Modeling the Effect of High Soil Moisture on the Wind Resistance of Urban Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Tree Species
2.3. Winching Tests
2.4. Data Analysis
2.5. Wind Loads on Trees Subjected to Typhoons
3. Results
3.1. Turning Resistance vs. the Deflection Angle of Trees
3.2. Relationship between the Maximum Resisting Moment and the Geometry of Trees
4. Discussion
4.1. Turning Resistance of Urban Trees in Near-Saturated Soil Conditions
4.2. Application in the Stability Assessment of Urban Trees against Typhoons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, M.; Défossez, P.; Danjon, F.; Dupont, S.; Fourcaud, T. Which root architectural elements contribute the best to anchorage of Pinus species? Insights from in silico experiments. Plant Soil 2017, 411, 275–291. [Google Scholar]
- Yang, M.; Défossez, P.; Danjon, F.; Fourcaud, T. Analyzing key factors of roots and soil contributing to tree anchorage of Pinus species. Trees 2018, 32, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Sani, L.; Lisci, R.; Moschi, M.; Sarri, D.; Rimediotti, M.; Vieri, M.; Tofanelli, S. Preliminary experiments and verification of controlled pulling tests for tree stability assessments in Mediterranean urban areas. Biosyst. Eng. 2012, 112, 218–226. [Google Scholar] [CrossRef]
- Mickovski, S.B.; Ennos, A.R. A morphological and mechanical study of the root systems of suppressed crown Scots pine Pinus sylvestris. Trees 2002, 16, 274–280. [Google Scholar] [CrossRef]
- Cucchi, V.; Meredieu, C.; Stokes, A.; Berthier, S.; Bert, D.; Najar, M.; Denis, A.; Lastennet, R. Root anchorage of inner and edge trees in stands of Maritime pine (Pinus pinasterAit) growing in different podzolic soil conditions. Trees 2004, 18, 460–466. [Google Scholar]
- Stokes, A.; Salin, F.; Kokutse, A.D.; Berthier, S.; Jeannin, H.; Mochan, S.; Dorren, L.; Kokutse, N.; AbdGhani, M.; Fourcaud, T. Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 2005, 278, 107–117. [Google Scholar] [CrossRef]
- Dupuy, L.; Fourcaud, T.; Stokes, A. A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 2005, 278, 119–134. [Google Scholar] [CrossRef]
- Stokes, A.; AbdGhani, M.; Salin, F.; Danjon, F.; Jeannin, H.; Berthier, S.; Kokutse, A.D.; Frochot, H. Root morphology and strain distribution during overturning failure of trees on mountain slopes. In Eco- and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability, Developments in Plant and Soil Sciences; Stokes, A., Spanos, I., Norris, J.E., Cammeraat, L.H., Eds.; Springer: Cham, Switzerland, 2006. [Google Scholar]
- Lundström, T.; Jonas, T.; Stöckli, V.; Ammann, W. Anchorage of mature conifers: Resistive turning moment, root–soil plate geometry and root growth orientation. Tree Physiol. 2007, 27, 1217–1227. [Google Scholar] [CrossRef] [Green Version]
- Giambastiani, Y.; Preti, F.; Errico, A.; Sani, L. On the tree stability: Pulling tests and modeling to assess the root anchorage. In Proceedings of the International Symposium on Soil and Water Bioengineering in a Changing Climate, Glasgow, UK, 7–8 September 2017. [Google Scholar]
