Integrated Harvesting of Medium Rotation Hybrid Poplar Plantations: Systems Compared
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- WTH performed better than the CTL system in felling and extraction operations;
- The overall WTH performances were blunted by the lack of the availability of proper “mass handling” processing machines to be deployed at the landing;
- WTH shows significant margins for improvement through the implementation of full “mass handling” techniques from the stump to the industry gate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visser, R.; Stampfer, K. Tree-Length System Evaluation of Second Thinning in a Loblolly Pine Plantation. South. J. Appl. For. 2003, 27, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Visser, R.; Spinelli, R. Determining the Shape of the Productivity Function for Mechanized Felling and Felling-Processing. J. For. Res. 2012, 17, 397–402. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P.S. Multi-Tree Cut-to-Length Harvesting of Short-Rotation Poplar Plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C.; Mihelič, M. A Low-Investment Option for the Integrated Semi-Mechanized Harvesting of Small-Scale, Short-Rotation Poplar Plantations. Small-Scale For. 2020, 20, 59–72. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Low-Investment Fully Mechanized Harvesting of Short-Rotation Poplar (Populus spp.) Plantations. Forests 2020, 11, 502. [Google Scholar] [CrossRef]
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide Trends in Methods for Harvesting and Extracting Industrial Roundwood. Int. J. For. Eng. 2021, 32, 1–14. [Google Scholar] [CrossRef]
- Kammenga, J.J. Whole-Tree Utilization System for Thinning Young Douglas-Fir. J. For. 1983, 81, 220–224. [Google Scholar]
- Enache, A.; Kühmaier, M.; Visser, R.; Stampfer, K. Forestry Operations in the European Mountains: A Study of Current Practices and Efficiency Gaps. Scand. J. For. Res. 2016, 31, 412–427. [Google Scholar] [CrossRef]
- Antti, A.; Anttila, P.; Verkerk, H.; Olalla Díaz-Yáñez, O.; Roser, D. Development of Forest Machinery and Labour in the EU in 2010–2030. In Proceedings of the 44th International Symposium on Forestry Mechanisation:“Pushing the Boundaries with Research and Innovation in Forest Engineering”, Graz, Australia, 9–13 October 2011. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Visser, R.; O’Neal, B. A Survey of the Skidder Fleet of Central, Eastern and Southern Europe. Eur. J. For. Res. 2021, 140, 901–911. [Google Scholar] [CrossRef]
- Moravčík, M.; Kovalčík, M.; Kunca, A.; Schwarz, M.; Longauerova, V.; Pajtík, J.; Bednarova, D.; Oravec, M. Report on the Forest Sector of the Slovak Republic 2020 Green Report (Abridged Version); Ministry of Agriculture and Rural Development of the Slovak Republic, National Forest Centre: Dobrovičova, Slovak Republic, 2021; ISBN 978-80-8093-329-6. [Google Scholar]
- Gallis, C. Increasing Productivity and Controlling of Work Fatigue in Forest Operations by Using Prescribed Active Pauses: A Selective Review. Croat. J. For. Eng. 2013, 34, 103–112. [Google Scholar]
- Potočnik, I.; Poje, A. Forestry Ergonomics and Occupational Safety in High Ranking Scientific Journals from 2005–2016. Croat. J. For. Eng. 2017, 38, 291–310. [Google Scholar]
- Fulvio, F.D.; Abbas, D.; Spinelli, R.; Acuna, M.; Ackerman, P.; Lindroos, O. Benchmarking Technical and Cost Factors in Forest Felling and Processing Operations in Different Global Regions during the Period 2013–2014. Int. J. For. Eng. 2017, 28, 94–105. [Google Scholar] [CrossRef]
