. [Google Scholar] [CrossRef]
- Zheng, J.; Tarin, M.W.K.; Jiang, D.; Li, M.; Ye, J.; Chen, L.; He, T.; Zheng, Y. Which ornamental features of bamboo plants will attract the people most? Urban For. Urban Green. 2021, 61, 127101–127109. [Google Scholar] [CrossRef]
- Dudinskaya, E.C.; Naspetti, S.; Zanoli, R. Using eye-tracking as an aid to design on-screen choice experiments. J. Choice Model. 2020, 36, 100232. [Google Scholar] [CrossRef]
- Dixson, B.J.; Grimshaw, G.M.; Linklater, W.L.; Dixson, A.F. Eye Tracking of Men’s Preferences for Female Breast Size and Areola Pigmentation. Arch. Sex. Behav. 2011, 40, 51–58. [Google Scholar] [CrossRef]
- Aletta, F.; Oberman, T.; Mitchell, A.; Erfanian, M.; Lionello, M.; Kachlicka, M.; Kang, J. Associations between soundscape experience and self-reported wellbeing in open public urban spaces: A field study. Lancet 2019, 394, S17. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.T.; Kamperi, E.; Demiris, N.; Economou, M.; Theleritis, C.; Kitsonas, M.; Papageorgiou, C. The impact of seasonal colour change in planting on patients with psychotic disorders using biosensors. Urban For. Urban Green. 2018, 36, 50–56. [Google Scholar] [CrossRef]
- Guo, S.; Sun, W.; Chen, W.; Zhang, J.; Liu, P. Impact of artificial elements on mountain landscape perception: An eye-tracking study. Land 2021, 10, 1102. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuo, Z.; Liu, Q.; Yu, K.; Huang, Q.; Liu, J. The relationships between perceived design intensity, preference, restorativeness and eye movements in designed urban green space. Int. J. Environ. Res. Public Health 2021, 18, 10944. [Google Scholar] [CrossRef]
- Ding, N.; Zhong, Y.; Li, J.; Xiao, Q. Study on selection of native greening plants based on eye-tracking technology. Sci. Rep. 2022, 12, 1092. [Google Scholar] [CrossRef]
- Orquin, J.L.; Mueller Loose, S. Attention and choice: A review on eye movements in decision making. Acta Psychol. 2013, 144, 190–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.D.; Liang, Q.; Fang, H.L.; Zhang, Q.F. An eye-movement research on city greening landscape appreciation. J. Psychol. Sci. 2009, 4, 34–37. [Google Scholar]
- Martinez-Soto, J.; de la Fuente, S.L.; Gonzales-Santos, L.; Barrios, F.A. Observation of environments with different restorative potential results in differences in eye patron movements and pupillary size. IBRO Rep. 2019, 7, 52–58. [Google Scholar] [CrossRef]
- Berto, R.; Baroni, M.R.; Zainaghi, A.; Bettella, S. An exploratory study of the effect of high and low fascination environments on attentional fatigue. J. Environ. Psychol. 2010, 30, 494–500. [Google Scholar] [CrossRef]
- Berto, R. Exposure to restorative environments helps restore attentional capacity. J. Environ. Psychol. 2005, 25, 249–259. [Google Scholar] [CrossRef]
- Valtchanov, D.; Ellard, C.G. Cognitive and affective responses to natural scenes: Effects of low level visual properties on preference, cognitive load and eye-movements. J. Environ. Psychol. 2015, 43, 184–195. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Zhou, S.; Zhang, T.; Zhang, W.; Meng, H. Psychological cognitive factors affecting visual behavior and satisfaction preference for forest recreation space. Forests 2022, 13, 136. [Google Scholar] [CrossRef]
- Ho, M.; Chen, J.; Huang, R.; Shen, M.; Lu, M.; Liu, C. Numerical analysis on color preference and visual comfort from eye tracking technique. Math. Probl. Eng. 2015, 2015, 861610. [Google Scholar] [CrossRef]
- Hess, E.H.; Polt, J.M. Pupil size as related to interest value of visual stimuli. Science 1960, 132, 349–350. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Li, M.; Liu, J.; Jin, W. Residents’ preferences for roses, features of rose plantings and the relations between them in built-up areas of Beijing, China. Urban For. Urban Green. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Balcombe, K.; Fraser, I.; Williams, L.; McSorley, E. Examining the relationship between visual attention and stated preferences: A discrete choice experiment using eye-tracking. J. Econ. Behav. Organ. 2017, 144, 238–257. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Rahnema, S.; Sedaghathoor, S.; Allahyari, M.S.; Damalas, C.A.; Bilali, H.E. Preferences and emotion perceptions of ornamental plant species for green space designing among urban park users in Iran. Urban For. Urban Green. 2019, 39, 98–108. [Google Scholar] [CrossRef]
- Tatler, B.W. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vis. 2007, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardan, O.; Demiralp, E.; Hout, M.C.; Hunter, M.R.; Karimi, H.; Hanayik, T.; Yourganov, G.; Jonides, J.; Berman, M.G. Is the preference of natural versus man-made scenes driven by bottom–up processing of the visual features of nature? Front. Psychol. 2015, 6, 471. [Google Scholar] [CrossRef] [Green Version]