- Krišāns, O.; Čakša, L.; Matisons, R.; Rust, S.; Elferts, D.; Seipulis, A.; Jansons, Ā. A static pulling test is a suitable method for comparison of the loading resistance of Silver birch (Betula pendula Roth.) between urban and peri-urban forests. Forests 2022, 13, 127. [Google Scholar] [CrossRef]
- Krišāns, O.; Matisons, R.; Kitenberga, M.; Donis, J.; Rust, S.; Elferts, D.; Jansons, Ā. Wind resistance of eastern Baltic silver birch (Betula pendula Roth.) suggests its suitability for periodically waterlogged sites. Forests 2021, 12, 21. [Google Scholar] [CrossRef]
- Wessolly, L. Stability of trees, explanation of the tipping process. Stadt Und Grün 1996, 4, 268–272. [Google Scholar]
- Coutts, M.P.; Nielsen, C.C.N.; Nicoll, B.C. The development of symmetry, rigidity and anchorage in the structural root systems of conifers. Plant Soil 1998, 217, 1–15. [Google Scholar] [CrossRef]
- Rahardjo, H.; Harnas, F.R.; Indrawan, I.G.B.; Leong, E.C.; Tan, P.Y.; Fong, Y.K.; Ow, L.F. Understanding the stability of Samanea saman trees through tree pulling, analytical calculations and numerical models. Urban For. Urban Green 2014, 13, 355–364. [Google Scholar] [CrossRef]
- Watson, G.W.; Hewitt, A.M.; Custic, M.; Lo, M. The Management of Tree Root Systems in Urban and Suburban Settings II: A Review of Strategies to Mitigate Human Impacts. Arboric. Urban For. 2014, 40, 249–271. [Google Scholar] [CrossRef]
- Défossez, P.; Veylon, G.; Yang, M.; Bonnefond, J.M.; Garrigou, D.; Trichet, P.; Danjon, F. Impact of soil water content on the overturning resistance of young Pinus Pinaster in sandy soil. For. Ecol. Manag. 2021, 480, 118614. [Google Scholar] [CrossRef]
- Ray, D.; Nicoll, B.C. The effect of soil water-table depth on root-plate development and stability of Sitka Spruce. Forestry 1998, 71, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, K.; Kitagawa, K.; Saito, S.; Mizunaga, H. Root anchor age of hinoki (Chamaecyparis obtuse (Sieb. Et Zucc.) Endl.) under the combined loading of wind and rapidly supplied water on soil: Analyses based on tree-pulling experiments. Eur. J. For. Res. 2012, 131, 219–227. [Google Scholar] [CrossRef]
- Usbeck, T.; Wohlgemuth, T.; Dobbertin, M.; Pfister, C.; Bürgi, A.; Rebetez, M. Increasing storm damage to forests in Swizerland from 1858 to 2007. Agric. For. Meteorol. 2010, 150, 47–55. [Google Scholar] [CrossRef]
- Edberg, R.; Berry, A. Patterns of structural failures in urban trees: Coast live oak (Quercus agrifolia). J. Arboric. 1999, 25, 48–55. [Google Scholar] [CrossRef]
- Knappett, J.; Zhang, X.; Leung, A.; Ciantia, M.; Liang, T.; Danjon, F. Small-scale modelling of root-soil interaction of trees under lateral loads. Plant Soil 2020, 456, 289–305. [Google Scholar]
- Gardiner, B.; Byrne, K.; Hale, S.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.C. A review of mechanistic modelling of wind damage risk to forests. Forestry 2008, 81, 447–463. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Ikonen, V.P.; Gregow, H.; Strandman, H.; Kilpeläinen, A.; Venäläinen, A.; Kellomäki, S. Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manag. 2010, 260, 833–845. [Google Scholar] [CrossRef]