- Ranacher, L.; Pollakova, B.; Schwarzbauer, P.; Liebal, S.; Weber, N.; Hesser, F. Farmers’ Willingness to Adopt Short Rotation Plantations on Marginal Lands: Qualitative Study About Incentives and Barriers in Slovakia. BioEnergy Res. 2021, 14, 357–373. [Google Scholar] [CrossRef]
- Meyer, M.; Tavares Wahren, F.; Weber, N.; Zalesny, R.S.; Weih, M. Sustainable Biomass Value Chains Based on Poplar Plantations in European Rural Areas. BioEnergy Res. 2021, 14, 355–356. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Picchi, G.; Lombardini, C.; Nati, C. Upsized Harvesting Technology for Coping with the New Trends in Short-Rotation Coppice. Appl. Eng. Agric. 2011, 27, 551–557. [Google Scholar] [CrossRef]
- Vanbeveren, S.P.P.; De Francesco, F.; Ceulemans, R.; Spinelli, R. Productivity of Mechanized Whip Harvesting with the Stemster MkIII in a Short-Rotation Coppice Established on Farmland. Biomass Bioenergy 2018, 108, 323–329. [Google Scholar] [CrossRef]
- Spinelli, R.; Schweier, J.; De Francesco, F. Harvesting Techniques for Non-Industrial Biomass Plantations. Biosyst. Eng. 2012, 113, 319–324. [Google Scholar] [CrossRef]
- Vanbeveren, S.P.P.; Magagnotti, N.; Spinelli, R. Increasing the Value Recovery from Short-Rotation Coppice Harvesting. BioResources 2016, 12, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R. The Effect of Target Log Length on Log Recovery and Harvesting Cost: The Example of Short-Rotation Poplar Plantations. Forests 2022, 13, 669. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; De Francesco, F.; Kováč, B.; Heger, P.; Heilig, D.; Heil, B.; Kovács, G.; Zemánek, T. Cut-to-Length Harvesting Options for the Integrated Harvesting of the European Industrial Poplar Plantations. Forests 2022, 13, 1478. [Google Scholar] [CrossRef]
- Urban, J.; Čermák, J.; Ceulemans, R. Above- and below-Ground Biomass, Surface and Volume, and Stored Water in a Mature Scots Pine Stand. Eur. J. For. Res. 2015, 134, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Krejza, J.; Světlík, J.; Bednář, P. Allometric Relationship and Biomass Expansion Factors (BEFs) for above- and below-Ground Biomass Prediction and Stem Volume Estimation for Ash (Fraxinus excelsior L.) and Oak (Quercus robur L.). Trees 2017, 31, 1303–1316. [Google Scholar] [CrossRef]
- Headlee, W.L.; Zalesny, R.S. Allometric Relationships for Aboveground Woody Biomass Differ Among Hybrid Poplar Genomic Groups and Clones in the North-Central USA. BioEnergy Res. 2019, 12, 966–976. [Google Scholar] [CrossRef]
- Verlinden, M.S.; Broeckx, L.S.; Ceulemans, R. First vs. Second Rotation of a Poplar Short Rotation Coppice: Above-Ground Biomass Productivity and Shoot Dynamics. Biomass Bioenergy 2015, 73, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Wenhold, R.; Ackerman, P.; Ackerman, S.; Gagliardi, K. Skills Development of Mechanized Softwood Sawtimber Cut-to-Length Harvester Operators on the Highveld of South Africa. Int. J. For. Eng. 2020, 31, 9–18. [Google Scholar] [CrossRef]
- Björheden, D.R. Learning Curves in Tree Section Hauling in Central Sweden. J. For. Eng. 2001, 12, 9–18. [Google Scholar] [CrossRef]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. Annual Usage and Long-Term Productivity of a Truck-Mounted Slash Bundler under Mountain Conditions. Eur. J. For. Res. 2012, 131, 821–827. [Google Scholar] [CrossRef]