- Berman, M.G.; Hout, M.C.; Kardan, O.; Hunter, M.R.; Yourganov, G.; Henderson, J.M.; Hanayik, T.; Karimi, H.; Jonides, J. The Perception of Naturalness Correlates with Low-Level Visual Features of Environmental Scenes. PLoS ONE 2014, 9, e114572. [Google Scholar] [CrossRef] [Green Version]
- Behe, B.K.; Nelson, R.G.; Barton, S.S.; Hall, C.R.; Safley, C.D.; Turner, S.R. Consumer preferences for Geranium flower color, leaf variegation, and Price. Hortscience 1999, 34, 740–742. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Tarin, M.W.K.; Chen, G.; Zhang, Q.; Deng, C. The characteristics of plant clusters influence on the cooling effect: A case study in a subtropical Island Park, China. Glob. Ecol. Conserv. 2022, 34, e2055. [Google Scholar] [CrossRef]
- Shentova, R.; de Vries, S.; Verboom, J. Well-being in the time of corona: Associations of nearby greenery with mental well-being during COVID-19 in The Netherlands. Sustainability 2022, 14, 10256. [Google Scholar] [CrossRef]
- Townsend, J.B.; Barton, S. The impact of ancient tree form on modern landscape preferences. Urban For. Urban Green. 2018, 34, 205–216. [Google Scholar] [CrossRef]
- Douven, I. Clustering colors. Cogn. Syst. Res. 2017, 45, 70–81. [Google Scholar] [CrossRef]
- Eder, M.; Öz, Ö. Spatialities of contentious politics: The case of Istanbul’s Besiktas neighborhood, cArsi footfall fandom and Gezi. Polit. Geogr. 2017, 61, 57–66. [Google Scholar] [CrossRef]
- Hurlbert, A.C.; Ling, Y. Biological components of sex differences in color preference. Curr. Biol. 2007, 17, R623–R625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, J.; Qiao, L.; Zhang, X.; Su, Y.; Xia, Y. Effects of visual attributes of flower borders in urban vegetation landscapes on aesthetic preference and emotional perception. Int. J. Environ. Res. Public Health 2021, 18, 9318. [Google Scholar] [CrossRef]
- Kuhn, S.; Egert, B.; Neumann, S.; Steinbeck, C. Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction. BMC Bioinform. 2008, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Tang, D.; Tsai, C. Exploring color preference through eye tracking. In Proceedings of the AIC Colour 05-10th Congress of the International Colour Association, Granada, Spain, 8–13 May 2005; pp. 333–336. [Google Scholar]
- Sun, L.; Shao, H.; Li, S.; Huang, X.; Yang, W. Integrated application of eye movement analysis and beauty estimation in the visual landscape quality estimation of urban waterfront park. Int. J. Pattern Recognit. 2018, 32, 1856010. [Google Scholar] [CrossRef]
- Li, M.M.; Guo, F.; Ren, Z.G.; Duffy, V.G. A visual and neural evaluation of the affective impression on humanoid robot appearances in free viewing. Int. J. Ind. Ergon. 2022, 88, 103159. [Google Scholar] [CrossRef]
- Locher, P.; Krupinski, E.A.; Mello-Thoms, C.; Nodine, C.F. Visual interest in pictorial art during an aesthetic experience. Spat. Vis. 2007, 21, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Miccoli, L.; Escrig, M.A.; Lang, P.J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 2008, 45, 602–607. [Google Scholar] [CrossRef]
Eye-Tracking Measures | Vegetation Type | Flower Color | Leaf Color | Layer | ||||
---|---|---|---|---|---|---|---|---|
r | r | r | r | |||||
Pupil size | −0.020 | 2131.860 | 0.026 | 1567.094 | 0.162 ** | 804.330 | 0.070 | 1065.167 |
First fixation duration | −0.050 | 1222.827 | −0.072 | 1060.040 | −0.001 | 623.700 | −0.064 | 785.029 |
Percent of dwell time | 0.067 | 1747.592 | 0.072 | 1424.126 | 0.248 ** | 635.790 | 0.215 ** | 885.330 * |
Fixation count | 0.056 | 179.028 | 0.111 ** | 163.850 | 0.202 ** | 116.790 | 0.32 ** | 145.626 |
Saccade amplitude | 0.013 | 2155.151 | −0.171 ** | 1580.703 | 0.028 | 804.270 | −0.092 | 1074.119 |
Saccade velocity | 0.019 | 2157.575 | −0.083 | 1596.287 | −0.020 | 810.000 | −0.089 | 1074.119 |
Saccade count | 0.090 * | 152.627 | 0.148 ** | 148.810 | −0.069 | 124.160 | 0.141 ** | 130.343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Huang, Y.; Chen, Y.; Guan, L.; Liu, Q. Subjective Preference and Visual Attention to the Attributes of Ornamental Plants in Urban Green Space: An Eye-Tracking Study. Forests 2022, 13, 1871. https://doi.org/10.3390/f13111871
Zheng J, Huang Y, Chen Y, Guan L, Liu Q. Subjective Preference and Visual Attention to the Attributes of Ornamental Plants in Urban Green Space: An Eye-Tracking Study. Forests. 2022; 13(11):1871. https://doi.org/10.3390/f13111871
Chicago/Turabian StyleZheng, Junming, Yanzhen Huang, Yashan Chen, Lei Guan, and Qunyue Liu. 2022. "Subjective Preference and Visual Attention to the Attributes of Ornamental Plants in Urban Green Space: An Eye-Tracking Study" Forests 13, no. 11: 1871. https://doi.org/10.3390/f13111871
APA StyleZheng, J., Huang, Y., Chen, Y., Guan, L., & Liu, Q. (2022). Subjective Preference and Visual Attention to the Attributes of Ornamental Plants in Urban Green Space: An Eye-Tracking Study. Forests, 13(11), 1871. https://doi.org/10.3390/f13111871