- Soleimani-Fard, H.; König, D.; Goudarzy, M. Experimental and numerical analyses of uprising moisture in fine grained soils. J. GeoEngin. 2021, 16, 001–014. [Google Scholar]
- Klein, R.W.; Koeser, A.K.; Kane, B.; Landry, S.M.; Shields, H.; Lloyd, S.; Hansen, G. Evaluating the Likelihood of Tree Failure in Naples, Florida (United States) Following Hurricane Irma. Forests 2020, 11, 485. [Google Scholar] [CrossRef]
- Duryea, M.L.; Kampf, E.; Littell, R.C. Hurricanes and the urban forest: I. Effects on southeastern United States coastal plain tree species. Arboric. Urban For. 2007, 33, 83–97. [Google Scholar] [CrossRef]
- Francis, J.K. Comparison of hurricane damage to several species of urban trees in San Juan, Puerto Rico. J. Arboric. 2000, 26, 189–197. [Google Scholar] [CrossRef]
- Duryea, M.L.; Kampf, E.; Littell, R.C.; Rodríguez-Pedraza, C.D. Hurricanes and the urban forest: II. Effects on tropical and subtropical tree species. Arboric. Urban For. 2007, 33, 98–112. [Google Scholar] [CrossRef]
- Fraser, A.I. The soil and roots as factors in tree stability. For. Int. J. For. Res. 1962, 34, 117–127. [Google Scholar] [CrossRef]
- 31. Kamimura, K.; Saito, S.; Kinoshita, H.; Kitagawa, K.; Uchida, T.; Mizunaga, H. Analysis of wind damage caused by multiple tropical storm events in Japanese Cryptomeria japonica forests. Forestry 2013, 86, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Kane, B. Tree failure following a windstorm in Brewster, Massachusetts, USA. Urban For. Urban Green. 2008, 7, 15–23. [Google Scholar] [CrossRef]
- Rahardjo, H.; Amalia, N.; Choon, L.E.; Harnas, F.R.; Tieng, L.T.; King, F.Y. Flux boundary measurements for the study of tree stability. Landsc. Ecol. Eng. 2017, 13, 81–92. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2010; pp. 469–485. [Google Scholar]
- National Meteorological Library and Archive Fact Sheet 6—The Beaufort Scale; Met Office: Exeter, UK, 2010.
- Central Weather Bureau. Categorization of the Intensity of Typhoon-FAQ for Typhoons; Central Weather Bureau: Taipei, Taiwan, 2021. [Google Scholar]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- McCormick, B.W. Aerodynamics, Aeronautics, and Flight Mechanics; John Wiley & Sons, Inc.: New York, NY, USA, 1979; ISBN 0-471-03032-5. [Google Scholar]
- Hale, S.E.; Gardiner, B.A.; Wellpott, A.; Nicoll, B.C.; Achim, A. Wind loading of trees: Influence of tree size and competition. Eur. J. For. Res. 2012, 131, 203–217. [Google Scholar] [CrossRef]
- Vollsinger, S.; Mitchell, S.J.; Byrne, K.E.; Novak, M.D.; Rudnicki, M. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species. Can. J. For. Res. 2005, 35, 1238–1249. [Google Scholar] [CrossRef]
- Saint Cast, C.; Meredieu, C.; Défossez, P.; Danjon, F. Modelling root system development for anchorage of forest trees up to the mature stage, including acclimation to soil constraints: The case of Pinus pinaster. Plant Soil 2019, 439, 405–430. [Google Scholar] [CrossRef]
- Moore, J.R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. Ecol Manag. 2000, 135, 63–71. [Google Scholar] [CrossRef]