- Bjorheden, R.; Thompson, M.A. An International Nomenclature for Forest Work Study. In Proceedings of the 20th World Congress, Caring for the Forest: Research in a Changing World, Tampere, Finland, 6–12 August 1995; pp. 190–215. [Google Scholar]
- Spinelli, R.; Visser, R. Analyzing and Estimating Delays in Harvester Operations. Int. J. For. Eng. 2008, 19, 36–41. [Google Scholar] [CrossRef]
- Olsen, E.D.; Hossain, M.M.; Miller, M.E. Statistical Comparison of Methods Used in Harvesting Work Studies; Research Contribution 23; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1998. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Scott, A. Work measurement: Observed time to standard time, Work study in forestry. For. Commun. Bull. 1973, 47, 26–39. [Google Scholar]
- Gullberg, T. Evaluating Operator-Machine Interactions in Comparative Time Studies. J. For. Eng. 1995, 7, 51–61. [Google Scholar] [CrossRef]
- Manner, J. What Is (Not) an Operator Effect in Forest Work Science? Silva. Fenn. 2021, 55, 1–4. [Google Scholar] [CrossRef]
- Lindroos, O. Scrutinizing the Theory of Comparative Time Studies with Operator as a Block Effect. Int. J. For. Eng. 2010, 21, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Kovac, B.; Heger, P.; Helig, D.; Heil, B.; Kovàcs, G.; Magagnotti, N. Manipulating Grading Strategy for the Efficient Harvesting of Industrial Poplar Plantations. Int. J. For. Eng. 2022, 33, 98–107. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Kovac, B.; Heger, P.; Heilig, D.; Heil, B.; Kovacs, G.; Mihelic, M. A Cost-Benefit Analysis of Pre-Sorting Using a Feller-Buncher in Underdeveloped Short Rotation Poplar Plantations. Int. J. For. Eng. 2022, 1–10. [Google Scholar] [CrossRef]
- Hartsough, B.; Pottle, S. Fiber Recovery with Chain Flail Delimbing/Debarking and Chipping of Hybrid Poplar. J. For. Eng. 2000, 11, 59–68. [Google Scholar] [CrossRef]
- Spinelli, R.; Mitchell, R.; Brown, M.; Magagnotti, N.; McEwan, A. Manipulating Chain Type and Flail Drum Speed for Better Fibre Recovery in Chain-Flail Delimber-Debarker-Chipper Operations. Croat. J. For. Eng. 2020, 41, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Malinen, J.; Laitila, J.; Väätäinen, K.; Viitamäki, K. Variation in Age, Annual Usage and Resale Price of Cut-to-Length Machinery in Different Regions of Europe. Int. J. For. Eng. 2016, 27, 95–102. [Google Scholar] [CrossRef]
System | Machine 1 | Machine 2 |
---|---|---|
CTL | Sampo HR46 harvester (124 kW, 9.5 t); | Sampo FR28 forwarder (124 kW, 10 t payload capacity); |
WTH | Silvaro 250 shears; Kobelco 200 tracked excavator (20 t); | LKT 82 clambunk skidder (93 kW) 1 |
Variable | Site | System | Mean | Std_Dev | Count | Std_Error | Minimum | Maximum | Median |
---|---|---|---|---|---|---|---|---|---|
H (m) | Nivky | CTL | 15.072 | 0.098 | 9 * | 0.033 | 14.931 | 15.218 | 15.070 |
Nivky | WTH | 14.935 | 0.143 | 8 | 0.051 | 14.716 | 15.141 | 14.917 | |
Skalica | CTL | 12.140 | 0.789 | 8 | 0.279 | 11.044 | 13.235 | 12.124 | |
Skalica | WTH | 12.040 | 0.780 | 8 | 0.276 | 10.689 | 12.875 | 12.129 | |
DBH (cm) | Nivky | CTL | 12.218 | 0.405 | 9 * | 0.135 | 11.694 | 12.951 | 12.201 |
Nivky | WTH | 11.617 | 0.553 | 8 | 0.196 | 10.815 | 12.465 | 11.532 | |
Skalica | CTL | 13.199 | 1.063 | 8 | 0.376 | 11.728 | 14.691 | 13.248 | |
Skalica | WTH | 13.108 | 0.976 | 8 | 0.345 | 11.483 | 14.145 | 13.328 | |