Physical Properties | Site of Camphor Tree | Site of Samanea Saman | Site of Amboyna Wood |
---|---|---|---|
Total unit weight (γm, kN/m3) | 18.63 | 16.01 | 16.31 |
Dry unit weight (γd, kN/m3) | 14.70 | 14.19 | 14.41 |
Specific gravity (Gs) | 2.62 | 2.62 | 2.56 |
Void ratio | 0.73~0.89 | 0.71~0.8 | 0.71~0.74 |
Unified Soil Classification System | SM/SC | SM | SM |
Camphor Tree | Samanea Saman | Amboyna Wood | ||||||
---|---|---|---|---|---|---|---|---|
Tree no. | DBH | H | Tree no. | DBH | H | Tree no. | DBH | H |
11 | 13.1 | 10.23 | 1 | 20.4 | 8.39 | 1 | 16.6 | 8.31 |
12 | 14.3 | 15.50 | 3 | 17.5 | 8.66 | 2 | 20.4 | 11.62 |
13 | 15.3 | 7.24 | 4 | 17.2 | 8.42 | 3 | 18.5 | 8.36 |
14 | 18.0 | 6.53 | 5 | 17.5 | 8.15 | 4 | 18.2 | 8.06 |
15 | 15.3 | 10.29 | 7 | 19.1 | 8.93 | 5 | 16.9 | 9.97 |
16 | 14.0 | 5.90 | 8 | 20.1 | 8.43 | 6 | 11.8 | 5.78 |
20 | 13.9 | 6.65 | 10 | 18.8 | 7.51 | 7 | 14.3 | 8.21 |
26 | 22.4 | 12.72. | 11 | 19.9 | 9.32 | 8 | 19.1 | 8.65 |
27 | 28.0 | 12.06 | 12 | 24.2 | 10.60 | 9 | 18.5 | 9.00 |
28 | 28.7 | 8.15 | 13 | 19.4 | 9.25 | 10 | 13.1 | 5.16 |
29 | 26.7 | 10.9 | 14 | 22.9 | 9.95 | 11 | 14.8 | 7.26 |
30 | 22.3 | 10.64 | 15 | 13.1 | 5.02 | 12 | 18.9 | 9.05 |
N-3 | 19.0 | 11.0 | 16 | 21.7 | 9.56 | 13 | 15.9 | 9.00 |
N-4 | 19.0 | 12.51 | 17 | 24.5 | 10.1 | 14 | 18.5 | 10.67 |
N-5 | 22.0 | 9.34 | 18 | 17.8 | 7.44 | 15 | 18.2 | 8.16 |
N-6 | 21.0 | 10.36 | 19 | 19.1 | 9.78 | 16 | 15.3 | 8.00 |
N-7 | 18.5 | 9.71 | 20 | 18.3 | 9.57 | 17 | 19.8 | 9.31 |
N-8 | 22.0 | 12.23 | 21 | 19.1 | 7.71 | 18 | 12.1 | 6.60 |
22 | 20.4 | 8.19 | 19 | 13.7 | 7.16 | |||
20 | 12.42 | 7.18 | ||||||
21 | 16.56 | 9.81 | ||||||
22 | 16.24 | 7.87 | ||||||
23 | 14.40 | 7.26 |
In Low-Moisture Soil Conditions | In Near-Saturated Soil Conditions |
---|---|
TMmax = 8018.9(DBH) – 91,250 | TMmax = 2834.9(DBH) – 15,433 |
R2 = 0.68; p = 0.042 | R2 = 0.83; p < 0.0001 |
Camphor Tree | Samanea Saman | Amboyna Wood |
---|---|---|
TMmax = 2834.9(DBH) – 15,433 | TMmax = 3478.9(DBH) – 43,101 | TMmax = 4523(DBH) – 48,388 |
R2 = 0.83; p < 0.0001 | R2 = 0.70; p < 0.0001 | R2 = 0.67; p < 0.0001 |
Camphor Tree | Samanea Saman | Amboyna Wood |
---|---|---|
TMmax = 2184.2(H) + 16,964 | TMmax = 6367.6(H) – 30,596 | TMmax = 7427.1(H) – 36,342 |
R2 = 0.15; p = 0.22 | R2 = 0.55; p = 0.0003 | R2 = 0.60; p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.-C.; Li, S.-C.; Lu, J.-Z. Modeling the Effect of High Soil Moisture on the Wind Resistance of Urban Trees. Forests 2022, 13, 1875. https://doi.org/10.3390/f13111875
Fan C-C, Li S-C, Lu J-Z. Modeling the Effect of High Soil Moisture on the Wind Resistance of Urban Trees. Forests. 2022; 13(11):1875. https://doi.org/10.3390/f13111875
Chicago/Turabian StyleFan, Chia-Cheng, Shu-Cheng Li, and Jin-Zong Lu. 2022. "Modeling the Effect of High Soil Moisture on the Wind Resistance of Urban Trees" Forests 13, no. 11: 1875. https://doi.org/10.3390/f13111875
APA StyleFan, C. -C., Li, S. -C., & Lu, J. -Z. (2022). Modeling the Effect of High Soil Moisture on the Wind Resistance of Urban Trees. Forests, 13(11), 1875. https://doi.org/10.3390/f13111875