Growing stock (ODT ha−1) | Nivky | CTL | 52.638 | 5.081 | 9 * | 1.694 | 47.070 | 62.917 | 50.850 |
Nivky | WTH | 44.195 | 6.758 | 8 | 2.389 | 32.188 | 54.338 | 43.735 | |
Skalica | CTL | 42.518 | 9.009 | 8 | 3.185 | 31.790 | 56.922 | 41.432 | |
Skalica | WTH | 41.530 | 7.748 | 8 | 2.739 | 30.966 | 50.857 | 42.311 | |
Shares of Logs (% Logs) | Nivky | CTL | 61.119 | 2.877 | 9 * | 0.959 | 58.212 | 66.294 | 59.290 |
Nivky | WTH | 54.621 | 4.712 | 8 | 1.666 | 47.764 | 62.206 | 54.266 | |
Skalica | CTL | 45.631 | 2.307 | 8 | 0.816 | 42.558 | 48.998 | 45.398 | |
Skalica | WTH | 45.813 | 2.228 | 8 | 0.788 | 43.570 | 49.657 | 45.215 |
Parameters | Variables’ Interaction | Df | Deviance | Resid. Df | Resid. Dev | F | Pr(>F) |
---|---|---|---|---|---|---|---|
H (m) | NULL | NA | NA | 32 | 79.14 | NA | NA |
site | 1 | 70.18 | 31 | 8.96 | 230.22 | 0.00 *** | |
system | 1 | 0.12 | 30 | 8.84 | 0.38 | 0.54 | |
site:system | 1 | 0.00 | 29 | 8.84 | 0.01 | 0.92 | |
DBH (cm) | NULL | NA | NA | 32 | 31.84 | NA | NA |
site | 1 | 12.24 | 31 | 19.60 | 19.69 | 0.00 | |
system | 1 | 1.03 | 30 | 18.57 | 1.65 | 0.21 | |
site:system | 1 | 0.54 | 29 | 18.03 | 0.86 | 0.36 | |
growing stock (ODT ha−1) | NULL | NA | NA | 32 | 2183.91 | NA | NA |
site | 1 | 363.50 | 31 | 1820.41 | 6.96 | 0.01 | |
system | 1 | 191.47 | 30 | 1628.94 | 3.67 | 0.07 | |
site:system | 1 | 114.33 | 29 | 1514.62 | 2.19 | 0.15 | |
Share of Logs (% Logs) | NULL | NA | NA | 32 | 1727.56 | NA | NA |
site | 1 | 1254.91 | 31 | 472.65 | 123.92 | 0.00 | |
system | 1 | 87.17 | 30 | 385.48 | 8.61 | 0.01 | |
site:system | 1 | 91.79 | 29 | 293.68 | 9.06 | 0.01 |
Variable | Site | System | Mean | Std_Dev | Count | Std_Error | Minimum | Maximum | Median |
---|---|---|---|---|---|---|---|---|---|
Felling productivity (ODT SMH−1) | Nivky | CTL | 3.029 | 0.289 | 9 * | 0.096 | 2.672 | 3.530 | 2.916 |
Nivky | WTH | 5.580 | 0.474 | 8 | 0.168 | 4.770 | 6.120 | 5.744 | |
Skalica | CTL | 2.176 | 0.336 | 8 | 0.119 | 1.827 | 2.877 | 2.086 | |
Skalica | WTH | 4.624 | 0.711 | 8 | 0.251 | 3.548 | 5.581 | 4.641 | |
Felling cost (EUR ODT−1) | Nivky | CTL | 19.961 | 1.818 | 9 * | 0.606 | 16.999 | 22.456 | 20.573 |
Nivky | WTH | 6.315 | 0.578 | 8 | 0.204 | 5.719 | 7.338 | 6.093 | |
Skalica | CTL | 28.087 | 3.837 | 8 | 1.357 | 20.856 | 32.847 | 28.770 | |
Skalica | WTH | 7.736 | 1.248 | 8 | 0.441 | 6.272 | 9.864 | 7.549 | |
Extraction Productivity (ODT SMH−1) | Nivky | CTL | 3.257 | 0.426 | 9 * | 0.142 | 2.469 | 3.824 | 3.429 |
Nivky | WTH | 3.908 | 0.607 | 8 | 0.215 | 3.157 | 5.046 | 3.829 | |
Skalica | CTL | 2.276 | 0.227 | 8 | 0.080 | 1.941 | 2.530 | 2.298 | |
Skalica | WTH | 4.648 | 0.333 | 8 | 0.118 | 4.290 | 5.238 | 4.584 | |
Extraction cost (EUR ODT−1) | Nivky | CTL | 12.490 | 1.803 | 9 * | 0.601 | 10.460 | 16.199 | 11.665 |
Nivky | WTH | 13.053 | 1.927 | 8 | 0.681 | 9.909 | 15.838 | 13.066 | |
Skalica | CTL | 17.730 | 1.811 | 8 | 0.640 | 15.807 | 20.611 | 17.439 | |
Skalica | WTH | 10.805 | 0.745 | 8 | 0.263 | 9.546 | 11.654 | 10.908 | |
Total cost (EUR ODT−1) | Nivky | CTL | 32.451 | 2.512 | 9 * | 0.837 | 28.145 | 37.065 | 32.348 |
Nivky | WTH | 43.252 | 5.319 | 8 | 1.881 | 35.926 | 50.082 | 43.594 | |
Skalica | CTL | 45.816 | 4.890 | 8 | 1.729 | 37.173 | 52.181 | 46.608 | |
Skalica | WTH | 53.565 | 2.653 | 8 | 0.938 | 51.168 | 59.159 | 53.207 |
System | Site | CTL | WTH | Diff | Diff % |
---|---|---|---|---|---|
Felling productivity (ODT SMH−1) | Nivky | 3.03 | 5.58 | 2.55 | 84.22 |
Skalica | 2.18 | 4.62 | 2.45 | 112.50 | |
Felling cost (EUR ODT−1) | Nivky | 19.96 | 6.31 | −13.65 | −68.36 |
Skalica | 28.09 | 7.74 | −20.35 | −72.46 | |
Extraction Productivity (ODT SMH−1) | Nivky | 3.26 | 3.91 | 0.65 | 20.00 |
Skalica | 2.28 | 4.65 | 2.37 | 104.17 | |
Extraction cost (EUR ODT−1) | Nivky | 12.49 | 13.05 | 0.56 | 4.50 |
Skalica | 17.73 | 10.80 | −6.92 | −39.06 | |
Processing Productivity (ODT SMH−1) | Nivky | 0.00 * | 2.66 | 2.66 | NA |
Skalica | 0.00 * | 1.72 | 1.72 | NA | |
Processing cost (EUR ODT−1) | Nivky | 0.00 * | 23.88 | 23.88 | NA |
Skalica | 0.00 * | 35.02 | 35.02 | NA | |
Total cost (EUR ODT−1) | Nivky | 32.45 | 43.25 | 10.80 | 33.28 |
Skalica | 45.82 | 53.57 | 7.75 | 16.91 |
Df | Deviance | Resid. Df | Resid. Dev | F | Pr(>F) | ||
---|---|---|---|---|---|---|---|
Felling productivity (ODT SMH−1) | NULL | NA | NA | 32 | 63.78 | NA | NA |
site | 1 | 5.68 | 31 | 58.10 | 25.07 | 0.00 *** | |
system | 1 | 51.51 | 30 | 6.58 | 227.53 | 0.00 *** | |
site:system | 1 | 0.02 | 29 | 6.57 | 0.10 | 0.76 | |
Felling cost (EUR ODT−1) | NULL | NA | NA | 32 | 2745.59 | NA | NA |
site | 1 | 157.54 | 31 | 2588.04 | 32.00 | 0.00 *** | |
system | 1 | 2352.83 | 30 | 235.22 | 477.95 | 0.00 *** | |
site:system | 1 | 92.46 | 29 | 142.76 | 18.78 | 0.00 *** | |
Extraction Productivity (ODT SMH−1) | NULL | NA | NA | 32 | 29.55 | NA | NA |
site | 1 | 0.85 | 31 | 29.46 | 0.47 | 0.50 | |
system | 1 | 18.20 | 30 | 11.26 | 102.12 | 0.00 *** | |
site:system | 1 | 6.09 | 29 | 5.17 | 34.14 | 0.00 *** | |
Extraction cost (EUR ODT−1) | NULL | NA | NA | 32 | 290.86 | NA | NA |
site | 1 | 18.85 | 31 | 272.01 | 6.93 | 0.01 * | |
system | 1 | 77.83 | 30 | 194.18 | 28.62 | 0.00 *** | |
site:system | 1 | 115.33 | 29 | 78.85 | 42.42 | 0.00 *** | |
Total cost (EUR ODT−1) | NULL | NA | NA | 32 | 2417.56 | NA | NA |
site | 1 | 1218.05 | 31 | 1199.51 | 75.93 | 0.00 *** | |
system | 1 | 715.11 | 30 | 484.40 | 44.58 | 0.00 *** | |
site:system | 1 | 19.16 | 29 | 465.24 | 1.19 | 0.28 |
Authors | Year | Reference | Values Range (EUR ODT−1) |
---|---|---|---|
Spinelli et al. 1 | 2022 | [22] | 33.8–46.1 |
Spinelli et al. 2 | 2022 | [41] | 29.9–35.4 |
Spinelli et al. 3 | 2022 | [42] | 46.1–42.2 |
Spinelli et al. 4 | 2022 | [23] | 28.3–32.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Francesco, F.; Magagnotti, N.; Kováč, B.; Heger, P.; Heilig, D.; Heil, B.; Kovács, G.; Zemánek, T.; Spinelli, R. Integrated Harvesting of Medium Rotation Hybrid Poplar Plantations: Systems Compared. Forests 2022, 13, 1873. https://doi.org/10.3390/f13111873
De Francesco F, Magagnotti N, Kováč B, Heger P, Heilig D, Heil B, Kovács G, Zemánek T, Spinelli R. Integrated Harvesting of Medium Rotation Hybrid Poplar Plantations: Systems Compared. Forests. 2022; 13(11):1873. https://doi.org/10.3390/f13111873
Chicago/Turabian StyleDe Francesco, Fabio, Natascia Magagnotti, Barnabáš Kováč, Patrik Heger, Dávid Heilig, Bálint Heil, Gábor Kovács, Tomáš Zemánek, and Raffaele Spinelli. 2022. "Integrated Harvesting of Medium Rotation Hybrid Poplar Plantations: Systems Compared" Forests 13, no. 11: 1873. https://doi.org/10.3390/f13111873
APA StyleDe Francesco, F., Magagnotti, N., Kováč, B., Heger, P., Heilig, D., Heil, B., Kovács, G., Zemánek, T., & Spinelli, R. (2022). Integrated Harvesting of Medium Rotation Hybrid Poplar Plantations: Systems Compared. Forests, 13(11), 1873. https://doi.org/10.3390/f13111873